	[image: image2.jpg] NCICB
	[image: image1.png]

[image: image6.png]
Common Security Module

Cumulative Requirements

Version No: 2.0
Last Modified: 07/04/06
Author :
Kunal Modi, Charles Griffin, Eric Copen, Brian Husted

Kalpesh Patel, Vinay Kumar
Team
:
Common Security Module (CSM)

Purchase Order# 34552

Client
:
National Cancer Institute - Center for Bioinformatics,

National Institutes of Health,

US Department of Health and Human Services

Document History

Document Location

The most current version of this document is located in CVS under security/docs.

Revision History
	Version Number
	Revision Date
	Author
	Summary of Changes

	0.1
	10/13/05
	CSM Team
	Initial draft based on several prior documents

	1.0
	10/18/05
	Eric Copen
	Added appendix table in response to review comments

	2.0
	07/04/06
	Steve Hunter
	Added 3.2 requirements

	
	
	
	

	
	
	
	

	
	
	
	

Review

	Name
	Team/Role
	Version

	Date Reviewed
	Reviewer Comments

	Kunal Modi
	Project Lead
	0.1
	10/17/05
	Add appendix table

	Charles Griffin
	Manager
	0.1
	10/17/05
	Add appendix table

	Kunal Modi
	Project Lead
	1.0
	07/04/06
	Reviewed added comments

	
	
	
	
	

	
	
	
	
	

Related Documents

More information can be found in the following related CSM documents:
	Document Name

	

	

	

	

	

	

	

Table of Contents

4Introduction

41.
Implemented Requirements

41.1
Version 3.0

41.2
Version 3.0.1

51.3
Version 3.1

81.4
Version 3.2

142.
Non-Implemented Requirements

183.
Appendix

183.1
Requirement and Phase Table

Cumulative Requirements
Introduction

This document lists all requirements considered for integration with the Common Security Module project. It is a comprehensive list of requirements organized into two groups: implemented and unimplemented. Implemented requirements have been completed in a previous release of CSM. Non-implemented Requirements are candidate requirements for a future release.

This document, combined with the CSM Traceability Matrix, will help the team and client precisely track CSM requirements. This is a living document that will be updated as the project moves forward; however requirement numbers remain the same so as to ensure traceability.
1. Implemented Requirements

1.1 Version 3.0
1. Authentication

Authentication refers to the validation and verification of a user’s credentials.

· Reliably and securely determine access to an application

· System to system authentication

2. Authorization

Authorization grants access to various protection elements (methods, objects and data).

· Protect privileged resources from unauthorized users

· Associate user roles with distinctly defined privileges

· Ability to set access control for datasets

3. Web Based User Provisioning

· Web enabled application

· Access to multiple user repositories
1.2 Version 3.0.1
4. Standardize Privileges

Standardizing privileges will require a discipline that has to be maintained. The UPT will incorporate only standard privileges used by other security providers (create, delete, etc.). Documents will publish this fact. Consuming other privileges will be done so sparingly and with discretion.
5. Provide Authorization Report View

In the UPT a report module has to be introduced so that administrators can take a look at the privileges snapshot for the protection element and can validate the security requirements for their application.
6. CSM-SDK Adapter – Introduction of Session Management

Session management can be introduced at server side so that a user does not have to log in again and again. Once the session management is in place, the APIs calls will be executed in context of a user session. This will facilitate CSM enabling within APIs.

7. CSM-SDK Adapter – Introduction of Authorization in APIs

The Authorization process is very important for data access. Authorization can be performed using CSM for a particular user, once the user logs in to the system. But the authorization will only make sense once the session management is in place. The authorization policy can be cached on server side for better performance.

8. CSM-SDK Adapter – Introduction of Security

Security may mean more than just authorization. CSM enabled APIs will provide built-in authentication and authorization. At the same time security features will let users use different level of security. The security level will be defined at an application level.

9. CSM-SDK Adapter – Introduction of Writable APIs

This feature will let users write to the database. Write API in this phase may be quite simple. This feature depends on session management and security enabling.
10. Modify UPT for Cross-Browser Compatibility

The current version of CSM’s UPT supports only IE. However as per the latest UI standards both IE as well as Mozilla browsers are required to be supported by all web applications. As the result of this UPT tool needs to be enhanced to work along with Mozilla browsers.

