	[image: image2.jpg]

 NCICB
	[image: image1.png]

[image: image6.png]

Common Security Module

General Design for v3.2 Release

Version No: 1.0
Last Modified: 06/30/06
Author
:
Kunal Modi
Team
:
Common Security Module (CSM)

Purchase Order# 34552

Client
:
National Cancer Institute - Center for Bioinformatics,

National Institutes of Health,

US Department of Health and Human Services

Document History

Document Location

The most current version of this document is located in CVS under security/docs.

Revision History
	Version Number
	Revision Date
	Author
	Summary of Changes

	0.1
	06/15/06
	Kunal Modi
	Initial Draft

	0.5
	06/19/06
	Kunal Modi
	Incorporated Comments

	1.0
	06/30/06
	Kunal Modi
	Added GForge Ids

	1.5
	07/28/06
	Vijay Parmar
	Added CLM details

Review

	Name
	Team/Role
	Version

	Date Reviewed
	Reviewer Comments

	Charles Griffin
	Project Manager
	0.1
	06/17/06
	Approved Initial Draft

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Related Documents

More information can be found in the following related CSM documents:
	Document Name

	

	

	

	

	

	

	

Table of Contents

41.
Introduction

2.
Stakeholder and User Descriptions
4
2.1
Stakeholder Summary
4
2.2
User Community
4
2.3
Technical Environment
4
2.4
Summary of Requirements
5
2.4.1
In Current Scope Requirements
5
2.4.2
Out of Scope Requirements
6
3.
Release Functional Requirements Design
6
3.1
Regression Test against Latest Version of MySQL (GF # 1413)
6
3.2
JDK 1.4 Backward Compatibility (GF# 1414)
6
3.3
Migration to Hibernate 3.1.13 (GF# 1415)
6
3.4
Supporting Open LDAP as credential provider (GF# 1416)
7
3.5
Performance Enhancements to CSM APIs (GF# 1417, 1516, 1418)
7
3.6
Improve the Exception Handling (GF# 1419, 1420, 1422, 1423)
8
3.7
Linking a User to an Application Context (GF# 1424)
9
3.8
Adding a new “Type” attribute to Protection Element (GF# 1425)
10
3.9
Bug Fixes and Enhancements (GF# 1434)
10
3.10
CSM SDK Integration (GF# 1426, 1427)
11
3.11
BMS Integration (GF# 1428, 1429)
12
3.12
Improve the Deployment of CSM & Integration with Other Applications (GF# 1430)
13
3.13
Expose Core Authorization Services as a Web Service (GF# 1431)
14
3.14
CSM caGrid Integration (GF# 1432)
14
3.15
Common Logging Module Requirement Gathering (GF# 1517)
14
3.15.1
Limit View by Organization
14
3.15.2
Retrieve Log Messages based on Objects Primary Key
14
3.15.3
Object Model Semantic Integration
15
3.15.4
Generate Query API
15
3.15.5
Utilize CSM for Authentication and Authorization for the Log Viewer Application
15
3.15.6
Use Query API’s in Log Viewer to retrieve the results
15
3.15.7
Use NCI Template and refactor the Log Viewer web application
16
3.16
Modify Authorization Schema to Support SQL Server Database (GF# 1513)
16
4.
UML Object Model Changes
16
5.
Assumptions
16
6.
Risks
17
7.
Cross Product Dependencies
17
8.
Training Requirements
17
9.
Download Center Changes
18

 General Design for 3.2 Release

1. Introduction

The purpose of this document is to define at a high-level the scope items of the NCICB Common Security Module Hardening Release v3.2. It focuses on the functionalities proposed by the CSM stakeholders and target users in order to make it a better product. The use-case and supplementary specifications documents will detail how the framework will fulfill these needs.

