	
[image: image103]
	HL7 Ordering and Fulfillment Discussion Document
Orders and Observations Work Group

 Architecture Review Board

DRAFT

Laboratory Ordering and Resulting
Document Purpose

The purpose of this document is to highlight and discuss requirements for the SAEAF behavioral model (aka dynamic model) as well as recommended business and technical artifacts needed to support this new model. The basis or source of business information for this document is healthcare services storyboard narratives, specifically those about lab ordering and resulting, collected from the International HL7 Standard, Canada, United Kingdom, and Australia.
The intended audience for this paper is the HL7 International Organization.
To find unfinished parts, search for <???> and for Discussion point:
Overview

The HL7 Architecture Review Board is proposing to the entire HL7 organization to use a new framework for developing standards. The framework, called Services-Aware Enterprise Architecture Framework (SAEAF), is based on a few industry standards (namely RM-ODP, ????) customized for the specific standards environment which is the business of HL7. Part of this framework includes a behavioral model which documents the ‘actions’ during the exchange of information between systems.
In the current HL7 methodology, this is referred to as the dynamic model. The key concepts in the current dynamic model are trigger events (what is the receiving system to ‘do’ with the information communicated), receiver responsibilities (what other activities does the receiving system perform in response to receiving a communication), triggering events (what happened on the sender side that caused this exchange of information), and status codes (represents the ‘state’ of objects within a communication). See Appendix B for a list of dynamic model requirements as seen through a MIF (model interchange format) viewpoint.
Storyboards and Discussion
Below follows storyboards and discussion immediately after each to discuss relevant points from that particular use case or set of use cases. To start, the simplest use case:
Universal Storyboard – Simple
Eve Everywoman, a 27-year-old female, presents at Good Health Hospital Outpatient Clinic and is seen by Dr. Patricia Primary. Eve reports a history of Anemia and recent, excessive tiredness. Dr. Primary enters a request to check the iron levels in Eve’s blood into her care system. Dr. Primary’s care system then sends the test requests to the Good Health Hospital’s Laboratory service. Eve receives a paper order requisition that serves as a reminder, provides instructions for where to find the collection center, and also details preparation instructions for the patient to follow (no food or drink from midnight until collection time on the day of collection).
Later that week Eve presents herself at the Lab Collection Center. The lab finds the order for her testingThe lab her and the appropriate blood samples are extracted and their containers labeled.
The lab performs the analysis on the received specimen(s) and sends the results to Dr. Primary’s care system.
Storyboard Assumptions

The first thing to note about this storyboard is a generic issue with many storyboards: it makes certain assumptions about each system’s connectivity (sending, receiving) to define and describe the information exchange events and their sequencing. For instance, Dr Patricia’s care system ‘sends’ the request to the lab system. It maybe that this is not necessary – that the care system will hang on to the request until the lab system goes looking for it (polling). That’s a connectivity (network architecture) aspect. But trying to write storyboards that don’t imply particular IT solutions is very difficult and tends to lead to opaque storyboards where the abstract from an IT solution gets in the way of the goal; which is to describe the process in a non-IT way. Clinicians think of results as something that are “sent”, but this doesn’t imply that the underlying IT implementation needs to actually push the results out. Doing so has pros and cons. So don’t take too much notice of IT implications but on the business processes themselves and the exchanges of information (in all forms). These storyboards are only a first step towards understanding and documenting the process.
Business Process

At its most basic, the business process documented in this use case of one of a requested service and documentation when that service is performed. Need a little more here <???>.
Storyboard Objects

From this storyboard and the implied business process, we can derive two objects that the interactions that will occur are concerned about: <???> replace graphic with two part
[image: image104.png]
There will be a Request object that exists on the Dr Patricia’s care system. It will have an identity of its own, and it will contain some link to the patient Eve, and the list of requested tests. The UML shows these as attributes, but with no details; they are just data place holders that assert that something meeting these functional requirements will exist.
The lab (fulfillment) system will contain one or more result objects, which exist because of the performance of the requested tests. Each result has its own identity and knowledge of the request identity, if it exists.
In addition, each of these objects has a status. We can derive the following state transitions internally from the storyboard: <???>
<???> Simplified request state machine

Any further discussion about the request state machine

Discussion fulfillment state machine

Austrailian Storyboard – Result Report

Eve Everywoman, a 27-year-old female, presents at Good Health Hospital Outpatient Clinic and is seen by Dr. Debbie Dermatologist. Eve reports a history of skin problems and Dr Debbie does an evaluation of a few ‘spots’ on Eve’s face and nose. Dr. Debbie takes a skin scraping for analysis of one of the spots.
Dr. Debbie enters the requested test into her care system, which sends the tests to the Good Health Hospital’s Laboratory service. When the laboratory service accepts the tests and promises to perform them, the promise is communicated to Dr. Debbie’s care system.
The lab performs the analysis on the received specimen and formats the results into a clinical report. The results meet the established criteria for releasing the report, but not for automatically authorizing the report, so the Lab system sends an interim or provisional report to Dr. Debbie’s Care System.

Later, the report is reviewed by a qualified Pathologist who approves it, and the lab system sends a final report to Dr Debbie’s Care System.

Business Process

This is a more complex business process as it add two more objects and potentially many more exchanges of information between systems. In this use case, a Promise is communicated from the fulfilling system to the requesting system with an intent to perform an action or set of actions in response to the request.
Storyboard Objects

From this storyboard and the implied business process, we can derive four objects that the interactions that will occur are concerned about:

[image: image2.emf]Request+ identity+ status+ patient-details+ testsPromise+ identity+ status+ request-identity+ patient-identity+ testsReport+ identity+ request-identity+ status+ promise-identity+ patient-identity+ report-content+ authenticater-info

The request and result objects are the same as the simple use case. However, the more complex use case introduces two new objects: Promise and Report.

The Promise object …… <???>
Disscussion point: Does the Promise duplicate the tests or get them on the fly from the request? <Grahame> That depends, and we don’t decide yet. We just know that these are things it may know). <PEL>No, it doesn’t depend it’s directly related to the business process. The promise does not duplicate the tests as found on the request as there are some test codes which are refined by the lab depending on the coding of the testing and the terminology used (LOINC captures 6 dimensions of pre-coordinated lab order information.)
<???> Does this section need rework?

