	[image: image2.jpg] NCICB
	[image: image1.png]

[image: image6.png]
Common Security Module
Test Plan
Version No: 0.5
Last Modified: 10/21/05
Author
:
Kalpesh Patel, Eric Copen, Vinay Kumar, Kunal Modi
Team
:
Common Security Module (CSM)

Purchase Order# 34552
Client
:
Nation Cancer Institute - Center for Bioinformatics,

National Institutes of Health,

US Department of Health and Human Services

Document History

Document Location

The most current version of this document is located in CVS under security/docs.
Revision History

	Version Number
	Revision Date
	Author
	Summary of Changes

	0.1
	10/15
	Kalpesh Patel
	Initial Structure and draft

	0.2
	12/17
	Eric Copen
	Incorporating specifics

	0.3
	2/23
	Eric Copen, Vinay Kumar
	Apply template, refine details

	0.4
	10/14/05
	Eric Copen
	Updated for 3.1 release

	0.5
	10/21/05
	Eric Copen
	Updated per review

	
	
	
	

Review

	Name
	Team/Role
	Version

	Date Reviewed
	Reviewer Comments

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Related Documents

More information can be found in the following related CSM documents:
	Document Name

	

	

	

	

	

	

	

Table of Contents
41.
Introduction

1.1
Purpose and Scope
4
1.2
Background
4
2.
Security Test Approach
5
2.1
Security Test Team
5
2.2
Testing Definitions
5
2.3
Resources
5
2.4
Test Execution
6
2.4.1
Unit Testing
6
2.4.2
Load Testing
6
2.4.3
Integration Testing
6
2.4.4
Acceptance Testing
6
2.5
Test Schedule
6
3.
Requirements to Verify
7
3.1
CSM SDK Adapter – caCORE SDK Integration Requirements (Req. 12)
7
3.2
CFR 21/ Part 11 Requirements (Auditing and Logging) (Req. 13)
8
3.3
Migration to Hibernate 3.0 (Req. 14)
9
4.
Integration Test Cases
10
4.1
SDK Integration Tests (Req. 12)
10
Perform 3.0.1 Test Cases
10
Build File
10
API Flag
10
Security “Off” by Default
10
Secure Business Methods at the Object and Method Levels
10
Error Reporting Mechanism
10
4.2
CFR 21 / Part 11 Requirements (Auditing and Logging) (Req. 13)
11
Logging Flag
11
Persistence & Retention of Audit Trail Messages
11
Log Message Structure
11
Event Logging
11
Object State Logging
11
4.3
Migration to Hibernate 3.0 (Req. 14)
11
Perform 3.0.1 Test Cases
11
5.
Test Evaluation
11
5.1
Test Environments
11
5.2
Test Tracking
11

Test Plan
1. Introduction
This plan defines the approach, objectives, and procedures Ekagra will use to test the Common Security Module (CSM). The plan’s goal is to ensure the team thoroughly tests the system so that it meets functional and technical requirements, and accomplishes the project’s mission.

This plan combines with other project documentation such as Scope/Vision, Use Cases, SAD, Data Models, Test Cases, Traceability Matrix, etc., to form a complete development plan.

Ekagra’s CSM team prepares and maintains documentation. The team is responsible for implementing the test plan and making modifications as necessary.
1.1 Purpose and Scope
The Common Security Module implementation provides authentication and authorization services for applications. CSM is easy to configure and can be used with any application. By providing these security services developers can more quickly add security features and release applications faster, ultimately helping the research community achieve its goals. Phase 3.1 will add new features including audit and logging to better meet CFR requirements and integration with the caCORE Software Development Kit (SDK). This document will address the testing of these features. See section 2.6, Requirements to Verify, for more details regarding the scope of this Test Plan.
1.2 Background

The objective of the NCICB Common Security Framework is to provide a common security architecture that will support the expanding security requirements of NCICB. The framework provides solutions for the most common security requirements.

The intent of the product is to enable NCICB applications to operate in a HIPAA-compliant manner without stifling the appropriate use of patient data for research purposes. The resulting framework will provide NCICB a common application security infrastructure that leverages open standards and best practices.

2. Security Test Approach
2.1 Security Test Team

The following team members will conduct and monitor testing for Common Security:

· Charles Griffin – Manager
· Kunal Modi – Team Lead
· Developer Resource

· Developer/QA Resource

2.2 Testing Definitions
· Unit Testing - Controlled evaluation in the development step to ensure that one component of program code performs as defined in the specification.
· Integration Testing – Controlled evaluation performed to ensure that a collection of programmed units work together to produce expected results as defined in the functional requirements.
· Systems Testing – Controlled evaluation of an application in the context of a system to ensure that the application works within the system environment.
· Load Testing – Testing with a large amount of virtual users in order to better predict system behavior and performance under production conditions.