2. Stakeholder and User Descriptions

2.1 Stakeholder Summary

	Name
	Description
	Responsibilities

	Peter Covitz
	NCICB Application Infrastructure
	Oversees NCICB Application Infrastructure

	Avinash Shanbhag
	NCICB Application Infrastructure
	Oversees NCICB caCORE Software Engineering

	Denise Wartzel
	NCICB Application Infrastructure
	Oversees NCICB caCORE Project Management

2.2 User Community
	Project Lead
	Description
	Responsibilities

	Johnita Beasley
	Project Lead
	SPORES

	George David
	Project Lead
	caMOD

	Charles Griffin
	Project Lead
	C3PR

	Jon Dietrich
	Project Lead
	NCIA

	Himanso Sahni
	Project Lead
	caIntegrator, I-SPY/Rembrandt

	Steve Stowers
	Project Lead
	Anzen at BMS

	Aarti Sharma
	Project Lead
	caTISSUE at Persistent

2.3 Technical Environment

	Technology
	Future Tech Stack

	IE Browser
	5 and above

	Mozilla Browser
	1.5.0.3

	HTML
	HTML 4.0.1

	Apache ANT
	1.6.5

	Apache Axis
	1.4

	Apache Jakarta Commons Project, POI Project
	2.5.1

	Apache Tomcat
	5.5.17

	Hibernate
	3.1.3

	J2EE - JSP, Servlets and EJB; J2EE Web Services
	J2EE 1.4

	Java Platform
	1.5.0_06, 1.4.2_05

	Jboss
	4.0.4

	Junit
	3.8.1

	Oracle DB
	9.2.0.6

	MySQL
	4.1.19

	PL/SQL Web Toolkit (installed in database)
	9.2.0.6

	PL/SQL, SQL
	9.2.0.6

	Spring Framework
	1.2.7

	Struts Framework
	1.2.9

	PostgreSQL
	8.1.3

2.4 Summary of Requirements
The following subsections provide an analysis of key requirements to address for the security solution as perceived by the stakeholder and users.

2.4.1 In Current Scope Requirements

· Regression Test against Latest Version of MySQL

· JDK 1.4 Backward Compatibility

· Supporting Open LDAP as credential provider

· Performance Enhancements to CSM APIs

· Improve the Exception Handling

· Linking a User to an Application Context

· Adding a new “Type” attribute to Protection Element

· Bug Fixes and Enhancements

· CSM SDK Integration

· BMS Integration

· CSM caGrid Integration
· CLM

· Limit View by Organization
· Retrieve Log Messages based on Objects Primary Key (Unique Key)

· Object Model Semantic Integration

· Generate Query API based on one of the two suggested approaches.

· Utilize CSM for Authentication and Authorization for the Log Viewer Application

· Use Query API’s in Log Viewer to retrieve the results.

· Use NCI Template and refactor the log viewer web application
2.4.2 Out of Scope Requirements
The current solution does not have these features, but it is flexible enough to incorporate all the required changes without changing the fundamental architecture.

3. Release Functional Requirements Design
The following section describes in detail all the functional requirements, which are proposed for the coming release:

3.1 Regression Test against Latest Version of MySQL (GF # 1413)

· Upgrade the MySQL Database Version To new version

The MySQL database needs to be upgraded to the either 4.19 or 5.0 version. This decision will be taken by the database and the systems team. Based on the version selected the CSM will be upgraded to work with that version. All the SQL and Hibernate entities will be verified to work with the new database version. All the changes required to the database scripts will be documented and if required any migration scripts will be provided to help the users using the existing database to use the new APIs utilizing the features of the new version of database. Also compatibility with the Oracle database will be maintained in the process.

· Upgrade the MySQL Driver version to appropriate new version

If the database upgrade requires a change to the MySQL driver version than the appropriate new driver will be used. This change will be documented so current CSM users can upgrade from older version of CSM to the new version that uses the new database driver.

· Perform Regression Test

Once the changes have been performed, both the CSM APIs and UPT will be regression tested to ensure stability on the new version of the database.

3.2 JDK 1.4 Backward Compatibility (GF# 1414)

· Modify Code if Need to Compile on JDK 1.4

CSM code will be compiled on the JDK version 1.4.2_05 to make sure that it is backward compatible as required by other teams. If any changes are required to the code then they will be checked into the source repositories. Also the code will be compiled on both JDK 1.4 and JDK 1.5 to check for compatibility issues.

· Perform Regression Test

Once the changes have been performed, both the CSM APIs, and UPT will be regression tested to make sure that all the functionality is tested on the both version of the JDK.