There may be several states
before actually asking the lab for a promise, but they are not relevant to the interoperable functionality. Interoperable functionality is about interactions between the externally observable states of the systems. Some state models, particularly internal models, would not have the state “seeking”, instead having a simple junction going to either ‘waiting’ or ‘refused’. But in interoperability the actual discussion between the requester and the promiser (usually called the fulfiller) is of interest (including the possibility of the communications itself failing, or process errors occurring), and making the intermediate state explicit has benefits which will become evident as we progress.
[image: image3.emf]PromiseInitialFinalDecidingRejectedWorkingFailedCompleteGet RequestSend RejectSend PromiseSend Promise CompleteSend Failure with Reason

Discussion point: Bring up JK’s comment here.
 For the promise, the state is a little simpler
– once a request arrives, the lab system decides whether it’s going to promise to perform the request. This might a simple decision – automatically yes. Or it might require confirmation from a human, potentially somewhere else to grant financial approval. If the lab does communicate the intent to perform the requested tests, a promise is sent and the lab system moves into a ‘working’ state. During this state any number of internal events might happen, such as the patient attending the collection center, the lab collecting the specimen(s), the machine or technician creating results, a number of reports being created from those results, and some reports being sent more than once. At the end, the work (fulfillment of the request) is either deemed complete or failed, and the care system is informed of this.
Discussion point: Do we mention sending reports to others here or at all?
Finally, we have the reports
themselves
. Each report follows the widely recognized
clinical reporting state machine:

[image: image4.emf]Clinical ReportInitialFinalCreatedPendingInterimAuthorizedAmendedWithdrawnSome Creation StimulusWork StartsThings HappenProvisional ReleaseApproved as ReliableFurther ChangeFurther ChangeError DiscoveredError Rectified

The general progression
for a clinical report is creation -> working -> interim -> authorized -> amended.

Discussion point: are the above the general (and universal) progression? Does this follow CDA standard?
In an interim report, the data is available, but not all the QA processes are complete on it (usually human review), so the report is made available on a provisional basis. On some reports, the report is not made available until all QA is perform based on clinical risk assessment, while in other reports, the timely availability of unQA’ed reports is actually the lower clinical risk (usually there’s a time urgency involved).

In general, reports don’t go backwards along this progression – it’s too confusing. What does it mean if you release some changes to an authorized report on an interim basis?

<???> Need to rewrite to be geo-specific or some other as this is not the process in the US (see below)
Reports may be withdrawn
at any time if the laboratory discovers an error in the work that was done for some reason. Withdrawal implies a somewhat active process, hunting down any existing copies of an erroneous report and speaking to anyone who may have made clinical decisions based on the report – though this is not always possible.
After an error is corrected (if possible), a corrected report may be issued – this is considered to be an amended report
.

This state machine ignores the many states that are concerned with preparation and review on the grounds that from this perspective, these are considered “internal states”
within the lab system.
However from the perspective of the lab order/report cycle, this is still a gross simplification. Though the basic reporting cycle may serve as a reasonable summary for the state of the report, the problem is that there may be a variable number of reports, and there are other workflow events that are not reports that are of interest, mostly to do with the impact of the testing cycle on the patient location and status.
In order to manage this complexity, we can break the reporting workflow out into its own space, and focus only on the interactions between the request and the promise, though of course we know that the request/promise cycle exists in order to ensure the actual delivery of the request.

Another reason for doing this is that reporting cycle itself continues after the request/promise cycle has concluded; for instance, the lab system may advise the care system that the tests it requested are now complete, and then subsequently an error is discovered, leading to the issuance of an amended report. It must not be necessary to re-activate the request and the promise in order to send an amended report. There’s no business process reason for the request and promise status to change – the lab simply sends the amended report.

In addition, there may be other business workflows that lead to the lab sending reports to the care system which had no care system request associated with them at all. So it’s both easier and more faithful to real life to treat the reporting cycle as a separate entity
, and accordingly, the states of the request and promise are not explicitly linked to the workflow and cycles of performing the actual work.
Roles and Interactions

We can derive a set of roles and exchanges from the state machines, and use this information to build a set of business services. The first thing is to identify the roles. So far, we only have two:
	Placer
	Places the original request, and waits for it to be complete

	Fulfiller
	Accepts the request, and then carries out the activities to fulfill what was asked

The state transitions in the request and promise class are linked by exchanges between the systems that play the two roles. They can be presented in a tabular form:
	Initiator
	Name
	Information
	Request State Transition
	Promise State Transition

	
	
	
	Before
	After
	Before
	After

	Placer
	Request
	Request identity
Patient identity

Clinician Identity

Test list
	Initial
	Seeking
	Initial
	Deciding

	Fulfiller
	Refusal
	Request Identity
Patient Identity

Reason for Refusal
	Seeking
	Refused
	Deciding
	Rejected

	Fulfiller
	Accept
	Request Identity

Patient Identity

Predicted Delivery Time?
	Seeking
	Waiting
	Deciding
	Working

	Fulfiller
	Complete
	Request Identity

Patient Identity
	Waiting
	Complete
	Working
	Complete

	Fulfiller
	Failed
	Request Identity

Patient Identity

Reason for Failure
	Waiting
	Aborted
	Waiting
	Failed

These interactions can be assembled into services using either request/response, publish/subscribe, or implemented using synchronous or asynchronous messages. But whatever the architecture, these are the essential information exchanges that need to occur.
What is missing from this table is other obligations that the placer and fulfiller have. Some of these obligations are shared in all the various incarnations of the lab request/report cycle, while others vary wildly. The most obvious obligations pertain to the fulfiller:

· Carry out the work that is promised (if possible – i.e. can’t do it if the patient doesn’t turn up)

· Ensure that either a complete or failed exchange actually happens in the end

Other obligations might be to validate that the request is valid, or to inform other systems, or to perform some further business processing. These obligations are out of scope when building an interoperability standard, as are the obligations on the placer such as ensuring that the order is one it is allowed to submit.
Unfortunately, this is not all there is to lab orders. There are several key additional structural elements that need to be provided for.
Order Brokers

Canadian Storyboard – Jurisdictional Lab Information System
Dr. Patricia Primary orders a set of tests on Eve Everywoman. Dr. Primary’s care system sends the order to the local-area lab repository. Dr. Primary’s care system prints a paper copy of the order requisition that tells her where she can have specimens collected and the testing performed.
Eve can attend any laboratory to have the tests done – whichever one she chooses.
When Eve actually presents at the laboratory of her choice, the laboratory system connects to the central broker and retrieves the order. The lab information informs the central broker that it is performing the tests (promise). The broker system sends the performing lab information to Dr Primary’s care system.
Note this storyboard is just a fragment to document a specific process issue.