· Acceptance Testing – The process whereby end users performing final testing of an application prior to its release to production. The focus is on whether or not the application meets user requirements and produces correct results.
2.3 Resources
In order to conduct unit and integration tests, the CSM team makes use of the following resources:

· Software configurations

· JBOSS 4.0.1
· j2sdk1.4

· MySQL 4.1

· Java Virtual Machine

· Struts Framework 1.1

· Oracle 9i

· Tomcat web container
· Development Software

· Eclipse and myEclipse plug-in

· Test tools

· JUnit

· OpenSTA (Open System Testing Architecture)
· Documentation

· CSM Scope/Vision 3.1

· Relevant design documents

· CSM Test Plan 3.1 (this document)

· CSM Test Cases 3.1

· CSM Guide for Application Developers

· SDK Programmer’s Guide

· User Interface

· Web interface (IE Explorer, Mozilla Firefox)

· Web Server

· Apache web server
· Operating system

· Windows 2000,NT,XP

· Unix (Sun Solaris)

2.4 Test Execution
Given that error-free functionality and ease of use are our top priorities, testing will play a substantial role. The team will perform testing at multiple stages with multiple means:

2.4.1 Unit Testing

During development, Ekagra will conduct testing on a regular basis using JUnit and Ant. As development progresses, new test scripts will be developed and added to JUnit. Results will be recorded and problems addressed as needed.
2.4.2 Load Testing

When testing the data and persistence layers, the team will populate the database with many aliases of test data. This will allow the team to analyze performance, and make modifications geared toward increasing transaction speed. This approach mitigates the need for future rework. It will be done early as possible in the project to allow changes to address scalability issues.
Ekagra may also perform load testing from a user prospective, using OpenSTA – an open-source application in which one can record internet activity and replay this activity using many virtual users.

2.4.3 Integration Testing

To perform integration tests developers will make use of two tools – the User Provisioning Tool (UPT) and the Reference Implementation (RI). The UPT is an end-user product used for manipulating the database. This tool can perform the majority of the use cases for this project, so this will serve as an integration test tool upon its construction. The RI, a separate web application, will allow further testing of the use cases. For uses not covered by these tools the QA engineer will execute JUnit Test Cases and Suite, and create new ones as needed.
2.4.4 Acceptance Testing

Ekagra will distribute the CSM to end-users for acceptance testing. Developers will integrate the tools with their current architecture, as several teams have done with prior versions. Successful integration will signify acceptance. Any comments or feedback will be recorded and addressed.

2.5 Test Schedule
This section describes primary activities to be accomplished for testing including the following:

	Tested Item
	Activity
	Start Date
	End Date

	Integration with SDK
	Develop test plan and procedures
	10/17
	10/24

	
	Develop and execute JUnit tests (during development)
	9/26
	12/05

	
	Integration Testing
	12/05
	12/14

	
	QA Testing
	
	

	Audit Trail Enhancement
	Develop test plan and procedures
	12/14
	12/27

	
	Develop and execute JUnit tests (during development)
	11/14
	12/13

	
	Integration Testing
	12/14
	12/28

	
	QA Testing
	
	

	Hibernate Upgrade
	Develop test plan and procedures
	12/14
	12/27

	
	Develop and execute JUnit tests (during development)
	11/14
	12/13

	
	Integration Testing
	12/14
	12/28

	
	QA Testing
	
	

3. Requirements to Verify

3.1 CSM SDK Adapter – caCORE SDK Integration Requirements (Req. 12)
· Modify the OR Mapping Files

Currently the caCORE SDK generates “read-only” OR mapping files for Hibernate. In order for the writable APIs to function properly, these files need to be modified to “read/write”. Also, the mutable property of each object should be changed from “false” to “true”. The JET template, which is used during the code generation, requires an update as well.

· Direct the Domain Objects to Use the New Client

Currently the caCORE SDK generated domain objects use the existing caCORE SDK client for the purpose of obtaining the subsequent children objects. However after integration a new client will be generated. The domain objects will need to be changed to start calling the new client to obtain the children objects. For this requirement the JET template requires an update.