11. Modify Authorization Schema and APIs for Cross-Database Compatibility

CSM was developed using mySQL as the open source database. However there is a requirement to make the Authorization Schema database independent to support various databases. This would require renaming all the tables to avoid clashes with possible reserved words and modifying the APIs to use the new schema.

1.3 Version 3.1

12. CSM-SDK Adapter – caCORE SDK Integration Requirements

CSM – SDK Adapter was build to inject CSM’s security features in an SDK generated system. However it required a separate build process and would provide its own custom classes to inject the security. However as part of CSM v3.2 the functionality provided by SDK Adapter should be merged in the SDK code base such that it is available for the user out of the box. Also there is should be only single build process which the users have to run to have the system generated as well as have security injected. Also a configuration flag should be provided to allow the user to turn security on and off. Also the integration should exhibit the following requirements.
· The SDK system should be generated such that it allows the capability to write objects into the database.
· Provide the user capability to select the generation of writable API or not.

· Apart from the existing method level security, provide class level security to an SDK generated system.
· Provide a single build file for generating and SDK generated system as well as enabling security.

· Merge both the code bases to have a single download package for the end users to install and use.

· By default the security should be disabled.

· Provide comprehensive error reporting mechanism for security uses cases.

13. CFR 21/ Part 11 Requirements (Audit and Logging)
Based on the feedback from the gap analysis performed by the Biopharm team various changes and enhancements will be required to be made to the CSM project. These changes can be technical, managerial or process oriented. The CSM team should adopt these changes and implement suggestions provided by the Biopharm team to become CSM CFR 21/Part 11 compliant.

The following pertain to requirements deemed necessary for compliance with 21 CFR Part 11.

· UPT should lock user out after three failed login attempts

UPT should be enhanced to incorporate a strategy which locks out a user for a pre-determined amount of time on three failed login attempts. This time period as well as the number of failed login attempts should be configurable. The criteria for failure should be a provision of an incorrect password for the same user name and application context name.

· UPT should be modified to make the output more printable

The screens should be aligned in such a way that they can be used as reports using the print functionality of the browser. If time permits, develop a new report that shows all authorization data for a given context.

· Audit Trail Requirements

The CSM project should incorporate appropriate audit trail mechanisms for security data. The following are the detailed requirements:

· Configurable logging of Audit Trail Messages

· CSM/UPT should be enhanced to have a configurable flag to start and stop logging. This flag should be in an external file and modifiable without any code changes.

· Persistence & Retention of Audit Trail Messages

· Audit trail records should be stored on a persistent media so that they can be retrieved in the future and analyzed. This media can be a file, database, etc.

· The retention period should be configurable for each application. There should be a backup strategy in place for all the records which are purged after the retention period.

· Log Message Structure

· The log message should have the following information:

· User information – the information that can identify the user uniquely. This information should be propagated from the front-end to the CSM APIs and passed along.

· Time stamp – should contain the time stamp when the message was generated. The time stamp should include the date and time of the event. The date should be in YYYYMMDD format and time in HHMMSS format.

· Type – This flag should indicate what type of audit trail message is it. It is an event that is getting logged or is it an object state or any further classification.

· Description – This is a free form text field used to describe the event which is being logged. It can alternatively be used to store the state of the object at the time it is logged. Both the before and after state of the object should be logged to track the changes in the values. The format in which the object state should be logged is yet to be decided.

· Event Logging

· CSM/UPT should be enhanced to log all login and logout events. It should also log the login failures and log the credentials that the user provided during the failed logins. When a user successfully logs in only the id should be stored.

· CSM should log each and every event which the user performs. The log should have a time-stamp, user information and the event which the user is performing or which the user action triggered.

· Object State Logging

· CSM/UPT should be enhanced to log the state of the object just before an update. It should log the previous state of the object and the state after the update has taken place.

· When deleting an object the state of the object before deletion should be logged.

· When adding an object the initial state should be logged.

14. Migration to Hibernate 3.0

CSM APIs as well as the UPT should be upgraded to use the latest tech stack. This would require an upgrade from Hibernate 2.x to Hibernate 3.0.5. Also after this upgrade the new APIs and UPT should be tested to verify they work with latest version of Hibernate.
31. Modify the UPTs Association Screens to handle long names
Currently the Associations screens can show only limited width names due to the size of the combo boxes. This screen needs to be realigned to increase the width of the combo boxes to display long names. All the associated screens require this change.