Australian Storyboard – Test Challenge
When Dr. Patricia Primary orders a set of tests on Eve Everywoman, her system contacts a central broker, requesting a test. The broker offers the test to multiple laboratories that may either accept or reject the test. If they accept the test, they must nominate a cost. The broker picks the cheapest offer received within a limited time, and returns that promise to Dr Primary’s system. It cancels the promises received from any other laboratories.

Dr. Primary prints a paper copy of the request to hand to Eve, where it serves as a reminder and provides instructions for how to find the correct laboratory collection center, and perhaps also details some preparation instructions.
Note this storyboard is just a fragment to document a specific process issue.

Business Process
[image: image5.emf]RequestAbortedCompleteAbandonedRefusedFinalWaitingSeekingInitialLab Systems Informs that Promise is CompleteLab System informs that test has failedNo Reply from LabLab RefusesGet A Promise From the Lab SystemAsk the Lab for a promise

Order brokers can also be known as clearing houses or order registries (or other names), and are growing in popularity, though there are also controversial aspects to their existence and operation. If we are going to have a standard that relates to laboratory orders, then it should allow the use of brokers without being too intrusive.
Storyboard Objects
The broker adds another object to the system:

[image: image6.emf]Report+ identity+ status+ request-identity+ promise-identity+ patient-identity+ report-content+ authenticater-infoPromise+ identity+ status+ request-identity+ patient-identity+ testsRequest+ identity+ status+ patient-details+ testsBroker+ status+ request-identity+ patient-identity+ lab-identity+ promise-identity+ tests

The Broker object doesn’t have a particular identity – we’re not interested in it as an entity in its own right (though of course the broker itself will have an identifier for the actual object it uses internally). But we do think of the status of the broker, and it does have a state machine that is of interest externally:

[image: image7.emf]BrokerInitialHoldingBrokerMode?BiddingFinalTimed OutClaimedFailedCompleteAuctionOutcomeBrokerMode?[Waiting][Seeking]Get and Send Failurewith ReasonGet and Send PromiseCompleteLab sends claim message,send message to placerTime OutAuction ProcessSend Message toPlacer [Success][Notmediating][Mediating]SendMessageto Placer[Failure]

This is a more complicated state machine because it’s more dependent on the process that the broker is involved in, and because it is inserted between the placer and the fulfiller.
The first dependency is the choice point for whether the broker is acting as an auction house, or just holding the request.
If the broker is just acting to hold the request, it will hold the request until a lab contacts it for details when Eve actually turns up at the lab, at which time it will send the fulfillers promise to the placer. Under some circumstances, it will decide that it has held the request for too long, and time it out if Eve does not attend the lab within a specified time period. Whether this happens depends on business arrangements; for instance, there may be a legal requirement that the request is only legal for a limited period. This also applies to the lab system too, though this was not accounted for above.

If the broker is acting as an auction house, it will conduct an auction by sending the request on two some registered list of lab systems. Once they have all responded, or some specified time period has been exceeded, or some other business decision is made, the broker can either decide that no lab is willing or able to provide the service, and it has failed, or it will pick a lab and return the promise.
What happens next depends on whether the broker is mediating communications between the lab that is acting as a fulfiller and the placer. This choice is purely dictated by implementation details, whether it is practical for the placer and the fulfiller to communicate directly. If they do communicate directly, the broker’s involvement is complete, otherwise the broker status tracks the fulfiller status.
The Broker acts as a façade for the fulfiller; in principle, the placer has the same exchanges with the broker as with a fulfiller, though the timing of the interactions could be very different, along with the technical communications architecture.
Australian Storyboard - Follow-up Testing (Revise Order)
One week after the initial consultation, Eve is again seen by Dr Patricia. After review of the results and the course of Eve’s condition, Dr Patricia decides that another lab test would be useful. Rather than asking Eve to go to the collection center again, Dr Patricia types the test into her system as a follow up test. Dr Patricia’s care system sends this request to the lab system, which replies, promising to perform this new test and whether the remaining volume of the current specimen is sufficient to complete the follow-up test(s).
Note this storyboard is just a fragment to document a specific process issue.

You could simply say that this is a new request, with a new promise. But in Australia there are legal requirements in many jurisdictions about this, and some specify that such follow up testing is logically done as a modification of the previous request. In these circumstances, it is much simpler to treat the follow up test as changing the status of the original test and adding new order components. And this can happen at any time, even after the request has been completed.
[image: image8.emf]RequestAbortedCompleteAbandonedRefusedFinalWaitingSeekingInitialLab Systems Informs that Promise is CompleteLab System informs that test has failedSend ModificationMessage to LabNo Reply from LabLab RefusesGet A Promise From the Lab SystemAsk the Lab for a promiseSend ModificationMessage to Lab

This adds two state transitions to the request object, and there are similar additions to the promise state machine.

Suspension / Cancellation
Universal Storyboard – Cancel Order
Adam Everyman, an 18-year-old male is presents at Good Health Hospital following a serious trauma accident. Dr Eric Emergency requests a series of blood tests as part of the Adam’s care.
Unfortunately Adam’s injuries are too serious, and he passes away an hour later. The emergency care system cancels the outstanding laboratory tests when Adam’s record is updated following his death.

Of course there are other reasons for a placer to cancel an order. The laboratory does not always honor the request to cancel the request; whether it does so depends on a combination of whether the speicmen has already been collected, the expense of the testing process, and how the laboratory is paid.
It is also possible for the placer to suspend a request.
Universal Storyboard – Suspend Repeating Order
Adam Everyman, a 55-year-old male is admitted to Good Health Hospital for an operation following an accident. Dr Aaron Attend requests that 4 CBCs be performed each day while Adam is an inpatient.
On the second day, Adam has an operation that will last all day, so Nurse Nancy Nightingale suspends the request for the duration of the day so that the laboratory knows not to send anyone to collect blood from Adam.

