	[image: image2.jpg] NCICB
	[image: image1.png]

[image: image6.png]
Common Security Module
3.1 Test Summary
Version No: 0.1
Last Modified: 03/29/06
Author
:
Steve Hunter
Team
:
Common Security Module (CSM)

Purchase Order# 34552
Client
:
Nation Cancer Institute - Center for Bioinformatics,

National Institutes of Health,

US Department of Health and Human Services

Document History

Document Location

The most current version of this document is located in CVS.
Revision History

	Version Number
	Revision Date
	Author
	Summary of Changes

	0.1
	3/27/2006
	Steve Hunter
	Initial structure and draft

	1.0
	4/10/2006
	Steve Hunter
	Finished initial draft

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Review

	Name
	Team/Role
	Version

	Date Reviewed
	Reviewer Comments

	Orlando Roebuck
	Senior Engineer
	1.0
	4/17/06
	Solid Content, minor grammar changes, and timeline questions

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Related Documents

More information can be found in the following related CSM documents:
	Document Name

	

	

	

	

	

	

	

Table of Contents
41.
Introduction

2.
Scope
4
3.
Documents and Test Definitions
4
3.1
Document References
4
3.2
Testing Definitions
4
4.
Testing Methodology Summary
5
5.
Test Team and Environment
5
5.1
Project Team
5
5.2
Test Environment
5
6.
Test Execution Summary
6
6.1
Test Summary by Phase
6
6.1.1
Development Phase
6
6.1.2
QA Phase
6
6.1.3
Staging Phase
7
6.1.4
Production Phase
7
6.2
Test Summary by Requirement
7
6.2.1
Requirement #12 - caCORE SDK Integration
7
6.2.2
Requirement #13 - CFR 21/ Part 11 Requirements (Audit and Logging)
7
6.2.3
Requirement #14 - Migration to Hibernate 3.0
8
6.3
UPT Load Test Summary
8
6.4
Test Cases Not Executed
8
7.
Bug/Feature Request Summary
8
7.1
Bugs/Feature Requests Fixed
9
7.1.1
Common Security Module (CSM)
9
7.1.2
Common Logging Module (CLM)
9
7.2
Official Release Notes
9
7.2.1
Common Security Module (CSM)
9
7.2.2
Common Logging Module (CLM)
9
8.
Conclusion
9

3.1 Test Summary
1. Introduction
This document summarizes the results of the tests performed on the Common Security Module (CSM). To make these results more meaningful, this document also includes some reference information, testing methodology, and test definitions. It is recommended to have the reference documents and GForge bugs/feature requests available while examining this document. All documents referenced here are available in CVS.
2. Scope
Since there are many detailed documents regarding the tests performed on the CSM system, this document will only provide summary information. It is not intended to report on ALL of the defects found or tests run, but to give highlights of the testing process and significant milestones. To prevent unnecessarily lengthy lists of bugs/feature requests, this document will only discuss the bugs/feature requests relevant to the 3.1 release. Relevant bugs/feature requests include: bugs that effect major functionality, official release notes, and new features added to CSM for the 3.1 release. Bugs/feature requests that were not addressed in the 3.1 release can be found in GForge as a “Future Release” candidate.
3. Documents and Test Definitions

3.1 Document References

The documents listed below and the bugs/feature requests in GForge are the source of all of the statistics quoted in this document. These documents, and other supplemental documents, can be found in CVS under the CSM project.

· CSM_test_case_3.1.xls – Lists all tests performed on CSM. This document, along with the CSM_Traceability_Matrix.xls, make up the CSM traceability matrix.

· CSM_Traceability_Matrix.xls – Lists all of the documented requirements and the corresponding test cases

· UPT Regression Tests.xls - This document supplements the CSM_test_case_3.1.xls. It provides a detailed regression test of the entire UPT application.
3.2 Testing Definitions
Since there is some ambiguity in the exact meaning or implementation of these QA terms, the following terms are defined as they relate to the CSM project.