1.4 Version 3.2
32. Regression Test against Latest Version of MySQL (4.1 in Scope Document)
As part of NCICB tech stack upgrade, CSM APIs as well as UPT should be upgraded to work with MySQL ver 4.1.19. If any changes are required to the database scripts or the hibernate persistence tier then they should be made. Also both APIs and UPT should be regression tested to make sure they work with the latest version of MySQL Server
33. JDK 1.4 Backward Compatibility (4.2 in Scope Document)
CSM code should be compiled on the JDK version 1.4.2_05 to make sure that it is backward compatible as required by other teams. If any changes are required to the code then they will be checked into the source repositories. Also the code will be compiled on both JDK 1.4 and JDK 1.5 to check for compatibility issues. Once the changes have been performed, both the CSM APIs, and UPT will be regression tested to make sure that all the functionality is tested on the both version of the JDK.

34. Migration to Hibernate 3.1.13 (4.3 in Scope Document)
CSM APIs as well as the UPT should be upgraded to use the latest tech stack. This would require an upgrade from Hibernate 3.0.5 to Hibernate 3.1.13. Also after this upgrade the new APIs and UPT should be tested to verify they work with latest version of Hibernate as well as both Oracle and MySQL database.

35. Supporting Open LDAP as credential provider (4.4 in Scope Document)
Various CSM Client Applications are requesting support for the Open LDAP which is an Open Source LDAP Server. The existing LDAP Login Module of the CSM’s Authentication Service should be enhanced to fulfill this requirement.

36. Performance Enhancements to CSM APIs (4.5 in Scope Document)
The following pertain to requirements deemed necessary for improving performance for CSM APIs:
36.1 Enable Caching of the User’s Authorization Policy (4.5.1 in Scope Document)
Currently the CSM APIs have to make a database call every time the checkPermission method is invoked. This results in a network call as well as execution of a lengthy query to determine if the user has access or not.

As part of the performance improvement CSM APIs should try to avoid the network call for each and every call of checkPermission. In order to achieve this, CSM should load the user’s Authorization Policy upfront and cache it for use whenever the check permission method is executed.

39. Adding a new “Type” attribute to Protection Element (4.8 in Scope Document)
There is often a large number of Protection Element objects stored within a given application context. In order to ease the searching of these protection elements they need to be grouped by a common attribute based on their type. Hence the Protection Element object of CSM should be enhanced to now have an additional attribute “Type”. This element should be a text box which allows the user to enter the value of the type of the protection element. This attribute should be visible on the UPT’s Protection Element Screen as well as the Protection Element Object via the API
40. Bug Fixes and Enhancements (4.9 in Scope Document)
The CSM Team plans to perform the following bug fixes / enhancement in its current phase to CSM APIs and UPT:

40.1 Focus on Load (4.9.1 in Scope Document)
The focus will be set for all the UPT screens to the first input box of the screen.

40.2 Alphabetize the search results (4.9.2 in Scope Document)
The search result returned by the CSM APIs will be alphabetized to allow ease of navigation and selections to the admin on both the search result screens as well as the association screens of the UPT.

40.3 Hashing of the Password (4.9.3 in Scope Document)
The password for the user will be hashed and stored in the database. This will provide additional security at the database level too. However this enhancement will require a change in the CSM’s RDBMS LoginModule which needs to hash the password while trying to match against the credentials stored in the user table of CSM’s Common Authorization Schema

40.4 Cannot Deassign Child Protection Group (4.9.4 in Scope Document)
The parent protection group functionality has no facility to de-assign a parent protection group once assigned. This functionality will be added in the current phase.

40.5 Associating Users to a Group (4.9.5 in Scope Document)
Currently CSM has a facility to associate a group to a User. This means that if you have multiple users you want to be associated with a group then you will have to search for these users individually and then on the details page associate them to group one at a time. This is a tedious way to perform this operation.

The solution will be to provide an additional functionality in UPT which will allow users to be associated to a group directly. This will include a new association screen which contains a list of available users from which the user can assign and de-assign users to the group. This screen will be invoked from the group details page. Also the backend CSM APIs will be enhanced to provide methods to support this operation.