The cancel and suspend concepts make the state transition models a little more complex. Though each is relatively simple in concept, they complicate the state transitions since there are now transitions between waiting, canceled, and suspended, including a state transition to undo a cancel operation. In addition, the states of the request and promise (and the broker) are mostly tied together with regard to cancellation and suspension, so there’s an equivalent increase in potential exchanges between the systems.
Discussion point: does this include undo a cancel? I suggest no. If one wants to first order, then cancel that order – you can’t undo that cancel. Place a new order.
Order Manager
The most common end state for the request cycle is that the laboratory
 or fulfiller claims that request has been completed. An important question is whether the placer agrees that whatever was requested has actually been performed. There are several reasons why the placer may not agree:
	Clerical error
	The whole point of this request cycle is that there should be no capacity for clerical error

	Configuration Error
	The mapping between the request code and the lab system may be in error

	Clinical Interpretation
	The lab applies clinical judgment when deciding what to do; there may be disagreement between the clinician and the lab in this area.

For this reason, many clinical systems that place lab requests provide functionality to check what was performed against what was requested; this is known as an “Order Manager”.
It also tracks the requests so that some clinical user can be alerted in the case that requests are not progressing or completed – for instance, if the patient does not attend any lab to have their specimen(s) collected.

In order for the Order Manager to function, it must be able to track the laboratory reports and compare the list of reports received, along with their status and contents, against its own expected list. To enable the Order Manager to track the reports, all the reports that the lab sends to the placing system must identify the request(s) that the report is considered to be fulfilling.
 As discussed above, this may occur even after the request/promise cycle is complete.
When the order manager detects an issue, it must notify a human. There are no request or promise state transitions related to the order manager. However there is an exchange related to the order manager: the order manager may inform the laboratory that it has detected an issue as well as informing its own users through some process that is out of scope for this analysis. In order to treat this consistently, we can define an order manager object, along with a laboratory equivalent.
[image: image9.emf]Order Tracker+ status+ request-identity+ promise-identityPromise Tracker+ status+ request-identity+ promise-identity

Again, these objects do not have an explicit identity of their own that we interested in, and they do not need to directly exist in that form – all this is saying that from an external perspective, the systems behave as if these objects exist.
[image: image10.emf]Order TrackerInitialTrackingAcceptedIs OK?RejectedFinalPromise TrackerInitialTrackingCompletedUnder DisputeFinalRequest CreatedRequest Completed[Yes]Send Messageto Lab [No]Promise CreatedPromise CompletedReceive Error MessageFrom Placer

These are very simple state transition diagrams. There are many other potential states related to the interaction of the logical trackers with humans (review, mark-off, etc), but these are not relevant to the request/promise cycle.

Putting it all together

Taking all these extra factors gives us final state transitions for request and promise that look like this:

[image: image11.emf]RequestAbortedCompleteAbandonedRefusedFinalWaitingSeekingInitialCancellingLabResponseLabResponseSuspendedSend ModificationMessage to LabSend ModificationMessage to LabLab SystemInforms thatPromise isCompleteLab System informsthat test has failedNo Reply from LabLab RefusesGet A Promise From the Lab SystemAsk the Lab for a promiseSend Lab a CancelGet LabResponse[AcceptCancel][Reject Cancel][Accept Modify][Lab Reject]Send Suspendto LabSend Unsuspendto Lab

[image: image12.emf]PromiseInitialFinalDecidingTimed OutIn ProgressFailedCompleteAcceptModification?SuspendedWillCancel?CancelledGet RequestSend RejectSend PromiseSend Failure withReasonSend PromiseCompleteGet RequestModificationSendRejection[Reject]SendAcceptance[Accept]Get Suspend MessageGet Unsuspend MessageGet CancelMessageSend Cancel[Accept Cancel]Send Reject[Reject Cancel]

The broker object gets its own set of suspend and cancel related states as well (not shown). From these state transitions, we can derive a new set of roles and exchanges.
Roles:

	Placer
	Places the original request, and waits for it to be complete. May have an order manager

	Broker
	Chooses a lab, or holds the request until the patient chooses a lab. May mediate communications subsequently

	Fulfiller
	Accepts the request, and then carries out the activities to fulfill what was asked

	Initiator
	Name
	Information
	Request State Transitions
	Promise State Transition

	
	
	
	Before
	After
	Before
	After

	Placer
	Request
	Request identity

Patient identity

Clinician Identity

Test list
	Initial
	Seeking
	Initial
	Deciding

	Placer
	Modify
	Request identity

Patient Identity

New Test list
	No change
	No Change – either Accept or Reject needed

	Placer
	Suspend
	Request identity

Patient Identity
	Waiting
	Suspended
	In Progress
	Suspended

	Placer
	Unsuspend
	Request identity

Patient Identity
	Suspended
	Waiting
	Suspended
	In Progress

	Placer
	Cancel
	Request Identity

Patient Identity

Reason
	No change
	No Change – either Accept or Reject needed

	Fulfiller
	Refusal
	Request Identity

Patient Identity

Reason for Refusal
	Seeking
	Refused
	Deciding
	Rejected

	Fulfiller
	Accept
	Request Identity

Patient Identity

Predicted Delivery Time?
	Seeking
	Waiting
	Deciding
	Working

	Fulfiller
	Accept Modify
	Request Identity

Patient Identity
	Waiting | Complete
	Waiting
	In Progress | Complete
	In Progress

	Fulfiller
	Reject Modify
	Request Identity

Patient Identity Reason
	No Change
	No Change

	Fulfiller
	Accept Cancel
	Request Identity

Patient Identity
	Waiting
	Canceled
	In Progress
	Canceled

	Fulfiller
	Reject Cancel
	Request Identity

Patient Identity

Reason
	No Change
	No Change

	Fulfiller
	Complete
	Request Identity

Patient Identity
	Waiting
	Complete
	Working
	Complete

	Fulfiller
	Failed
	Request Identity

Patient Identity

Reason for Failure
	Waiting
	Aborted
	Waiting
	Failed

The broker plays the roles of both placer and fulfiller. It has the same exchanges, though the state transitions and the consequential workflow differ. However there are few broker specific exchanges. In the mode where the broker holds the request waiting for a patient to attend a laboratory, we need an exchange to allow the laboratory to find any outstanding requests for that patient.