3.3 Migration to Hibernate 3.1.13 (GF# 1415)

The following requirements pertain to changes required to the CSM APIs to migrate from 3.0.5 version of Hibernate to 3.1.13

· Update the Hibernate HBM Files

The HBM files should be verified for compliance with Hibernate 3.1.13 specifications.

· Modify the Hibernate Configuration File

The Hibernate CFG should be verified for compliance with the new Hibernate 3.1.13 specifications, and modified as necessary.

· Change DAO layer to use new Hibernate classes

All the classes in the DAO layer which are using the Hibernate classes need to be verified to be compliant with hibernate 3.1.13 package structure and be modified to reflect any changes

Perform Regression Testing

After the code and the configurations have been migrated to the new Hibernate version, all APIs should be regression tested using both Oracle and MySQL databases.

3.4 Supporting Open LDAP as credential provider (GF# 1416)

Various CSM Client Applications are requesting support for the Open LDAP which is an Open Source LDAP Server. The existing LDAP Login Module of the CSM’s Authentication Service will be enhanced to fulfill this requirement.

3.5 Performance Enhancements to CSM APIs (GF# 1417, 1516, 1418)

The following pertain to requirements deemed necessary for improving performance for CSM APIs:

· Enable Caching of the User’s Authorization Policy (GF# 1417)

Currently the CSM APIs have to make a database call every time the checkPermission method is invoked. This results in a network call as well as execution of a lengthy query to determine if the user has access or not.

As part of the performance improvement CSM APIs will try to avoid the network call for each and every call of checkPermission. In order to achieve this, CSM will load the user’s Authorization Policy upfront and cache it for use whenever the check permission method is executed. Even the Authorization Policy would be cached at the Group level allowing the newly provided methods for checking permissions at group level to leverage caching.

In order to enable caching of the user’s or a group’s policy a new method needs to be added to the AuthorizationManager. This method will accept a user name or a group name as parameter and load the Authorization Policy for that user internally and store it in a HashMap with username as the key. Alternatively it can be part of the constructor too.

Also the checkPermission methods for both user’s and group will be updated to check if the policy for that user is loaded in the cache or not. If yes, then the checkPermission for both user’s and group method will examine the cache and determine if the user has permission to perform the said operation on the specified resource or not. A “true” will be returned if the user has permission, and a “false” will be returned if they do not. However if there is no policy found for that user indicating that the client application hasn’t cached the policy for that user yet, it will check the database to determine the access permission as before.

This way it will support both modes of using the AuthorizationManager, i.e. one instance per application or separate instances for each user.

· Explore the usage of eh-cache for CSM Domain Objects (GF# 1516)

Currently there is no external cache enabled for CSM Objects. The CSM Team will enhance the Hibernate configurations to use the eh-cache as external second tier caching solution. The team will make the appropriate changes to the code / configuration files to enable eh-cache and note down the performance improvements if any.

· Design Automated Instance Level Security for SDK Generated Application (GF# 1418)

CSM Team will under take of gathering requirements and designing a possible high level approach for providing automated instance level security for applications generated using SDK. The level of details of the design would be limited to the number of days allocated for it. The design would be delivered either in form of an Enterprise Architect Model or Word document.

3.6 Improve the Exception Handling (GF# 1419, 1420, 1422, 1423)

The exception handling of CSM APIs needs to be improved to be more specific and user friendly. Below is a list of high level exceptions that need to be handled in a better way:

· Get methods to throw exception instead of returning a null (GF# 1419)

All the get methods of the CSM APIs e.g. getUser() will throw an appropriate error message instead of returning a null when the search resulted in no records found.
· Add methods to throw exception if the object exists (GF# 1420)

All the add/create methods of the CSM APIs e.g. createUser() will throw an appropriate error message instead of returning a hibernate error incase the user already existed.

· Configuration Errors should throw appropriate exceptions (GF# 1422)

The CSM APIs configuration currently doesn’t throw any specific errors making configuring the APIs a difficult task for the developers. The APIs should be enhanced to throw the exact exception when there is incorrect configuration entry performed by the user. This will help in resolving a lot of support questions for the CSM Team.