40.6 Having Group Based Check Permissions (4.9.6 in Scope Document)
Currently CSM APIs have checkPermission methods which take in a user name, resource name and operation to determine whether the user has permission to perform that particular operation on that particular resource or not.

New checkPermission methods will be introduced in parallel to the existing ones. These will take in a groupName instead of user name and determine whether the group of users has permission to perform a particular operation on a particular resource or not. It will work similar to the user based checkPermission methods except that it will now be done using the group name.

40.7 Login Name of a User is non editable once created (4.9.7 in Scope Document)
UPT will be enhanced to make Login Name field un-editable after the user has been created. This will hence prevent other administrators from modifying it and there by preventing access to the user.

40.8 Code Cleanup (4.9.8 in Scope Document)
CSM contains deprecated and non functional code which will be cleaned up as part of this phase.

40.9 UPT Usability Enhancements (4.9.9 in Scope Document)
UPT tool will be modified for the following usability enhancements

· Provide example entries for dates etc.

· The update date will also display time. (based on the support from the database)

41. CSM SDK Integration (4.10 in Scope Document)
41.1 Securing all the Interfaces (4.10.1 in Scope Document)
Currently CSM security is plugged into the Spring HTTP remoting piece of the caCORE SDK. This component is used for the communication between client and server. As a result only the Java APIs are secured. To provide security for other interfaces, the team should evaluate and implement one of the following two options:

a. Integrate the security into each of the communication interface levels by adding the security to the web services SOAP interface, to the HTTP/XML Interface APIs, the Perl APIs etc. This is advantageous because it separates the security from the underlying business logic and restricts security only to the communication tier. However this means there will be duplication of the code and effort since the security integration will have to be performed individually in each of the above mentioned interfaces.

b. The other approach is to have CSM security integrate the underlying common business code executed on the server. The advantage of this mechanism is that the security is controlled from a common place in the code. Hence a more consistent security behavior can be enforced in this mechanism amongst different interfaces. The security for these different interfaces will be driven by a single set of entries made in the Authorization Schema. However, in this option, the security integration will be embedded into the caCORE business logic rather than just at the interface layer as in option a.

41.2 Changing the incorrect error messages (4.10.2 in Scope Document)
CSM SDK Integration has a minor cosmetic bug which displays the wrong error messages. When a user does not have proper permissions to perform a certain operation, the resulting error message always says that the user does not have “create” privileges except in case of deletion. This occurs regardless of the type of privilege the user was lacking. These error messages should be fixed.

42. BMS Integration (4.11 in Scope Document)
42. 1 Authentication as a Web Service (Integrating BMS Code into the CSM Code Base)

 (4.11.1 in Scope Document)
Authentication service exposed by the current CSM v3.2 should be available as a web service. The following steps will be involved in this task:

· Refactor the BMS source code to conform to the CSM coding standards

· Move all hard coded configuration information to external files

· Unit Testing

Also these web services would be secured using mechanisms like mutual authentication, so that only registered clients can access the web services. This could be the first step of taking CSM toward SOA so that it can be used in a grid environment (caGrid).

Integration of other BMS Enhancements (4.11.2 in Scope Document)
In addition to the web-service integration, CSM will incorporate the following functionality enhancements into the 3.2 release.

The fixes for the following bugs and/or enhancements to the general source code to the UPT application or API source code will be applied:

42.2 Failure when searching a large user and protection element base

42.3 Pressing <enter> on the user search screen doesn’t execute the search, but takes you back to the previous screen.

42.4 All flag radio buttons (for PG, Roles and Application) do not stay on YES, it goes back to NO even if the user selects YES and updates it.

42.5 Many screens were showing objects from applications other than the one being administered.

42.6 The display of assigned and available groups should be application specific.

42.7 The query for obtaining Protection Elements and privilege context does not consider the application Name.

43. Improve the Deployment of CSM & Integration with Other Applications (4.12 in Scope Document)
This task includes the following enhancements:

· Removing the ApplicationSecurityConfig.xml file.

· Modify the Authorization Manager load from Datasource based on the application name in case of the J2EE Application or from the hibernate cfg file based on the name of application for non J2EE Applications

· Modify the Authentication Manager to accept the lockout parameters as parameters.

· Update the cfg files and database scripts to be more user friendly

· Remove the cached loading of the other application contexts.