For the broker mode where the broker holds an auction for the request, we could implement it using the exchanges described above, but that leads to an odd workflow. Given the exchanges above, when the broker receives a request, it would hand the request on to all participants of the auction, who would all then ‘accept’ the request. The broker would pick the best offer, and cancel all the others. Perhaps the others may refuse to cancel, but that would be pretty pointless. This is possible, but it doesn’t really match what’s going on, and it’s going to at least cause confusion for the implementers. So it’s better to define specific exchanges.
	Initiator
	Name
	Information
	Promise State Transitions
	Broker State Transition

	
	
	
	Before
	After
	Before
	After

	Fulfiller
	Query
	Patient identity
	Initial
	Searching
	No Change

	Broker
	Query Response
	Patient identity

(Request Info)n
	No Change
	No Change

	Broker
	Auction
	Request identity

Patient identity

Clinician Identity

Test list
	Initial
	Costing
	No Change

	Placer
	Bid
	Request identity

Cost
	Costing
	Bid
	Wait for outcome of Auction

Appendix A - Comments, Questions, Concerns Summary
Two-step request/fulfillment breakdown works nicely (no next step, just confirmation of the general architecture).
Need to handle minimal use case which is order, then result (report) with no promise. (review doc again with this idea in mind, some of the wording does need to change, I think). Next step (JK to ensure promise isn’t mandatory throughout)
Storyboards need work. What’s included is a good start but many need clarification. Next step: AJK and PEL to suggest modifications to included storyboards and create new ones if needed. Need storyboard which shows minimal path (request with specimen included, result report), a good complex path (let’s use micro since this also shows prelim vs. final reporting, include corrected with this storyboard), a repository path (order broker), and order manager (edge use case, I think).
Redo state machines (JK) – do we need another view or do we wait until next, more detailed iteration? This doc is more of a DAM for a behavioral framework. That’s in next step.
Need to ensure messaging, services, and documents are in scope of the solution.
Framework concept model for OO including down a notch into services (JK)
Think introducing the idea of a broker in this particular doc is implementation-specific? Need to support the bf of brokering. May need to add variety of accountability paradigms (JK). GG to review.
 We realize this is early in the process, but both Austin and I were surprised that we didn’t see more of the ‘new’ language of behavioral framework (words like collaborations, exchanges, contracts, etc). Of course, could be this is too early and that’s the next step (or a step after).
We are seeing new ‘states’ as they relate to services which break down differently than messaging (of course). But it’s difficult to tell how the various HL7 state machines map to the service states. In one of the last diagrams, we do see the suspend state (so that’s a start). Next step: Austin and Patrick to review current state machine, lab result and bring back any that are not addressed in current doc.
Need to buffer up use case re: order manager. One of the peculiarities of order management is that of recurring orders. Both the BF and the information model needs to handle. Need a storyboard which illustrates this requirement. Next step: Austin and Patrick to create storyboard

Need to review, in gory detail, all the state machines for request and for fulfillment. Review on a call with Austin, Patrick, Grahame, John K.
Appendix B - HL7 Dynamic Model Methodology
The HL7 methodology includes two parts needed for communication of information between systems, the static model (information content itself and any wrappers) and the dynamic model which describes the circumstances under which that information is sent and how that exchange fits into an overall pattern of communication. "Dynamic model" refers to a set of interrelated artifacts that together define the behavioral portion of an HL7 v3 specification. The artifacts include:

Trigger Events: When is information exchanged?

Application Roles: Who are the participants in an exchange?

Interactions: What are the characteristics of a single exchange, including its place in an overall communication pattern?

Requirements
Trigger Events
	Requirement
	There needs to be a means of defining and standardizing the definition of the 'real world' occurrences that result in a need for information to be exchanged.

	Rationale
	Part of interoperability is not only what information will get shared but also the circumstances where it will be shared. A system that does not share the appropriate information at the correct time will not achieve interoperability.

	MIF
	mif-model-dynamic.xsd/TriggerEvent

	Requirement
	Each trigger event must have a unique name

	Rationale
	The trigger events must be able to be precisely referenced in human-to-human communication.

	MIF
	mif-model-dynamic.xsd/TriggerEvent/@name

	Requirement
	Each trigger event must identify, as formally as possible, the real-world occurrence that causes information to flow.

	Rationale
	The purpose of a trigger event is to give a standardized label to a particular type of real-world event so that it can be referenced. If the real-world event isn't defined or is defined only loosely, the trigger event's purpose won't be met.

	Methodology
	There are three categories:

· interaction-based - An interaction caused by the receipt of another interaction. For example query response. Interaction based trigger events reference the interaction that triggers them.

· state transition-based - An interaction caused by a change in status. For example, putting a repeating order on hold (to suspend action on that order). State-based trigger events reference the static model, class and state transition they are associated with

· environment-based - An interaction caused by a user interacting with a system or some other environmental occurrence. For example, user deciding to query a system; daily notification sent out at 2am. Environment based trigger events include a textual description of the real world event, as there is no more formal way of defining them.

	MIF
	· Interaction-based: mif-model-dynamic.xsd/TriggeringEvent/interaction

· State-based: mif-model-dynamic.xsd/TriggeringEvent/stateTransition

· User-based: mif-model-dynamic.xsd/TriggeringEvent/environmentalOccurrence/text

	Requirement
	EnvironmentalOccurrence may have a related state transition.

	Rationale
	Some events that aren't directly caused by a state transition might still have an association to a transition. There are two common situations where this occurs:

· Request for a state transition to occur; and

· Request for fulfillment of a state transition

In the first case, the triggering action is usually some user or system decision, but not the actual state transition (because it hasn't happened yet - it's just being asked for. For example, when a user requests info to be posted to a patient's EHR (related state transition is to 'complete' an observation)

In the second case, the state transition happened some time ago (possibly seconds, possibly days). A decision has been taken to ask another system to "action" that state transition. For example, "please fill this prescription".