· General Error Enhancements for CSM APIs and UPT (GF# 1423)

The error message on the UPT should be more user friendly. This requirement might drill down to changes in the underlying CSM APIs for various Hibernate exceptions which are thrown in the current version.

3.7 Linking a User to an Application Context (GF# 1424)

Currently in CSM the Users are created independently and stored globally across the applications. This poses a security problem because an admin of any application can delete any user including the super admin. Deleting a user removes the user from all the contexts including the super admin application. To avoid this problem, users need to be linked to an application.

· Changes to the database schema

A new table will be introduced in the schema. This table will have two columns: the user id and the associated application id. Also the user table will have a column added to store the application id of the application which created the user. The DDL scripts will be enhanced to aid in creating the new schema, and migration script will be provided for the existing users.

· Changes to the CSM APIs

The user object will have additional attributes for the creating application and associated applications values. Also a new Hibernate object will be created for the association table with the corresponding mapping. The user will be attached to an application once he/she is assigned to any of the other entities like Protection Groups, Roles, Group etc of that particular application. In addition, a newly created user will be automatically assigned to the creating application. The CSM APIs will be enhanced to take care of the workflow mentioned below in the changes to the UPT Tools section

· Changes to the UPT Tool

The UPT tool will be enhanced to display the created application attribute of the user on the user’s detail screen. Also the delete functionality for the user will be slightly modified as mentioned below.

For all the applications other than the creating application, the “Delete” button will be replaced by “Detach”. This will just remove the user’s association with all the entities of that application. However the user still exists in the user table. Also the entry in the user application table linking the user to the application will be removed. In case of the creating application, the user will have two options: “Detach” if the user is associated with any other application or “Delete” if the user is not associated with any other application other than the creating application.

With this solution, we can ensure that the user can only be deleted when not associated with any other application and can only be deleted by the creating application. Other administrators can still modify all the other details for that user except the login name which will be enhanced to be non editable after creation.

Also the User search screen will include an option for the admin to search the users which are associated with their applications or the global list. The global list will include the entire user list.

3.8 Adding a new “Type” attribute to Protection Element (GF# 1425)

There is often a large number of Protection Element objects stored within a given application context. In order to ease the searching of these protection elements they need to be grouped by a common attribute based on their type. In order to achieve this, the following changes are required:

· Changes to the Database

The DDL scripts will be enhanced to add a new column “Type” for the Protection Element table. Also database migration script will be provided to help the existing users to migrate to the new schema.

· Changes to the CSM APIs

The Protection Element object will be updated to include the new Type attribute. Also the corresponding Protection Element Search Criteria Object will be updated to include the new attribute

· Changes to the UPT

The Protection Elements details page will display the new attribute type. Also the search screen will include this attribute allowing the users to be able to search on the type of protection element.

3.9 Bug Fixes and Enhancements (GF# 1434)

The CSM Team plans to perform the following bug fixes / enhancement in its current phase to CSM APIs and UPT:

· Focus on Load

The focus will be set for all the UPT screens to the first input box of the screen.

· Alphabetize the search results

The search result returned by the CSM APIs will be alphabetized to allow ease of navigation and selections to the admin on both the search result screens as well as the association screens of the UPT.

· Hashing of the Password

The password for the user will be hashed and stored in the database. This will provide additional security at the database level too. However this enhancement will require a change in the CSM’s RDBMS LoginModule which needs to hash the password while trying to match against the credentials stored in the user table of CSM’s Common Authorization Schema

· Cannot Deassign Child Protection Group

The parent protection group functionality has no facility to de-assign a parent protection group once assigned. This functionality will be added in the current phase.

· Associating Users to a Group

Currently CSM has a facility to associate a group to a User. This means that if you have multiple users you want to be associated with a group then you will have to search for these users individually and then on the details page associate them to group one at a time. This is a tedious way to perform this operation.

The solution will be to provide an additional functionality in UPT which will allow users to be associated to a group directly. This will include a new association screen which contains a list of available users from which the user can assign and de-assign users to the group. This screen will be invoked from the group details page. Also the backend CSM APIs will be enhanced to provide methods to support this operation.

