	[image: image2.jpg]

 NCICB
	[image: image1.png]

[image: image6.png](Ekagra

High impact - High Value - Businss Resuts

Common Security Module

Cumulative Requirements

Version No: 1.0
Last Modified: 10/18/05
Author :
Kunal Modi, Charles Griffin, Eric Copen, Brian Husted

Kalpesh Patel, Vinay Kumar
Team
:
Common Security Module (CSM)

Purchase Order# 34552

Client
:
National Cancer Institute - Center for Bioinformatics,

National Institutes of Health,

US Department of Health and Human Services

Document History

Document Location

The most current version of this document is located in CVS under security/docs.

Revision History
	Version Number
	Revision Date
	Author
	Summary of Changes

	0.1
	10/13/05
	CSM Team
	Initial draft based on several prior documents

	1.0
	10/18/05
	Eric Copen
	Added appendix table in response to review comments

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Review

	Name
	Team/Role
	Version

	Date Reviewed
	Reviewer Comments

	Kunal Modi
	Project Lead
	0.1
	10/17/05
	Add appendix table

	Charles Griffin
	Manager
	0.1
	10/17/05
	Add appendix table

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Related Documents

More information can be found in the following related CSM documents:
	Document Name

	

	

	

	

	

	

	

Table of Contents

Cumulative Requirements
Introduction

This document lists all requirements considered for integration with the Common Security Module project. It is a comprehensive list of requirements organized into two groups: implemented and unimplemented. Implemented requirements have been completed in a previous release of CSM. Non-implemented Requirements are candidate requirements for a future release.

This document, combined with the CSM Traceability Matrix, will help the team and client precisely track CSM requirements. This is a living document that will be updated as the project moves forward; however requirement numbers remain the same so as to ensure traceability.
Implemented Requirements
1. Authentication

Authentication refers to the validation and verification of a user’s credentials.

· Reliably and securely determine access to an application

· System to system authentication

2. Authorization

Authorization grants access to various protection elements (methods, objects and data).

· Protect privileged resources from unauthorized users

· Associate user roles with distinctly defined privileges

· Ability to set access control for datasets

3. Web Based User Provisioning

· Web enabled application

· Access to multiple user repositories
4. Standardize Privileges

Standardizing privileges will require a discipline that has to be maintained. The UPT will incorporate only standard privileges used by other security providers (create, delete, etc.). Documents will publish this fact. Consuming other privileges will be done so sparingly and with discretion.
5. Provide Authorization Report View

In the UPT a report module has to be introduced so that administrators can take a look at the privileges snapshot for the protection element and can validate the security requirements for their application.
6. CSM-SDK Adapter – Introduction of Session Management

Session management can be introduced at server side so that a user does not have to log in again and again. Once the session management is in place, the APIs calls will be executed in context of a user session. This will facilitate CSM enabling within APIs.

7. CSM-SDK Adapter – Introduction of Authorization in APIs

The Authorization process is very important for data access. Authorization can be performed using CSM for a particular user, once the user logs in to the system. But the authorization will only make sense once the session management is in place. The authorization policy can be cached on server side for better performance.

8. CSM-SDK Adapter – Introduction of Security

Security may mean more than just authorization. CSM enabled APIs will provide built-in authentication and authorization. At the same time security features will let users use different level of security. The security level will be defined at an application level.

9. CSM-SDK Adapter – Introduction of Writable APIs

This feature will let users write to the database. Write API in this phase may be quite simple. This feature depends on session management and security enabling.
10. Modify UPT for Cross-Browser Compatibility

The current version of CSM’s UPT supports only IE. However as per the latest UI standards both IE as well as Mozilla browsers are required to be supported by all web applications. As the result of this UPT tool needs to be enhanced to work along with Mozilla browsers.

11. Modify Authorization Schema and APIs for Cross-Database Compatibility

CSM was developed using mySQL as the open source database. However there is a requirement to make the Authorization Schema database independent to support various databases. This would require renaming all the tables to avoid clashes with possible reserved words and modifying the APIs to use the new schema.

12. CSM-SDK Adapter – caCORE SDK Integration Requirements

· Modify the OR Mapping Files

Currently the caCORE SDK generates “read-only” OR mapping files for Hibernate. In order for the writable APIs to function properly, these files need to be modified to “read/write”. Also, the mutable property of each object should be changed from “false” to “true”. The JET template, which is used during the code generation, requires an update as well.