	MIF
	· mif-model-dynamic.xsd/EnvironmentalOccurrence/relatedStateTransition

	Requirement
	Trigger Events may have a number of different types of annotations

	Rationale
	See rationales for individual annotations types

	Implementation
	· Usage Constraint

· Usage Notes

· Rationale

· Requirements

· Design Comments

· Stability Remarks

· Other Annotation

· Mapping

· Open Issue

· Ballot Comment

· Change Request

· Deprecation Information

Interations
	Requirement
	HL7 v3 specifications must be able to define each possible "exchange" of information including the structure and type of information to be sent, the circumstances in which it is sent and expectations on the receiver.

	Rationale
	A single exchange is the lowest possible unit of actual interoperability. While an exchange is made up of multiple components, there is no interoperability without at least one successfully completed exchange. To have interoperability, the characteristics of that exchange must be fully defined and agreed to by both parties.

	MIF
	mif-model-dynamic.xsd/Interaction

	Requirement
	Each interaction must have a unique name

	Rationale
	Interactions must be able to be referenced in human communication

	MIF
	· mif-model-dynamic.xsd/Interaction/@name

	Requirement
	Each interaction may have an interaction type.

	Rationale
	Interactions typically fall into one of a set of stereotypical behaviors. Each of these stereotypes have distinct expectations for the types of trigger events and receiver responsibilities associated with them.

	Methodology
	· Query - Solicits data from the receiver</xs:documentation>

· QueryResponse - Returns requested data to the query initiator, or an indication that requested data is unavailable.</xs:documentation>

· EventNotification - Informs the receiver about the occurrence of a trigger event, along with full or partial data related to that trigger event.

· RequestForAction - Solicits a specific action (trigger event) from the receiver. Must be an action the receiving Role is theoretically capable of performing.

· RequestResponseAccept - Notification of the agreement or conditional agreement to perform the requested action (trigger event) or a varient thereof. I.e. the accept may propose an alternative to the initial request.

· RequestResponseRefuse - Notification of the refusal to perform the requested action (trigger event).

· UntriggeredNotification - Transmission of data that is independent of the occurrence of any state-transition event or other interaction.E.g. auto-publish, broadcast, backload

	MIF
	· mif-model-dynamic.xsd/Interaction/@interactionType

	Requirement
	Each interaction must identify the type of event that causes the exchange defined by the interaction to occur.

	Rationale
	The same set of data might be exchanged for many different purposes and in many different circumstances. Agreement on a specific reason for a given exchange is important to shared interpretation of the information. For example, a structure defining a prescription might be sent when asking for the prescription to be created in some central system, when asking a pharmacy to fill the prescription, or as a response to a query. The same data is sent, but the triggering event (and thus the semantic interpretation of the information and what internal business process should be invoked) is different.

	MIF
	mif-model-dynamic.xsd/Interaction/invokingTriggerEvent

	Requirement
	Each interaction must have a definition of the content allowed to be conveyed as part of the exchange defined by the interaction.

	Rationale
	A key part of standardizing communication is standardizing the data content to be exchanged and how that data will be structured. Without knowledge of the data to be conveyed, interoperability cannot be achieved.

	Methodology
	Refer to Bound Models

	MIF
	mif-model-dynamic.xsd/Interaction/argumentMessage

	Requirement
	Interactions must be able to define the communication flow expectations on a receiver of the exchange

	Rationale
	Frequently in response to an interaction, one or more 'response' interactions are triggered. There can be multiple responses. For a simple, two-part example, a 'transaction' is not complete until both a request trigger event is and information is communication and it's confirm response is receiver. The confirm response is the 'receive responsibility'. These responsibilities are communicated by the sender and are intended to 'complete' a business function. In other cases, there is an expectation that an "event" will occur within the receiving system that will result in additional communications.

	Methodology
	· HL7 does not standardize the 'internal' behavior of applications as that is outside the scope of the organization's mandate. However, behavior around expressed communications is part of interoperability and is therefore defined.

· Receiver responsibilities are defined as a set of 0..* mutually exclusive alternatives. The receiver is expected to perform one and only one of the listed set of responsibilities. (It is possible for a defined responsibility to be "do nothing".

	MIF
	· mif-model-dynamic.xsd/Interaction/receiverResponsiblities

Receiver Responsibilities
	Requirement
	Each receiver responsibility must have a reason.

	Rationale
	Indicates the conditions under which this receiver responsibility should be chosen. Should be mutually exclusive with the conditions of all other receiver responsibilities for this interaction. Also, the combined reasons for all receiver responsibilities should be complete. I.e. There should be no circumstance that doesn't fit into the reason of one and only one receiver responsibility. This set of conditions ensures that the allowed communication behavior of the receiver is fully defined. For example, one responsibility might be invoked if a request is accepted, another if the request is not accepted but an alternative is proposed, and a third responsibility invoked in all other circumstances.

	MIF
	· mif-model-dynamic.xsd/ReceiverResponsibly/reason

	Requirement
	A receiver responsibility may have one or more 'response' interactions.

	Rationale
	A common pattern of communications is to send some sort of response when a piece of information has been received. This type of receiver responsibility allows interactions to be chained together. Supports acknowledgements as well as query responses.

	MIF
	· mif-model-dynamic.xsd/ReceiverResponsibly/invokingInteraction

	Requirement
	A receiver responsibility may have one or more 'response' trigger events.

	Rationale
	Some interactions may result in a defined "real world event" occurring in the receiving application. For example, if a request for fulfillment of an order is 'accepted', there may be a requirement that the receiver 'activate' a 'Promise' object. That trigger event would then fire all interactions having that state transition as the initiating trigger event

	MIF
	· mif-model-dynamic.xsd/ReceiverResponsibly/invokingTriggerEvent

	Requirement
	Interactions may have a number of different types of annotations

	Rationale
	See rationales for individual annotations types

	Implementation
	· Usage Constraint

· Usage Notes

· Rationale

· Requirements

· Design Comments

· Stability Remarks

· Other Annotation

· Mapping

· Open Issue

· Static Example

· Ballot Comment

· Change Request

· Deprecation Information

Application Roles
	Requirement
	There is a need to define groupings of exchanges that systems might choose to support

	Rationale
	Applications that choose to implement random combinations of interactions will not interoperate. For example, a system that can send a query but cannot receive the response is useless. For true interoperability there needs to be a collection of interactions defined that a particular system can send and/or receive. That application would then be able to communicate with any system that supports the paired grouping.