· Having Group Based Check Permissions

Currently CSM APIs have checkPermission methods which take in a user name, resource name and operation to determine whether the user has permission to perform that particular operation on that particular resource or not.

New checkPermission methods will be introduced in parallel to the existing ones. These will take in a groupName instead of user name and determine whether the group of users has permission to perform a particular operation on a particular resource or not. It will work similar to the user based checkPermission methods except that it will now be done using the group name.

· Login Name of a User is non editable once created

UPT will be enhanced to make Login Name field un-editable after the user has been created. This will hence prevent other administrators from modifying it and there by preventing access to the user.

· Code Cleanup

CSM contains deprecated and non functional code which will be cleaned up as part of this phase.

· UPT Usability Enhancements

UPT tool will be modified for the following usability enhancements

· Provide example entries for dates etc.

· The update date will also display time. (based on the support from the database)

3.10 CSM SDK Integration (GF# 1426, 1427)
· Securing all the Interfaces (GF# 1426)

Currently CSM security is plugged into the Spring HTTP remoting piece of the caCORE SDK. This component is used for the communication between client and server. As a result only the Java APIs are secured. To provide security for other interfaces, EKAGRA proposes to evaluate and implement one of the following two options:

a. Integrate the security into each of the communication interface levels by adding the security to the web services SOAP interface, to the HTTP/XML Interface APIs, the Perl APIs etc. This is advantageous because it separates the security from the underlying business logic and restricts security only to the communication tier. However this means there will be duplication of the code and effort since the security integration will have to be performed individually in each of the above mentioned interfaces.

b. The other approach is to have CSM security integrate the underlying common business code executed on the server. The advantage of this mechanism is that the security is controlled from a common place in the code. Hence a more consistent security behavior can be enforced in this mechanism amongst different interfaces. The security for these different interfaces will be driven by a single set of entries made in the Authorization Schema. However, in this option, the security integration will be embedded into the caCORE business logic rather than just at the interface layer as in option a.
· Changing the incorrect error messages (GF# 1427)

CSM SDK Integration has a minor cosmetic bug which displays the wrong error messages. When a user does not have proper permissions to perform a certain operation, the resulting error message always says that the user does not have “create” privileges except in case of deletion. This occurs regardless of the type of privilege the user was lacking. These error messages will be fixed.
3.11 BMS Integration (GF# 1428, 1429)
· Authentication as a Web Service (Integrating BMS Code into the CSM Code Base) (GF# 1428)

Authentication service exposed by the current CSM v3.2 will be available as a web service. The following steps will be involved in this task:

· Refactor the BMS source code to conform to the CSM coding standards

· Move all hard coded configuration information to external files

· Unit Testing

Also these web services would be secured using mechanisms like mutual authentication, so that only registered clients can access the web services. This could be the first step of taking CSM toward SOA so that it can be used in a grid environment (caGrid).
· Integration of other BMS Enhancements (GF# 1429)

In addition to the web-service integration, CSM will incorporate the following functionality enhancements into the 3.2 release.
Of primary concern, is the ability for the CSM to associate a User to an Application or set of Applications. The modifications that BMS has made to a number of CSM domain objects, i.e. the User class, and the Application class, as well as the additional classes that were created to facilitate the User/Application association must be refactored to conform to the CSM coding standards prior to being integrated into the CSM codebase. Additionally, all appropriate configuration and/or mapping files, i.e. Hibernate mapping files, and database changes must be completed prior to unit testing.
Second, fixes for the following bugs and/or enhancements to the general source code to the UPT application or API source code will be applied:

· Failure when searching a large user and protection element base
· Pressing <enter> on the user search screen doesn’t execute the search, but takes you back to the previous screen.
· All flag radio buttons (for PG, Roles and Application) do not stay on YES, it goes back to NO even if the user selects YES and updates it.
· Many screens were showing objects from applications other than the one being administered.
· The display of assigned and available groups should be application specific.
· The query for obtaining Protection Elements and privilege context does not consider the application Name.
. And last, the following source code enhancements to the LDAP credential provider will be integrated and tested:

· Capturing of additional attributes from LDAP during authentication as a web-service

· Creating of exceptions to capture when LDAP server fails to initialize.
· Full Implementation of a Parent protection group
3.12 Improve the Deployment of CSM & Integration with Other Applications (GF# 1430)

This task would take care of the include the following enhancements

· Removing the ApplicationSecurityConfig.xml file.