· Direct the Domain Objects to Use the New Client

Currently the caCORE SDK generated domain objects use the existing caCORE SDK client for the purpose of obtaining the subsequent children objects. However after integration a new client will be generated. The domain objects will need to be changed to start calling the new client to obtain the children objects. For this requirement the JET template requires an update.

· Merge ListProxy and SDKListProxy

SDKListProxy was written as a replacement for the caCORE ListProxy to enable connection to the server using the CSM-SDK Adapter client. After integration, the SDKListProxy should be retired while the ListProxy should be enhanced to make use of the new client for connection to the server.

· Merge ApplicationService and SDKApplicationService

SDKApplicationService was written as a wrapper over the caCORE ApplicationService. During integration the SDKApplicationService should be retired and the ApplicationService should be enhanced to incorporate security and session management. This requirement is important from the end user’s perspective. The ApplicationService class, referenced by the developer while coding the application, will not change.

· Merge Build File for Single Generation Process

Currently the caCORE SDK code generation process has its own build process which generates the caCORE SDK generated server and client from the UML. Then the CSM-SDK Adapter build process takes in the output of the caCORE SDK process and integrates security additions. The new integrated solution will require a single build process to generate both the code from the UML as well as the security additions.

· Introduce Writable API Flag

The build process should be configurable so that the user can choose not to generate writable APIs. This requirement meets the needs of applications that act as data sources and do not allow users to update data.

· Set Security Default to “Off”

Currently the CSM-SDK Adapter turns security on by default. After merging with caCORE SDK, this would force users to always use security. The CSM-SDK code should be modified so that security is unobtrusive and “off” by default. The user can then turn security on or off with a flag in the JBoss propterties-service.xml file.

· Secure Business Methods at the Object and Method Levels

Currently the business methods for SDK (query, search, etc.) provide only method-level security. These should be enhanced to provide access control over the actual object for which the user is querying.

· Merge and Clean Code

As the result of integration, various modules from either the CSM-SDK Adapter or caCORE SDK code base will become obsolete. These modules should be removed from the source base. Also, both code branches should be merged in order to have a single build process and a unified release.

· Enhance Error Reporting Mechanism

The CSM-SDK error reporting should be more granular and descriptive. The error messages should be user friendly and contain technical details to help the client programmers debug.
13. CFR 21/ Part 11 Requirements (Audit and Logging)
Based on the feedback from the gap analysis performed by the Biopharm team various changes and enhancements will be required to be made to the CSM project. These changes can be technical, managerial or process oriented. The CSM team should adopt these changes and implement suggestions provided by the Biopharm team to become CSM CFR 21/Part 11 compliant.

The following pertain to requirements deemed necessary for compliance with 21 CFR Part 11.

· UPT should lock user out after three failed login attempts

UPT should be enhanced to incorporate a strategy which locks out a user for a pre-determined amount of time on three failed login attempts. This time period as well as the number of failed login attempts should be configurable. The criteria for failure should be a provision of an incorrect password for the same user name and application context name.

· UPT should be modified to make the output more printable

The screens should be aligned in such a way that they can be used as reports using the print functionality of the browser. If time permits, develop a new report that shows all authorization data for a given context.

· Audit Trail Requirements

The CSM project should incorporate appropriate audit trail mechanisms for security data. The following are the detailed requirements:

· Configurable logging of Audit Trail Messages

· CSM/UPT should be enhanced to have a configurable flag to start and stop logging. This flag should be in an external file and modifiable without any code changes.

· Persistence & Retention of Audit Trail Messages

· Audit trail records should be stored on a persistent media so that they can be retrieved in the future and analyzed. This media can be a file, database, etc.

· The retention period should be configurable for each application. There should be a backup strategy in place for all the records which are purged after the retention period.

· Log Message Structure

· The log message should have the following information:

· User information – the information that can identify the user uniquely. This information should be propagated from the front-end to the CSM APIs and passed along.

· Time stamp – should contain the time stamp when the message was generated. The time stamp should include the date and time of the event. The date should be in YYYYMMDD format and time in HHMMSS format.

· Type – This flag should indicate what type of audit trail message is it. It is an event that is getting logged or is it an object state or any further classification.

· Description – This is a free form text field used to describe the event which is being logged. It can alternatively be used to store the state of the object at the time it is logged. Both the before and after state of the object should be logged to track the changes in the values. The format in which the object state should be logged is yet to be decided.