· Unit Testing - Controlled evaluation in the development step to ensure that one component of program code performs as defined in the specification. CSM Unit Tests were largely done with the file TestClient.java. This file was modified to accomplish the desired low-level, independent unit tests.

· Integration Testing – Controlled evaluation performed to ensure that a collection of programmed units work together to produce expected results as defined in the functional requirements. CSM modified testing scripts to incorporate a series of related or dependant method calls.

· Systems Testing – Controlled evaluation of an application in the context of a system to ensure that the application works within the system environment. CSM’s system tests were executed by manually testing the UPT.

· Load Testing – Testing with a large amount of data in order to better predict system behavior and performance under production conditions. Load tests for CSM consisted of populating a database with large volumes of users, Protection Elements, etc. Then we used the UPT to review response times to various actions.
4. Testing Methodology Summary

The CSM team implemented a testing methodology that quickly and efficiently ensured quality throughout the system. At each stage of the development life cycle, the CSM team systematically executed all of the test cases. When a bug was found, it was immediately posted into GForge and fixed by the developers. Once fixed, a new build of CSM was made and the bug fix was reviewed by QA to ensure the test case passed successfully. Each bug in GForge that was fixed includes information about how it was fixed and what test cases were executed to verify the fix.
Significant time and effort was spent on developing the UPT Regression Test cases because the UPT encompasses so much of the overall CSM project. In addition to the UPT tests, other test cases and scripts were developed that addressed specific requirements. These tests and processes lead to a successful CSM 3.1 release.
5. Test Team and Environment
5.1 Project Team

The following team members participated in testing for the Common Security Module:

· Charles Griffin
– Manager
· Kunal Modi
– Team Lead
· Art Lian
– Senior Engineer

· Steve Hunter
– QA Resource

5.2 Test Environment
Below is a summary of the primary testing environment for each phase.

· Development Phase (09/26/2005 - 01/05/2006)
· OS: Development tier - Solaris (Unix), Local Machines – Windows 2000/XP

· Application Server: JBoss 4.0.2

· Database: MySQL

· Java Technologies: Hibernate 3.0.5, Log4j 1.2.8

· Web Browser: IE 5.0+, Mozilla 1.0

· QA Phase (01/06/2006 - 03/01/2006)

· OS: Solaris (Unix)

· Application Server: JBoss 4.0.2

· Database: MySQL

· Java Technologies: Hibernate 3.0.5, Log4j 1.2.8

· Web Browser: IE 5.0+, Mozilla 1.0

· Staging Phase (02/11/2006 - 03/10/2006)
· OS: Solaris (Unix)

· Application Server: JBoss 4.0.2

· Database: MySQL

· Java Technologies: Hibernate 3.0.5, Log4j 1.2.8

· Web Browser: IE 5.0+, Mozilla 1.0

· Isolated Staging Phase (02/24/2006-03/10/2006) – everything is done on one machine
· OS: Windows 2000

· Application Server: JBoss 4.0.2

· Database: MySQL

· Java Technologies: Hibernate 3.0.5, Log4j 1.2.8

· Web Browser: IE 5.0+, Mozilla 1.0

· Staging Phase (03/02/2006 - 03/15/2006)

· OS: Solaris (Unix)

· Application Server: JBoss 4.0.2

· Database: MySQL

· Java Technologies: Hibernate 3.0.5, Log4j 1.2.8

· Web Browser: IE 5.0+, Mozilla 1.0

· Production Phase

· OS: Windows 2000

· Application Server: JBoss 4.0.2

· Database: MySQL

· Java Technologies: Hibernate 3.0.5, Log4j 1.2.8

· Web Browser: IE 5.0+, Mozilla 1.0

6. Test Execution Summary
Each phase of testing was largely done on a single, specific test environment. To ensure continued compatibility with the non-primary testing environment of the current phase, cursory tests were done on each of the non-primary environments during each of the phases.
6.1 Test Summary by Phase
This summary report is organized chronologically by phase. Since it is grouped by phase, the information presented in this section combines all of the various types of test cases executed within a given phase.
6.1.1 Development Phase
Testing Methodology
– Unit, White Box
Test Environment