· Modify the Authorization Manager load from Datasource based on the application name in case of the J2EE Application or from the hibernate cfg file based on the name of application for non J2EE Applications

· Modify the Authentication Manager to accept the lockout parameters as parameters.

· Update the cfg files and database scripts to be more user friendly

· Remove the cached loading of the other application contexts.

· Backward compatibility to work with older settings

· Update the installation guide

· Test with the default Transaction Manager of JBoss
· Making the method name consistent. If possible, evaluate merging the Authorization Manager and User Provisioning Manager.

3.13 Expose Core Authorization Services as a Web Service (GF# 1431)

This task would include the following
· Design what Authorization Services should be exposed as Web Services.

· Develop and deploy the Authorization Web Service
· The methods exposed using this web service will allow the users to verify if the user (or maybe user’s group) has permission to perform a particular operation on a particular resource or not.

3.14 CSM caGrid Integration (GF# 1432)
· NOTE

At time of writing the scope document, time has been allocated to support caGrid in the task plan however the Use Cases have not yet been defined. Once defined, a detailed estimate for the development and testing of the Grid Use case will be provided to NCICB management. Once the time estimates are done, a decision will be made to include or exclude the caGrid integration task in the 3.2 scope of CSM. This decision will be made by NCICB management and the CSM project manager.

3.15 Common Logging Module Requirement Gathering (GF# 1517)

3.15.1 Limit View by Organization

Currently, a User that has logged into the Log Locator Tool to view an application’s logs can access all logs pertaining to that application. Within an application, logs are generated by various organizations. These organizations want to restrict access to the logs to only Users associated to the organization. To implement this requirement, a new Organization field will be added to the log messages to relate each log entry to its respective Organization. The CLM API’s will have to be modified to handle the new field and log messages appropriately. A new searchable field for Organization will be added to the query screen. CSM's authorization will be used to grant access privileges to a User’s associated organizations. When the User logs in to the Log Locator Tool, the search criteria will display a list of associated organizations in the Organization search criteria field. This requirement is requested by the HUB project.
3.15.2 Retrieve Log Messages based on Objects Primary Key

Two new fields will be added to log messages: Object's Name, and the Unique/Primary key. The Object State Logger will be modified to log this new information. The primary/unique attribute name can be provided through the ObjectStateLogger.xml. Corresponding searchable fields will be provided on the search criteria query screen.

3.15.3 Object Model Semantic Integration

An EA Object Model will be created to represent the log message object. The object model will be annotated with the proper description for all the attributes. Generated XMI will be passed through the Semantic Integration Workbench process and it will be loaded in the caDSR database.

3.15.4 Generate Query API

Approach A – Using DAO

A query API will be created that accepts a query criteria object which the client application can use to populate the query parameters. A query based on the specified values in the criteria object will be executed against the database and the results sent back to the user. A wrapper API will be provided that will allow the results to be returned as either objects or xml files (Possibly by using the XML Utility of caCORE SDK).

Approach B – Using the caCORE SDK

CLM's Object Model's XMI will be run through the code generation process and obtain the thick client generated by SDK (3.2 SDK release feature). The client application will be provided a query criteria object to populate their query parameters. An intermediate layer will accept the query criteria from the client application, translates it into a HQL query, and uses the SDK generated API to query the underlying log database. A wrapper API will be provided that will allow the results to be returned as either objects or xml files (Possibly by using the XML Utility of caCORE SDK).

3.15.5 Utilize CSM for Authentication and Authorization for the Log Locator Tool

CSM will be used for authentication instead of the Log Locator Tool storing the user credentials. The user credentials will be stored in the CSM's User Table itself and access the RDBMS JAAS Module of CSM Authentication. Also once authenticated, CSM's Authorization Manager will be used to determine if the user has access to view logs for that particular application or not. In this case we would create protection elements representing the applications and associate them to the user. Also with the new requirement mentioned in Section 3.1, protection elements representing Organizations will be created and associated to the user. The user credentials will be used to determine the organizations associated to the user.