· Merge ListProxy and SDKListProxy

SDKListProxy was written as a replacement for the caCORE ListProxy to enable connection to the server using the CSM-SDK Adapter client. After integration, the SDKListProxy should be retired while the ListProxy should be enhanced to make use of the new client for connection to the server.

· Merge ApplicationService and SDKApplicationService

SDKApplicationService was written as a wrapper over the caCORE ApplicationService. During integration the SDKApplicationService should be retired and the ApplicationService should be enhanced to incorporate security and session management. This requirement is important from the end user’s perspective. The ApplicationService class, referenced by the developer while coding the application, will not change.

· Merge Build File for Single Generation Process

Currently the caCORE SDK code generation process has its own build process which generates the caCORE SDK generated server and client from the UML. Then the CSM-SDK Adapter build process takes in the output of the caCORE SDK process and integrates security additions. The new integrated solution will require a single build process to generate both the code from the UML as well as the security additions.

· Introduce Writable API Flag

The build process should be configurable so that the user can choose not to generate writable APIs. This requirement meets the needs of applications that act as data sources and do not allow users to update data.

· Set Security Default to “Off”

Currently the CSM-SDK Adapter turns security on by default. After merging with caCORE SDK, this would force users to always use security. The CSM-SDK code should be modified so that security is unobtrusive and “off” by default. The user can then turn security on or off with a flag in the JBoss propterties-service.xml file.

· Secure Business Methods at the Object and Method Levels

Currently the business methods for SDK (query, search, etc.) provide only method-level security. These should be enhanced to provide access control over the actual object for which the user is querying.

· Merge and Clean Code

As the result of integration, various modules from either the CSM-SDK Adapter or caCORE SDK code base will become obsolete. These modules should be removed from the source base. Also, both code branches should be merged in order to have a single build process and a unified release.

· Enhance Error Reporting Mechanism

The CSM-SDK error reporting should be more granular and descriptive. The error messages should be user friendly and contain technical details to help the client programmers debug.

3.2 CFR 21/ Part 11 Requirements (Auditing and Logging) (Req. 13)
The following pertain to requirements deemed necessary for compliance with 21 CFR Part 11.

· UPT should lock user out after three failed login attempts

UPT should be enhanced to incorporate a strategy which locks out a user for a pre-determined amount of time on three failed login attempts. This time period as well as the number of failed login attempts should be configurable. The criteria for failure should be a provision of an incorrect password for the same user name and application context name.

· UPT should be modified to make the output more printable

The screens should be aligned in such a way that they can be used as reports using the print functionality of the browser. If time permits, develop a new report that shows all authorization data for a given context.

· Audit Trail Requirements

The CSM project should incorporate appropriate audit trail mechanisms for security data. The following are the detailed requirements:

· Configurable logging of Audit Trail Messages

· CSM/UPT should be enhanced to have a configurable flag to start and stop logging. This flag should be in an external file and modifiable without any code changes.

· Persistence & Retention of Audit Trail Messages

· Audit trail records should be stored on a persistent media so that they can be retrieved in the future and analyzed. This media can be a file, database, etc.

· The retention period should be configurable for each application. There should be a backup strategy in place for all the records which are purged after the retention period.

· Log Message Structure

The log message should have the following information:

· User information – the information that can identify the user uniquely. This information should be propagated from the front-end to the CSM APIs and passed along.

· Time stamp – should contain the time stamp when the message was generated. The time stamp should include the date and time of the event. The date should be in YYYYMMDD format and time in HHMMSS format.

· Type – This flag should indicate what type of audit trail message is it. It is an event that is getting logged or is it an object state or any further classification.

· Description – This is a free form text field used to describe the event which is being logged. It can alternatively be used to store the state of the object at the time it is logged. Both the before and after state of the object should be logged to track the changes in the values. The format in which the object state should be logged is yet to be decided.

· Event Logging

· CSM/UPT should be enhanced to log all login and logout events. It should also log the login failures and log the credentials that the user provided during the failed logins. When a user successfully logs in only the id should be stored.

· CSM should log each and every event which the user performs. The log should have a time-stamp, user information and the event which the user is performing or which the user action triggered.

· Object State Logging

· CSM/UPT should be enhanced to log the state of the object just before an update. It should log the previous state of the object and the state after the update has taken place.

· When deleting an object the state of the object before deletion should be logged.

· When adding an object the initial state should be logged.