Application roles serve many purposes:

· They can be the foundation for formal specifications and RFPs

· They provide an idea of desired/expected behavior

· They form a foundation for conformance testing

	MIF
	· mif-model-dynamic.xsd/ApplicationRole

	Requirement
	Each application role must have a unique name

	Rationale
	There's a need to reference interactions in human-to-human communication

	MIF
	· mif-model-dynamic.xsd/ApplicationRole/@name

	Requirement
	Each application role may have related application roles.

	Rationale
	When defining conformance structures, it's useful to allow composition of common combinations into more complex structures. For example a "Pharmacy system" application role might be composed of "Prescription filler", "Dispense notifier", "Medication profile querier" and similar roles.

	Methodology
	Two types of composition are defined:

· AtLeastOne - The container application role must implement at least one, possibly more (including all) contained application roles.

· Includes - Defines the relationship where the container contains the contents.

	MIF
	· mif-model-dynamic.xsd/ApplicationRole/relatedApplicationRoles

	Requirement
	Each application role may be either or both sending interactions and/or receiving interactions.

	Rationale
	Application role is about the functional capability. Need to document for each role what the application is capable of receiving and sending.

	MIF
	· mif-model-dynamic.xsd/ApplicationRole/sendsInteractions

· mif-model-dynamic.xsd/ApplicationRole/receivesInteractions

	Requirement
	Each application role may either create or consume documents.

	Rationale
	In addition to sending and receiving messages (services), applications may also create and consume documents, which don't have an associated dynamic model. This capability also needs to be bound into the definition of a system's characteristics.

	MIF
	· mif-model-dynamic.xsd/ApplicationRole/createsDocuments

· mif-model-dynamic.xsd/ApplicationRole/consumesDocuments

	Requirement
	Interactions, Trigger Events, Application Roles and Structured Documents may have a number of different types of annotations

	Rationale
	See rationales for individual annotations types

	Implementation
	· Usage Constraint

· Usage Notes

· Rationale

· Requirements

· Design Comments

· Stability Remarks

· Other Annotation

· Mapping

· Open Issue

· Ballot Comment

· Change Request

· Deprecation Information

Structured Documents
	Requirement
	HL7 v3 specifications need to support defining information structures without any accompanying dynamic model

	Rationale
	Some standards do not involve any behavioral aspects. The definitions of any behavior are outside the scope of the standard. While this may reduce chances of interoperability, it does allow for increased flexibility on the usage of the standard

	MIF
	· mif-model-dynamic.xsd/StructuredDocument

	Requirement
	Structured document definitions must have a unique name

	Rationale
	Structured document definitions need to be referenced in human-to-human communication

	MIF
	· mif-model-dynamic.xsd/StructuredDocument/@name

	Requirement
	Structured documents must have defined information structures

	Rationale
	Seeing as there's no dynamic model, the only thing left to standardize is the data content and structure.

	Methodology
	Refer to Bound Models

	MIF
	· mif-model-dynamic.xsd/StructuredDocument/documentDefinition

	Requirement
	Interactions, Trigger Events, Application Roles and Structured Documents may have a number of different types of annotations

	Rationale
	See rationales for individual annotations types

	Implementation
	· Usage Constraint

· Usage Notes

· Rationale

· Requirements

· Design Comments

· Stability Remarks

· Other Annotation

· Mapping

· Open Issue

· Ballot Comment

· Change Request

· Deprecation Information

Bound Models
	Requirement
	Static models need to be able to be combined at run-time

	Rationale
	Sometimes static models need to be constructed in such a way that they have associations that point to variable "un-defined" content. Before the model can be used, these "stub" locations need to be resolved. For example, a model that defines the transport information for a message might be capable of conveying many types of messages. However, when referenced in a particular interaction, the specific message content needs to be defined

	Methodology
	HL7 models can contain named stubs or "template parameters" [To do: insert reference]. These parameters are then bound to other static models when the static model is referenced in a document or interaction definition.

	MIF
	· mif-model-dynamic.xsd/BoundStaticModel/parameterModel

Future Requirements (not complete)
Note that HL7 is currently re-developing and replacing the current dynamic model methodolgy. Below are SOME of the requirements. Requirements are still being determined and documented as part of the HL7 Enterprise Architecture Framework Alpha implementation projects.

	Future Requirement
	Communicate conformance of receiver responsibilities. It is necessary to know which receiver responsibilities must happen (mandatory), should happen (required), may happen (optional), and must not happen (usually based on a previous elaboration of a receiver responsibility).

	Rationale
	It is necessary to know which receiver responsibilities must happen (mandatory), should happen (required), may happen (optional), and must not happen (usually based on a previous elaboration of a receiver responsibility).

	MIF
	· TBD

[image: image13][image: image14][image: image15][image: image16][image: image17][image: image18][image: image19][image: image20][image: image21][image: image22][image: image23][image: image24][image: image25][image: image26][image: image27][image: image28][image: image29][image: image30][image: image31][image: image32][image: image33][image: image34][image: image35][image: image36][image: image37][image: image38][image: image39][image: image40][image: image41][image: image42][image: image43][image: image44][image: image45][image: image46][image: image47][image: image48][image: image49][image: image50][image: image51][image: image52][image: image53][image: image54][image: image55][image: image56][image: image57][image: image58][image: image59][image: image60][image: image61][image: image62][image: image63][image: image64][image: image65][image: image66][image: image67][image: image68][image: image69][image: image70][image: image71][image: image72][image: image73][image: image74][image: image75][image: image76][image: image77][image: image78][image: image79][image: image80][image: image81][image: image82][image: image83][image: image84][image: image85][image: image86][image: image87][image: image88][image: image89][image: image90][image: image91][image: image92][image: image93][image: image94][image: image95][image: image96][image: image97][image: image98][image: image99][image: image100][image: image101][image: image102]
� Strictly this is redundant, but it’s customary to always communicate additional patient identity and check it upon receipt

� It is specifically prohibited in many contexts to prevent overuse of laboratory testing.

� Proper use of such a system requires active clinical supervision – and lots of time, so it mostly isn’t actually done.

� A single report can be a fulfillment of a number of separate requests. For example, a request for Common Electrolytes and Liver Function Tests is generally treated as a single report by most laboratories.