3.15.6 Use Query API’s in Log Locator Tool to retrieve the results

The Log Locator Tool will utilize the query APIs generated in Section 3.4. It wil then create a search criteria object from the input provided by the user on the query screen and invoke the APIs. Finally, it will parse the returned XML results and display them to the user.

3.15.7 Use NCI Template and refactor the Log Locator Tool

The Log Locator Tool application will be enhanced to use the Standard NCI Templates for UI Look and Feel. The Log Locator Tool application will utilize features of AJAX and JSF to allow more interactive UI features.
3.16 Modify Authorization Schema to Support SQL Server Database (GF# 1513)

CSM was developed using mySQL as the open source database and Oracle. However there is a requirement to make the Authorization Schema database to support SQL Server database. This change would need the changes made to the Database creation scripts. Also along with the database priming scripts would need to be modified as well.

The Hibernate mapping files will be analyzed to be compatible with the new database. If required then they will be modified to support the new database at the same time be compatible with existing databases.

After the code and the configurations have been performed, all APIs should be regression tested using the new SQL Server database.

4. UML Object Model Changes

· The User Object of the CSM APIs will have a new attributes to store the name of the application which created the user. Also User and Application would now be associated to each other. There would be a many to many association. This change is due to requirement number 3.7 mentioned above.
· A new attribute “Type” defining the type would be added to protection elements. This change is due to requirements number 3.8 mentioned above.
· Based on the approach used to generate the Query APIs, CML Object model will be created for the Query Object.

· The Query object will have attributes from the Search Criteria used to query the logs from the database.

5. Assumptions

· CSM - caGRID Integration Design has been assigned team in time before the coding begins by the CSM Team.
· One of the two approaches will be chosen to generate Query APIs before the implementation begins.

· NCI Template will be decided before refactoring the Log Locator Tool web application.
6. Risks

· The solution designed the integration team for the CSM – caGrid should be feasible in the time allocated for it in CSM’s Project Plan. Else it could lead to scheduling conflict.
7. Cross Product Dependencies

For all the applications which are using the CSM APIs for the purpose of Authentication and Authorization, following are the changes to the interfaces. Although at most of the places the code would be made backward compatible to support existing users.

· Depending upon the design and the caGrid Integration Requirements, the Login module of the CSM AuthenticationManager could be changed to return a JAAS Subject consisting of attributes (as JAAS Principles) for that user. This change is due to requirement number 3.14 mentioned above
· There would a change in the way Authorization Manager is obtained due to the caching of the User’s Policy. If the application wants to use user’s policy caching, they would need to pass the user id along with the application context. This would load the entire user’s authorization policy in memory. Also it would use this internal cache to check if the user has access permissions or not instead of routing the call to database. This change is due to requirements number 3.5 mentioned above.
· Various methods of CSM APIs would be enhanced to throw more detailed error messages. The exact methods which would change will be decided later during detailed design. This change is due to requirement number 3.6 mentioned above

· The linking of a user to an application context would add couple of new methods to the User object to retrieve the creating application and the list of associated applications. Also the Authorization Manager would have additional methods to detach a user etc. This change is due to requirements number 3.7 mentioned above.
· The search results would be ordered alphabetically for all objects. Also there would additional API methods to associate users to a group. The Authorization Manager will have method to enable check permission at group level. This change is due to requirements number 3.9 mentioned above.
· Also the new improvements to deployment and integration steps for CSM to other applications would require a change in the way the managers are obtained and configured. This change is due to requirements number 3.12 mentioned above.
· CLM will be using CSM for authentication and authorization. CSM configuration should be done for Users, Applications and Organizations that each User is associated with. Security Administrators will have to use User Provisioning Tool of CSM to do the same.
8. Training Requirements

· CSM currently doesn’t have any training for its products. Also there are no requirements in scope that require a new training module
9. Download Center Changes

· CSM Team is planning to introduce no new downloadable for this release. Also existing products would be packaged similarly to previous release.
[image: image2.jpg][image: image3.jpg]

[image: image4.png]

[image: image5.png](Ekagra

High impact - High Value - Businss Resuts

_1135871162.bin