– Development Tier, Local Machines

Test Executors

– Kunal Modi (Developer), Art Lian (Developer)
Test Date Range

– 09/26/2005 - 01/05/2006
of Test Cases Defined
– N/A – not tracked
of Test Cases Executed
– N/A – not tracked

of Test Cases Passed
– N/A – not tracked

of Test Cases Failed
– N/A – not tracked
of Bugs Posted

– N/A – not tracked
of Bugs Fixed

– N/A – not tracked
of Bugs Open

– N/A – not tracked
6.1.2 QA Phase

Testing Methodology
– Integration, System
Test Environment

– Development Tier, Local Machines

Test Executors

– Kunal Modi (Developer), Steve Hunter (QA)
Test Date Range

– 01/06/2006 - 03/01/2006
of Test Cases Defined
– 581 (561 UPT Test Cases + 20 other)
of Test Cases Executed
– 581
of Test Cases Passed
– 430
of Test Cases Failed
– 151 (includes test cases that overlap and bugs/feature requests assigned for a future release)

of Bugs Posted

– 22
of Bugs Fixed

– 16
of Bugs Open

– 6 (Published in Release Notes)
6.1.3 Staging Phase

Testing Methodology
– Integration, System
Test Environment

– Development Tier, Local Machines

Test Executors

– Kunal Modi (Developer), Steve Hunter (QA)
Test Date Range

– 03/02/2006 - 03/15/2006
of Test Cases Defined
– 581 (561 UPT Test Cases + 20 other)
of Test Cases Executed
– 581

of Test Cases Passed
– 446
of Test Cases Failed
– 135 (includes test cases that overlap and bugs/feature requests assigned for a future release)

of Bugs Posted

– 1
of Bugs Fixed

– 1
of Bugs Open

– 6 (Published in Release Notes)
6.1.4 Production Phase

Testing Methodology
– Sanity/Brush Test

Test Environment

– Production

Test Executors

– Kunal Modi

Test Date Range

– 03/16/2006
of Test Cases Defined
– 582 (561 UPT Test Cases + 21 other)
of Test Cases Executed
– 10

of Test Cases Passed
– 10

of Test Cases Failed
– 0

of Bugs Posted

– 0
of Bugs Fixed

– 0
of Bugs Open

– 6 (Published in Release Notes)
6.2 Test Summary by Requirement
This report is grouped by the requirements that were added for CSM version 3.1. All statistics represent the state of the test cases for the final release of CSM version 3.1.
6.2.1 Requirement #12 - caCORE SDK Integration
of Test Cases Defined
– 14
of Test Cases Executed
– 14
of Test Cases Passed
– 13
of Test Cases Failed
– 1

	Test Case ID
	Test Case Summary
	GForge ID
	Bug/Feature Request Summary

	114
	Error Report relevance and clarity
	808
	Incorrect error message in application service

6.2.2 Requirement #13 - CFR 21/ Part 11 Requirements (Audit and Logging)
of Test Cases Defined
– 7
of Test Cases Executed
– 6
of Test Cases Passed
– 5
of Test Cases Failed
– 1
	Test Case ID
	Test Case Summary
	GForge ID
	Bug/Feature Request Summary

	202
	Object state change logging
	201
	Doesn't log initial state before update

6.2.3 Requirement #14 - Migration to Hibernate 3.0

of Test Cases Defined
– 176 (extracted from UPT Regression Test)
of Test Cases Executed
– 176
of Test Cases Passed
– 176
of Test Cases Failed
– 0
6.3 UPT Load Test Summary

It was determined early in the QA Phase that a load test on the UPT would be desirable, but a low priority. To save time, the load test was written as a single test case within the UPT Regression Test document. The test script UserProvisioningManagerImplTest.java was used to populate a database with a large volume of test data. Below are the number of objects generated for this load test.
Applications
- 500

Users
- 10,000

Groups
- 1000

Privileges
- 50

PE
- 5000

PG
- 100

Roles
- 500
Given the time constraints and the low priority, only a few test cases were selected that had the greatest chance to cause a problem. These test cases were executed and timed. Each of the test cases executed successfully, but a bug was posted in GForge (#1012) indicating some places where performance times could be improved.

