	[image: image5.jpg]

 NCICB
	[image: image1.png]

[image: image9.png](Ekagra

High impact - High Value - Businss Resuts

Common Security Module
Auditing and Logging Design
Version No: 0.1
Last Modified: 9/22/2005
Author
:
Vinay Kumar
Team
:
Common Security Module (CSM)

Purchase Order# 34552
Client
:
National Cancer Institute - Center for Bioinformatics,

National Institutes of Health,

US Department of Health and Human Services

Document History

Document Location
The most current version of this document is located in CVS under security/docs.
Revision History
	Version Number
	Revision Date
	Author
	Summary of Changes

	0.1
	9/22/05
	Vinay Kumar
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Review

	Name
	Team/Role
	Version

	Date Reviewed
	Reviewer Comments

	Eric Copen
	QA
	0.1
	9/22/05
	Updated formatting, text, etc.

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Related Documents
More information can be found in the following related CSM documents:
	Document Name

	

	

	

	

	

	

	

Table of Contents

41.
Introduction

2.
Problem Statement
4
3.
Audit and Logging Requirements
4
4.
Analysis
4
5.
Use Cases
4
5.1
Actors
4
6.
Design
6

Auditing and Logging Design

1. Introduction

In an effort to make CSM compliant with CRF 21 / part 11, CSM will provide auditing and logging functionality. This document describes the associated problem statement, requirements, analysis, and use cases, and explains the design.
2. Problem Statement

Currently CSM using log4j for logging for application logs. But for CRF21 / part 11 some specific messages are to be logged in a specific way. All the objects should be logged in a manner so that they can be audited in later stage.

3. Audit and Logging Requirements

The CSM application will log certain events including:

· Login

· Log out

· Login attempt

· Login failure

· User lock out

 For object auditing the following should be logged:

· Object state at the time of insertion

· Object state before update

· Object state after update

· Object state before deletion

· Mark the state of the object as deleted when the object is deleted.
All the above object state logging should be done with the user’s information and the time stamp.

4. Analysis

CSM is capable of logging events with log4j. The only required change is to log specific events. For that the logger has to be called at specific points in the application.
CSM does not currently provide functionality for auditing of objects. For persistence CSM uses MySql 4.11, which does not currently support the concept of triggers. So there is no way to store the states of the objects in a database during transactions. Only through the application layer can this be accomplished.

5. Use Cases

This section describes the use cases that have emerged from the requirements.

5.1 Actors
1. CSMEventLogger

· CSMEventLogger will log the events in the way specified by CRF21 / part 11.

2. ObjedtStateLogger

· ObjectStateLogger will log the state of the object during the transaction.

[image: image2.wmf]ud Logging_Auditing

CSMEventLogger

Log "user logs in"

Log "user logs out"

Log "login attempt

failed" with user

credential

Log "user account

is locked"

[image: image3.wmf]ud Logging_Auditing

ObjectStateLogger

Log object state

on insertion

Log object state

before update

Log object state

after update

Log object state

before deletion

marked as deleted

6. Design

CSM uses hibernate for persisting objects. The architecture of the hibernate is based on AOP and event model. There are some standard transaction events defined in hibernate, namely preInsert, postInsert, preUpdate, postUpdate etc… These events are thrown at the time of the respective action. Being an open architecture, hibernate provides a transaction interceptor interface, which is defined in “org.hibernate.Interceptor”. This allows applications designers to implement this interceptor if needed. This implemented interceptor intercepts all these events and gives the designers the opportunity to access the objects at this juncture. For logging the object state, this is perfect place to plug in the logic. This interceptor provides all the necessary methods of the transaction. These methods can be implemented to address our requirements.

Please see the diagram below:
[image: image4.wmf]cd Loggin_Auditing

«interface»

Interceptor

+

onLoad(Object, Serializable, Object[], String[], Type[]) : boolean

+

onFlushDirty(Object, Serializable, Object[], Object[], String[], Type[]) : boolean

+

onSave(Object, Serializable, Object[], String[], Type[]) : boolean

+

onDelete(Object, Serializable, Object[], String[], Type[]) : void

+

onCollectionRecreate(Object, Serializable) : void

+

onCollectionRemove(Object, Serializable) : void

+

onCollectionUpdate(Object, Serializable) : void

+

preFlush(Iterator) : void

+

postFlush(Iterator) : void

+

isTransient(Object) : Boolean

+

findDirty(Object, Serializable, Object[], Object[], String[], Type[]) : int[]

+

instantiate(String, EntityMode, Serializable) : Object

+

getEntityName(Object) : String

+

getEntity(String, Serializable) : Object

+

afterTransactionBegin(Transaction) : void

+

beforeTransactionCompletion(Transaction) : void

+

afterTransactionCompletion(Transaction) : void

+

onPrepareStatement(String) : String

AuditInterceptor

+

onLoad(Object, Serializable, Object[], String[], Type[]) : boolean

+

onFlushDirty(Object, Serializable, Object[], Object[], String[], Type[]) : boolean

+

onSave(Object, Serializable, Object[], String[], Type[]) : boolean

+

onDelete(Object, Serializable, Object[], String[], Type[]) : void

+

onCollectionRecreate(Object, Serializable) : void

+

onCollectionRemove(Object, Serializable) : void

+

onCollectionUpdate(Object, Serializable) : void

+

preFlush(Iterator) : void

+

postFlush(Iterator) : void

+

isTransient(Object) : Boolean

+

findDirty(Object, Serializable, Object[], Object[], String[], Type[]) : int[]

+

instantiate(String, EntityMode, Serializable) : Object

+

getEntityName(Object) : String

+

getEntity(String, Serializable) : Object

+

afterTransactionBegin(Transaction) : void

+

beforeTransactionCompletion(Transaction) : void

+

afterTransactionCompletion(Transaction) : void

+

onPrepareStatement(String) : String

ObjectStateLogger

CSMEventLogger

AppenderSkeleton

ObjectStateConvertor

+

toInherentState(Object) : String

+

getDependencyState(java.util.Collection) : String

+

getDependencyStatetoXML(java.util.Collection) : String

+

toInerentStateInXML(Object) : String

«realize»

In the above diagram ApplenderSkeleton is an abstract class from log4i, which allows us to write custom appenders. In our case we will use this class to write two appenders: 1) CSMEventLogger and 2) ObjectStateLogger.

The interface interceptor is from hibernate and can be found at “org.hibernate.Interceptor”. The AuditIneterceptor is the actual implementation of the interceptor interface. This is where all the logic will go. ObjectStateConvertor is a utility class which will convert an object state to the string or to an xml document. This class will be used in the interceptor to change the state of the object for logging purposes.

The object state will have two components:
1. The object itself (called inherent state)

2. The children (dependent objects)

When an object is transformed to a state, it will log the actual state of the object (no IDs). The dependent objects will be logged with their IDs only.

For your reference, see the reference implementation of this interceptor at this address: http://www.hibernate.org/318.html. Our design will vary from this implementation. There is no need for domain objects to implement the Auditable interface, and dependent objects do not have to implement the Component interface. The ObjectStateConvertor will take care of this and additionally extract the data using reflection.

The user name has to be propagated to the interceptor for logging purposes. For this, ThreadLocal should be used. The username can be attached as an attribute and then cleared after use.
[image: image5.jpg][image: image6.jpg]

[image: image7.png]

[image: image8.png]

_1135871162.bin