· Backward compatibility to work with older settings

· Update the installation guide

· Test with the default Transaction Manager of JBoss

· Making the method name consistent. If possible, evaluate merging the Authorization Manager and User Provisioning Manager.

44. Expose Core Authorization Services as a Web Service (4.13 in Scope Document)
This task would include the following

· Design what Authorization Services should be exposed as Web Services.

· Develop and deploy the Authorization Web Service

· The methods exposed using this web service will allow the users to verify if the user (or maybe user’s group) has permission to perform a particular operation on a particular resource or not.

45. CSM caGrid Integration (4.14 in Scope Document)
As part of the CSM caGrid Integration, CSM Application needs to be enhanced to return a subject containing the user attributes like First Name, Last Name and Email address from the underlying credential provider. These attributes should be returned as principals of the Subject which then can be used by caGrid to formulate a SAML assertion.
46. Common Logging Module Requirement Gathering (4.15 in Scope Document)
The CSM Team is also tasked with gathering the requirements for CLM project. The team will gather these requirements working with the NCICB Management and publish them as part of the scope. Since CLM is a separate project these requirements will be managed and delivered separately. Hence they won’t be part of any further CSM Documents except Scope Vision Document
47. Modify Authorization Schema to Support SQL Server Database (4.16 in Scope
Document

CSM was developed using mySQL as the open source database and Oracle. However there is a requirement to make the Authorization Schema database to support SQL Server database. This change would need the changes made to the Database creation scripts. Also along with the database priming scripts would need to be modified as well.

The Hibernate mapping files will be analyzed to be compatible with the new database. If required then they will be modified to support the new database at the same time be compatible with existing databases.

After the code and the configurations have been performed, all APIs should be regression tested using the new SQL Server database.

2. Non-Implemented Requirements

15. Authorization Caching Mechanism
The following requirements pertain to improved caching mechanism which CSM API would incorporate to improve runtime performance:
· Explore the usage of eh-cache for CSM Domain Objects

Currently there is no external cache enabled for CSM Objects. The CSM Team will enhance the Hibernate configurations to use the eh-cache as external second tier caching solution. The team will make the appropriate changes to the code / configuration files to enable eh-cache and note down the performance improvements if any.

· Design Automated Instance Level Security Mechanism for SDK Generated Application

CSM Team will under take of gathering requirements and designing a possible high level approach for providing automated instance level security for applications generated using SDK. The level of details of the design would be limited to the number of days allocated for it. The design would be delivered either in form of an Enterprise Architect Model or Word document.

16. Validate Access on Collection of Objects

The APIs should accept and work on collections of object for validating access permissions on them.

17. Add Users to Group Programmatically

Currently in CSM you have a capability of adding group to a user through the UPT. However in practically it makes more sense to have this functionality vice versa where in we can assign a user to a group or multiple groups at the same time.

· This change would require a change in the UPT to be able to provide facility to the user

· Also this would require a change in the back end APIs to execute the association and reflect it in the database.

18. Object Instance Level Security

19. HIPAA Compliance

· Data that can identify a user must be protected.

· Applications must be able to share confidential data.

There are no clear-cut requirements for HIPAA compliance. Complying with HIPAA is subjective to applications and the type of data. Therefore the CSM team requires further clarification as to what is required and expected for this feature.

20. Authentication as a Web Service

Authentication service exposed by the current CSM v3.0 will be available as a web service. This could be the first step of taking CSM toward SOA so that it can be used in a grid environment (caGrid).

21. Encryption with Authentication

Transport level encryption will be provided for the Authentication Service. The credential transfer between the client application and the credential providers will be encrypted. Using a LDAP provides sufficient security, however using a database as a credential provider will require that the database connection be equipped with proper encryption. The scope will be limited to secure database connection for authentication.

22. Publish and Consume Authorization Policies

The Authorization Policy interface is to be introduced for future needs. The same object can be used to cache the user authorization schema at run time.
23. eAuthentication

· Federated identity

· External credential providers

24. Message-Level Security

Message-level security provides secure messaging between applications:

· Encryption of private data elements

· Independent transport mechanism

· Support for workflow and messaging between applications

· Secure the messages between user to system

· Secure the messages between system to system

25. Validate Assignment of Privileges to Protection Elements

This feature will require a validator to be written against a set of rules. In this case the rules xml have to be defined. The validator will run against the rules. This way the authorization policy will be validated automatically.