Disclaimer:

The load test was not done on an isolated environment, so results may have been skewed. In addition, there are a number of additional load tests that need to be executed and timed to ensure greater coverage in the software. These tests will be done during the next development cycle.
6.4 Test Cases Not Executed

#207

· Summary: Write logs to flat file

· Reasons not executed: Test case was written too late in the cycle, and it is low priority since it is not common to use a flat file.

#300.24.16

· Summary: Confirm compatibility with other types of databases (besides MySQL)
· Reasons not executed: Tests were done on Oracle during development phase. The time involved to set up the test case in QA phase was too long.
7. Bug/Feature Request Summary
This section summarizes the bugs/feature requests for CSM version 3.1. Each bug/feature request listed below has a GForge reference ID and a short description. Details of these bugs/feature requests and additional (less important) bugs/feature requests can be found in the CSM GForge project at http://gforge.nci.nih.gov/.
7.1 Bugs/Feature Requests Fixed

7.1.1 Common Security Module (CSM)

· #169 – Provide backward compatibility to CSM-SDK generated system
· #271 – Roles, Protection Elements, and Protection Groups do not delete
· #167 - User lockout needs to be configurable
· #267 - "active_flag" always = "No"
· #353 - Change the "User Password" field to display only stars *****
· #199 - Add a Logout() method to allow logging of logout event
· #311 - Allowed one too many failed login attempts
· #458 - Add a second "Confirm Password" field
· #759 - If Active_Flag = 1 for application, login fails
· #306 - Do not allow PG to be parent to itself
· #310 - Immediately inform users when they are locked out (API and UPT)
7.1.2 Common Logging Module (CLM)

· #220 - Create a log message when a "User Lockout" event occurs

· #223 - Order log messages with most current message at the top

· #214 - Change the label "LogLevel" to "Log Level / Type"

· #254 - Display default time used to filter

· #255 - Change default time to current time - 1 hour

· #222 - Focus is set to “Type”/”LogLevel” after clicking “Submit”
7.2 Official Release Notes
7.2.1 Common Security Module (CSM)
· #794 - The getSubject method of Authentication Manager has not been implemented.

· #266 - Certain thrown exceptions may display hibernate-specific error messages.

· #600 - Adding a parent protection group to a user does not add the protection elements of the child protection group.

· #601 - The declarative flag for application is not functioning.

· #599 - In the Protection Element and User section of the UPT, when adding object details, if you press enter you'll be taken back to the object's home page.
7.2.2 Common Logging Module (CLM)
· #201 - The logging of previous state during update is dependant on Hibernate's flushing mechanism. Hence in certain scenarios the previous state for attributes would not appear.

· #867 - The CLM APIs currently log only the attribute of the parent object being modified or created. It cannot log the changes to the child objects or to the association between child objects and the parent object.

· #202 - In case of update log messages ASCII symbol appears due to conflict with the reserved character sequences in HTML.

8. Conclusion

As this document indicates, every aspect of CSM was thoroughly tested throughout each stage of development. The testing methodology soundly covers all aspects of the CSM project and guided our team to the production of a solid product. The few bugs that remain unfixed were determined to involve too much risk to the integrity of the program, and they were therefore added to the CSM 3.1 release notes. Because of the thoroughness of the testing done, the CSM team does not foresee any major issues appearing in the 3.1 release. We look forward to similar success in future releases of CSM.
[image: image2.jpg][image: image3.jpg][image: image4.png][image: image5.png]_1135871162.bin