3.3 Migration to Hibernate 3.0 (Req. 14)
The following requirements pertain to changes required to the CSM APIs to migrate from 2.x version of Hibernate to 3.0

· Update the Hibernate HBM Files

The HBM files should be verified for compliance with Hibernate 3.0 specifications. The association relationships should be changed to reflect the 3.0 changes. Also the defaults for the lazy loading should be changed.

· Modify the Hibernate Configuration File

The Hibernate CFG should be verified for compliance with the new Hibernate 3.0 specifications, and modified as necessary.

· Change DAO layer to use new Hibernate classes

The actual package structure of all the Hibernate classes change from Hibernate 2.x to Hibernate 3.0. As the result, all the classes in the DAO layer which are using the Hibernate classes need to be changed to start using the new Hibernate 3.0 classes.

· Perform Regression Testing

After the code and the configurations have been migrated to the new Hibernate version, all APIs should be regression tested using both Oracle and MySQL databases.
4. Integration Test Cases

4.1 SDK Integration Tests (Req. 12)
Perform 3.0.1 Test Cases

Since many of the changes for this release involve behind-the-scene code changes, configuration, or consolidation, the team will perform past tests that have passed successfully. The team will test the following during regression testing (detail listed in the test case spreadsheets):

1. Test integration

2. Test integrated authentication

3. Test integrated authorization

4. Test methods within a method

5. Test run-time authorization

6. Test integrated session time-out

7. Test writeable functions
· Create
· Read
· Update
· Delete
Build File
8. Run single build file to generate application with security functionality

9. Confirm application functions as when previously generated with two builds

API Flag

10. During build process, specify writable APIs, confirm writable APIs function
11. During build process, specify no writable APIs, confirm can not write to database
Security “Off” by Default

12. Confirm properties-service.xml flag for security is set to “0”, meaning “Off”

13. Upon building application, confirm can perform actions without security restrictions
Secure Business Methods at the Object and Method Levels

14. Test object level security – set object as protected and attempt to access

15. With multiple scenarios, assign various privileges for a particular object and test compliance with test script

Error Reporting Mechanism

Perform the following actions and confirm error messages are correct:

· Login with invalid credentials

· Attempt to execute method when not authorized
· Attempt to execute method when server is down

· Attempt to execute method when not in session

· Try to update an object that does not exist

· Try to delete an object that does not exist

· Create an object
4.2 CFR 21 / Part 11 Requirements (Auditing and Logging) (Req. 13)
Logging Flag

16. Verify flag is present to turn logging off or on

17. Turn flag on, confirm messages are logged

18. Turn flag off, confirm messages are no longer logged

Persistence & Retention of Audit Trail Messages

19. Login, change state of object, confirm this is captured in audit trail

20. Set retention period and verify information is kept for that duration and then purged

21. Implement backup strategy to retrieve purged data

Log Message Structure

22. Confirm messages contain – user information, time-stamp, type, and description according to specifications outlined above in the Requirements to Verify section.
Event Logging

23. Enter invalid login credentials and verify system captures attempted login event and event details including the invalid credentials
24. Perform series of events and verify each is logged with appropriate data
Object State Logging

25. Update an object and confirm in audit trail that prior state is logged
26. Delete an object and confirm state of object before deletion is saved in audit trail
27. Add an object that the system immediately modifies. Verify that the user’s initial entry is captured and stored in the audit trail

4.3 Migration to Hibernate 3.0 (Req. 14)
Perform 3.0.1 Test Cases

These changes involve behind-the-scene code changes to the CSM APIs to migrate from 2.x version of Hibernate to 3.0. The team will perform past tests that have passed successfully that are related to the persistence layer. Testing will be conducted using both Oracle and MySQL databases.
28. Test writeable functions
· Create
· Read
· Update
· Delete
5. Test Evaluation
5.1 Test Environments
Testing will occur according to the NCICB schedule on the development and QA servers provided by NCICB and managed by the operations team.
5.2 Test Tracking
The team will use tools for managing test execution and tracking. The team will develop a CSM Test Case spreadsheet based on a template provided by the NCICB management team. This spreadsheet will detail the test case, including procedure, expected result, and pass/fail status.
In addition CSM will utilize the TestTrack Pro web-based bug management application to manage failed test cases and unexpected bugs. With this tool QA and developers can enter bugs, assign them to the appropriate resource, track and validate resolution.
Before phase release, all test cases will pass and bugs will be resolved, except for those deemed acceptable by the client and listed in the phase release notes.
[image: image2.jpg][image: image3.jpg][image: image4.png][image: image5.png]_1135871162.bin