26. Policy Adapters for Grid Security

CSM should publish its own authorization policy and be able to consume other standard authorization policies including those that are grid-based. Custom Adapters should be implemented to support these standard policies.

27. Web Services Security

The Web Services security strategy will provide the following services:

· Authentication: require Web services clients to prove their identity

· Authorization: decide which client has access to specific resources

· Data integrity: ensure that the Web service message content has not been altered or corrupted during its transmission over the Internet

· Confidentiality: secure the information exchanged in Web services requests and responses (make indecipherable to unwanted parties)

Web Services security includes transport-level security and message-level security. The transport layer addresses transport-level security. Message-level security addresses security at the message level. CSM needs to work with the existing frameworks for web services security. It should be able to handle the request of an outside user who is not in the NIH domain. The integration of CSM with web services security should address user-based and role-based security. The CSM will provide a chained authentication mechanism process for handling a number of credential providers. The authentication service of the CSM should be pluggable into a WS security framework with no need for coding. The authorization manager should be explored the same way.

28. Integration with Digital Certificates

The authentication services should be able to consume digital certificates supplied by HHS as a credential for the user. The authorization policy will be determined based on the principal obtained from the digital certificate. Although CSM should be able to handle general digital certificates, honoring HHS supplied digital certificates may require a distinct approach. Authentication based on digital certificates will also require CA(Certificate Authority) look-up. A solution such as SimpleCA may be used for this purpose. Integration with digital certificates also involves the management of expired certificates, and the synchronization of local user accounts after re-issuance of the certificates.

29. Single Sign-On

Single sign-on allows the seamless transfer of authentication credentials for user-to-system communication.

· Allows a user to navigate the trusted domain with a single ID.

· Seamless transfer of authorization credentials from one system to another.

· Honoring of authentication and authorization among distributed applications.

Single sign-on will require the construction of a trusted domain (sometimes called a trust fabric). All the applications and the systems have to be part of that system if they want to take advantage of single sign-on. The trust between these systems and applications will be built using this trust builder. This way when a user logs into a certain application then he may also switch to other applications without the need for re-authentication This will require little change in the authentication process of all the applications. The CSM will provide the trust builder and the code that will integrate an application with SSO.

The scope of single sign-on will be limited to NCICB applications.

30. Modify the APIs to Handle Primitive Data Types

The secureObjects method of the API needs to be modified to throw an error for data objects that contain attributes of primitive data types. This method should support only objects coded to the Java Bean specifications.

38. Linking a User to an Application Context (4.7 in Scope Document)
Currently in CSM the Users are created independently and stored globally across the applications. This poses a security problem because an admin of any application can delete any user including the super admin. Deleting a user removes the user from all the contexts including the super admin application. To avoid this problem, users should be linked to an application.

The user should be attached to an application once he/she is assigned to any of the other entities like Protection Groups, Roles, Group etc of that particular application. In addition, a newly created user will be automatically assigned to the creating application. The CSM APIs will be enhanced to take care of the workflow mentioned below in the changes to the UPT Tools section

The UPT tool should be enhanced to display the created application attribute of the user on the user’s detail screen. Also the delete functionality for the user should be slightly modified as mentioned below.

For all the applications other than the creating application, the “Delete” button should be replaced by “Detach”. This should just remove the user’s association with all the entities of that application. However the user still exists in the user table. Also the entry in the user application table linking the user to the application should be removed. In case of the creating application, the user should have two options: “Detach” if the user is associated with any other application or “Delete” if the user is not associated with any other application other than the creating application.

With this solution, we can ensure that the user can only be deleted when not associated with any other application and can only be deleted by the creating application. Other administrators can still modify all the other details for that user except the login name which should be enhanced to be non editable after creation.

Also the User search screen should include an option for the admin to search the users which are associated with their applications or the global list. The global list should include the entire user list.

37. Improve the Exception Handling (4.6 in Scope Document)
The exception handling of CSM APIs needs to be improved to be more specific and user friendly. Below is a list of high level exceptions that need to be handled in a better way:

· 4.6.1
Get methods to throw exception instead of returning a null

All the get methods of the CSM APIs e.g. getUser() will throw an appropriate error message instead of returning a null when the search resulted in no records found.