· Event Logging

· CSM/UPT should be enhanced to log all login and logout events. It should also log the login failures and log the credentials that the user provided during the failed logins. When a user successfully logs in only the id should be stored.

· CSM should log each and every event which the user performs. The log should have a time-stamp, user information and the event which the user is performing or which the user action triggered.

· Object State Logging

· CSM/UPT should be enhanced to log the state of the object just before an update. It should log the previous state of the object and the state after the update has taken place.

· When deleting an object the state of the object before deletion should be logged.

· When adding an object the initial state should be logged.

14. Migration to Hibernate 3.0

The following requirements pertain to changes required to the CSM APIs to migrate from 2.x version of Hibernate to 3.0

· Update the Hibernate HBM Files

The HBM files should be verified for compliance with Hibernate 3.0 specifications. The association relationships should be changed to reflect the 3.0 changes. Also the defaults for the lazy loading should be changed.

· Modify the Hibernate Configuration File

The Hibernate CFG should be verified for compliance with the new Hibernate 3.0 specifications, and modified as necessary.

· Change DAO layer to use new Hibernate classes

The actual package structure of all the Hibernate classes change from Hibernate 2.x to Hibernate 3.0. As the result, all the classes in the DAO layer which are using the Hibernate classes need to be changed to start using the new Hibernate 3.0 classes.

· Perform Regression Testing

After the code and the configurations have been migrated to the new Hibernate version, all APIs should be regression tested using both Oracle and MySQL databases.
31. Modify the UPTs Association Screens to handle long names

Currently the Associations screens can show only limited width names due to the size of the combo boxes. This screen needs to be realigned to increase the width of the combo boxes to display long names. All the associated screens require this change.

Non-Implemented Requirements

15. Authorization Caching Mechanism

The following requirements pertain to improved caching mechanism which CSM API would incorporate to improve runtime performance:
· Loading the auth policy for a user locally
The Authorization Manager should be enhanced to retrieve the user’s authorization policy from the database at the time of creation and cache it locally. This would require a new mechanism to instantiate the Authorization Manager and pass the user information along with the application context name.

· Check Permission method should use local cache

Once the user’s authorization policy has been cached locally it should be used for making access decisions. The checkPermission methods should be modified to check if a locally cached authorization policy is available. If yes, then it should use the local policy to verify whether the user has access for a particular resource. If the policy is not cached locally then it should refer to the database (as it does now).

16. Validate Access on Collection of Objects

The APIs should accept and work on collections of object for validating access permissions on them.

17. Add Users to Group Programmatically

Currently in CSM you have a capability of adding group to a user through the UPT. However in practically it makes more sense to have this functionality vice versa where in we can assign a user to a group or multiple groups at the same time.

· This change would require a change in the UPT to be able to provide facility to the user

· Also this would require a change in the back end APIs to execute the association and reflect it in the database.

18. Object Instance Level Security

19. HIPAA Compliance

· Data that can identify a user must be protected.

· Applications must be able to share confidential data.

There are no clear-cut requirements for HIPAA compliance. Complying with HIPAA is subjective to applications and the type of data. Therefore the CSM team requires further clarification as to what is required and expected for this feature.

20. Authentication as a Web Service

Authentication service exposed by the current CSM v3.0 will be available as a web service. This could be the first step of taking CSM toward SOA so that it can be used in a grid environment (caGrid).

21. Encryption with Authentication

Transport level encryption will be provided for the Authentication Service. The credential transfer between the client application and the credential providers will be encrypted. Using a LDAP provides sufficient security, however using a database as a credential provider will require that the database connection be equipped with proper encryption. The scope will be limited to secure database connection for authentication.

22. Publish and Consume Authorization Policies

The Authorization Policy interface is to be introduced for future needs. The same object can be used to cache the user authorization schema at run time.
23. eAuthentication

· Federated identity

· External credential providers

24. Message-Level Security

Message-level security provides secure messaging between applications:

· Encryption of private data elements

· Independent transport mechanism

· Support for workflow and messaging between applications

· Secure the messages between user to system

· Secure the messages between system to system

25. Validate Assignment of Privileges to Protection Elements

This feature will require a validator to be written against a set of rules. In this case the rules xml have to be defined. The validator will run against the rules. This way the authorization policy will be validated automatically.

26. Policy Adapters for Grid Security

CSM should publish its own authorization policy and be able to consume other standard authorization policies including those that are grid-based. Custom Adapters should be implemented to support these standard policies.