� This transaction doesn’t cause any state transition on the broker; it simply gather all (or some?) of the requests for that patient and returns them. Then the lab can choose to accept them in a separate exchange

�Replace this graphic with one showing four objects, request, promise, result, and report.

�Specify what object’s states. I assume the request objects states but we should be prescriptive here. Also need to clarify state vs. status

�I think that the states of deciding and rejected are states of the fulfillment process rather than a particular promise. Another way of saying this is that a promise is not generated until the fulfillment process gets to a point where a promise may serve a function, that is, to promise fulfillment within reasonable boundaries (failed is still a state of promise, for example)

�I <<think>> this is the state machine for fulfillment, with the additions of deciding and rejected tied in with “Pending”.

�I’m not sure re: above comment. One main difference is reports have an authorizing signature, results don’t necessarily.

�I don’t want to use this language unless we can refer to some other standard which documents this.

�For laboratory results messaging, this is dealt with in the V3 Laboratory Domain, which is normative at this point.

�So here is the mismatch … I think you have transitioned between capturing states for a focal class … promise or request … to capturing states of the overall process, which is ultimately what we are all interested in.

I suspect this is serviceable with the amendments above.

�A point here about traverseability is good; but the rest is not necessary and might even be confusing.

�No they may not; not according to US regulations. This is why the business process for almost every lab in the US is to only send results to the placer. Even if trackers a mentioned in the lab msgs (v2), the lab bears no responsibility for reporting.

�The only one notified is the order placer. No need to ‘hunt down’ anyone else.

�Corrected lab results are being handled as revisions to a completed lab result. See normative e lab domain for how this is modeled.

�Internal states may be meaningless from the interoperability perspective, but it is data they implementers wish to share. We have certainly exposed these internal states in the Lab Result model. There is a lot of interest from implementers in tracking these internal states of the report. We’ve called these states “Process Steps”. The lab result dynamic model handles these as status update transactions.

�Right, but they are shared states in the request / fulfillment pattern. The internal states of the lab system are meaningless from the standpoint of interoperability.

More importantly, I think that your language speaks that somehow we care about the state of the actual report …. In my opinion, we don’t. Again, to take your language at full measure, what do we really care about the state of the report? We only care whether it is available as the final state in the fulfillment (or perhaps we should say accessible state … a report may be available on an interim basis, for example).

�Exactly … services are good at this. However, I don’t think that we have backed ourselves into a corner with v3 (and of course, I could be very wrong) … but it seems like we have been awaiting the separation of concerns.

�We agree the fulfillment lifecycle is complex, that’s what we have been banging our heads against for years now. We aren’t opposed to this separation of concerns, but we need to keep firmly in mind that if we don’t document the fulfillment lifecycle (requests all the way through to the result fulfilling the request), then we have missed the boat.

�In the service implementation of this, one way to handle this is to simply send a new promise because it is a new fulfillment … the boundary of the fulfillment is a need (by someone) … the need to amend the report is a new need with a new fulfillment. From a policy perspective, you can allow a fulfillment without a formal request, or you can simply mandate the fulfilling system (the one issuing an amended report) simply create a new order request.

�This isn’t entirely true. There may be circumstances, in the process of performing testing, after the lab issues a promise, that will prevent the lab from fulfilling the promise, and consequently the result. We have always considered the order active until it has been fulfilled, so for what ever reasons, the fulfillment failure has implications for the status of both the order and promise. This is all part of the fulfillment lifecycle.

�Well, in my thinking it is the business process that we care most about, but it can’t be confused with the request business process.

�We have separated these a little finer … there is OrderRequestor (commissioning Agent for the Order Request Management Service) and the fulfillment requestor (commissioning agent for the fulfillment, who would expect a promise as a return).

Here is the thing …. When you look at some of the use cases, the order request is one deep …only one party makes a request, and only one party (often the same one) expects to see the report. BUT the fulfillment is fractal … it is arbitrarily deep … a request for a promise of fulfillment can be made, handed off, and handed off again (ad infinitum).

In the service specs, these two services look very similar, but the obligations are slightly different, because they align with different expectations (state transitions) between their business flows. But they can be handled completely separately with no loss of integrity to the process … you can order a cheeseburger, and you may not really care if it is made on a stove or at McDonald’s. And if you are making a cheeseburger, you don’t care who ordered it … it’s just a process.

Summary … we distinguish between an OrderReuest Manager and a FulfillmentManager ….

�Don’t’ do this in storyboard narratives. Pick a choice, then go that way. Either there are instructions for this narrative, or there are not.

�With the service specifications, Order Requests cannot be brokered, but fulfillment can be. This was in some respects a design decision, bu seems to match the obligations of each … the only difference functionally for orderRequestManagement and fulfillmentManagement is this obligation … that is, that the orderRequestor may identify an interested party who ultimately wants to access and understand the final status of the order (which may include getting the results report). The fulfillmentManagement functions simply allow fulfillment to be delegated.

The broker object mixes these two things up, and so starts to violate separation of concerns.

That said, it is clear in implementation that you need some set of things to disambiguagte the many to many relationship between requests and promises …. But these are implementation details, are not necessary (I don’t think) for interoperability, and mix up the OOD and SAEAF separation of concerns that we are trying to get to.

�Right …. This is not the status of the broker but of the brokered fulfillment process. It does not need to have its own object.

One issue that we should talk about here is the difference in brokering between eBAY type systems and healthcare systems that are decidedly not open ended.

�See comments re Roles … I think this confuses two business processes.

�Do we want to document to talk about lab, or fulfillers (fillers) in general?

�Order managers also typically manage what are called “Parent” or “Recurring” orders. Order manager functionality may be part of the placer system, filler system, or an independent system. An order manager can take a parent order, explode it into occurrence (aka. Child orders) which are then sent to the filler system. An order manager may also take a “composite order, explode it into individual orders and forward them onto the appropriate departmental filler system. This is the idea behind our V3 Composite order.

Health Level Seven, Version3.0 ©2010. All rights reserved.

Page 1
Draft Document.

January 2010.

[image: image1.emf]Request+ identity+ status+ patient-details+ testsPromise+ identity+ status+ request-identity+ patient-identity+ testsReport+ identity+ request-identity+ status+ promise-identity+ patient-identity+ report-content+ authenticater-info

[image: image103]