· 4.6.2
Add methods to throw exception if the object exists

All the add/create methods of the CSM APIs e.g. createUser() will throw an appropriate error message instead of returning a hibernate error incase the user already existed.

· 4.6.3
Configuration Errors should throw appropriate exceptions

The CSM APIs configuration currently doesn’t throw any specific errors making configuring the APIs a difficult task for the developers. The APIs should be enhanced to throw the exact exception when there is incorrect configuration entry performed by the user. This will help in resolving a lot of support questions for the CSM Team.

· 4.6.4
General Error Enhancements for CSM APIs and UPT

The error message on the UPT should be more user friendly. This requirement might drill down to changes in the underlying CSM APIs for various Hibernate exceptions which are thrown in the current version.

3. Appendix

3.1 Requirement and Phase Table
This table shows the requirements and the corresponding phases in which they were initially completed. (N.I. means not implemented)
	Req. #
	Requirement
	Phase

	1
	Authentication
	3

	2
	Authorization
	3

	3
	Web Based User Provisioning
	3

	4
	Standardize Privileges
	3.0.1

	5
	Provide Authorization Report View
	3.0.1

	6
	CSM-SDK Adapter - Introduction of Session Management
	3.0.1

	7
	CSM-SDK Adapter - Introduction of Authorization in APIs
	3.0.1

	8
	CSM-SDK Adapter - Introduction of Security
	3.0.1

	9
	CSM-SDK Adapter - Introduction of Writable APIs
	3.0.1

	10
	Modify UPT for Cross-Browser Compatibility
	3.0.1

	11
	Modify Authorization Schema and APIs for Cross-Database Compatibility
	3.0.1

	12
	CSM-SDK Adapter - caCORE SDK Integration Requirements
	3.1

	13
	CFR 21/ Part 11 Requirements (Audit and Logging)
	3.1

	14
	Migration to Hibernate 3.0
	3.1

	15
	Authorization Caching Mechanism
	3.1

	16
	Validate Access on Collection of Objects
	N.I

	17
	Add Users to Group Programmatically
	N.I

	18
	Object Instance Level Security
	3.1

	19
	HIPAA Compliance
	N.I.

	20
	Authentication as a Web Service
	N.I.

	21
	Encryption with Authentication
	N.I.

	22
	Publish and Consume Authorization Policies
	N.I.

	23
	eAuthentication
	N.I.

	24
	Message-Level Security
	N.I.

	25
	Validate Assignment of Privileges to Protection Elements
	N.I.

	26
	Policy Adapters for Grid Security
	N.I.

	27
	Web Services Security
	N.I.

	28
	Integration with Digital Certificates
	N.I.

	29
	Single Sign-On
	N.I.

	30
	Modify the APIs to Handle Primitive Data Types
	3.0.1

	31
	Modify the UPTs Association Screens to Handle Long Names
	3.0.1

	32
	Regression Test against Latest Version of MySQL (4.1 in Scope Document)
	3.2

	33
	JDK 1.4 Backward Compatibility (4.2 in Scope Document)
	3.2

	34
	Migration to Hibernate 3.1.13 (4.3 in Scope Document)
	3.2

	35
	Supporting Open LDAP as credential provider (4.4 in Scope Document)
	3.2

	36
	Performance Enhancements to CSM APIs (4.5 in Scope Document)
	3.2

	37
	Improve the Exception Handling (4.6 in Scope Document)
	N.I.

	38
	Linking a User to an Application Context (4.7 in Scope Document)
	N.I.

	39
	Adding a new “Type” attribute to Protection Element (4.8 in Scope Document)
	3.2

	40
	CSM SDK Integration (4.10 in Scope Document)
	3.2

	41
	BMS Integration (4.11 in Scope Document)
	3.2

	42
	Improve the Deployment of CSM & Integration with Other Applications (4.12 in Scope Document)
	3.2

	43
	Expose Core Authorization Services as a Web Service (4.13 in Scope Document)
	3.2

	44
	CSM caGrid Integration (4.14 in Scope Document)
	3.2

	45
	Common Logging Module Requirement Gathering (4.15 in Scope Document)
	3.2

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

[image: image2.jpg][image: image3.jpg][image: image4.png][image: image5.png]_1135871162.bin