27. Web Services Security

The Web Services security strategy will provide the following services:

· Authentication: require Web services clients to prove their identity

· Authorization: decide which client has access to specific resources

· Data integrity: ensure that the Web service message content has not been altered or corrupted during its transmission over the Internet

· Confidentiality: secure the information exchanged in Web services requests and responses (make indecipherable to unwanted parties)

Web Services security includes transport-level security and message-level security. The transport layer addresses transport-level security. Message-level security addresses security at the message level. CSM needs to work with the existing frameworks for web services security. It should be able to handle the request of an outside user who is not in the NIH domain. The integration of CSM with web services security should address user-based and role-based security. The CSM will provide a chained authentication mechanism process for handling a number of credential providers. The authentication service of the CSM should be pluggable into a WS security framework with no need for coding. The authorization manager should be explored the same way.

28. Integration with Digital Certificates

The authentication services should be able to consume digital certificates supplied by HHS as a credential for the user. The authorization policy will be determined based on the principal obtained from the digital certificate. Although CSM should be able to handle general digital certificates, honoring HHS supplied digital certificates may require a distinct approach. Authentication based on digital certificates will also require CA(Certificate Authority) look-up. A solution such as SimpleCA may be used for this purpose. Integration with digital certificates also involves the management of expired certificates, and the synchronization of local user accounts after re-issuance of the certificates.

29. Single Sign-On

Single sign-on allows the seamless transfer of authentication credentials for user-to-system communication.

· Allows a user to navigate the trusted domain with a single ID.

· Seamless transfer of authorization credentials from one system to another.

· Honoring of authentication and authorization among distributed applications.

Single sign-on will require the construction of a trusted domain (sometimes called a trust fabric). All the applications and the systems have to be part of that system if they want to take advantage of single sign-on. The trust between these systems and applications will be built using this trust builder. This way when a user logs into a certain application then he may also switch to other applications without the need for re-authentication This will require little change in the authentication process of all the applications. The CSM will provide the trust builder and the code that will integrate an application with SSO.

The scope of single sign-on will be limited to NCICB applications.

30. Modify the APIs to Handle Primitive Data Types

The secureObjects method of the API needs to be modified to throw an error for data objects that contain attributes of primitive data types. This method should support only objects coded to the Java Bean specifications.

Appendix
1. Requirement and Phase Table
This table shows the requirements and the corresponding phases in which they were initially completed.
	Req. #
	Requirement
	Phase

	1
	Authentication
	3

	2
	Authorization
	3

	3
	Web Based User Provisioning
	3

	4
	Standardize Privileges
	3.0.1

	5
	Provide Authorization Report View
	3.0.1

	6
	CSM-SDK Adapter - Introduction of Session Management
	3.0.1

	7
	CSM-SDK Adapter - Introduction of Authorization in APIs
	3.0.1

	8
	CSM-SDK Adapter - Introduction of Security
	3.0.1

	9
	CSM-SDK Adapter - Introduction of Writable APIs
	3.0.1

	10
	Modify UPT for Cross-Browser Compatibility
	3.0.1

	11
	Modify Authorization Schema and APIs for Cross-Database Compatibility
	3.0.1

	12
	CSM-SDK Adapter - caCORE SDK Integration Requirements
	3.1

	13
	CFR 21/ Part 11 Requirements (Audit and Logging)
	3.1

	14
	Migration to Hibernate 3.0
	3.1

	15
	Authorization Caching Mechanism
	3.1

	16
	Validate Access on Collection of Objects
	

	17
	Add Users to Group Programmatically
	

	18
	Object Instance Level Security
	3.1

	19
	HIPAA Compliance
	

	20
	Authentication as a Web Service
	

	21
	Encryption with Authentication
	

	22
	Publish and Consume Authorization Policies
	

	23
	eAuthentication
	

	24
	Message-Level Security
	

	25
	Validate Assignment of Privileges to Protection Elements
	

	26
	Policy Adapters for Grid Security
	

	27
	Web Services Security
	

	28
	Integration with Digital Certificates
	

	29
	Single Sign-On
	

	30
	Modify the APIs to Handle Primitive Data Types
	3.0.1

	31
	Modify the UPTs Association Screens to Handle Long Names
	3.0.1

[image: image2.jpg][image: image3.jpg]

[image: image4.png]

[image: image5.png]

_1135871162.bin

