	[image: image2.jpg] NCICB
	

[image: image5.png]
Common Security Module

Query Optimization and Enhancements
Version No: 1.0
Last Modified: 02/21/07
Author
:
Vijay Parmar
Team
:
Common Security Module

Purchase Order # 34552

Client
:
National Cancer Institute - Center for Bioinformatics,

National Institutes of Health,

US Department of Health and Human Services

Document History

Document Location

The most current version of this document is located in CVS under c3pr/docs/designs.

Revision History
	Version Number
	Revision Date
	Author
	Summary of Changes

	0.1
	6/21/2007
	Kunal Modi
	Initial Version

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Review

	Name
	Team/Role
	Version

	Date Reviewed
	Reviewer Comments

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Related Documents

More information can be found in the following related CSM documents:
	Document Name

	

	

	

	

	

	

	

Table of Contents

41.
Introduction

42.
Detail Design

42.1
Problem Scenario

42.2
Requirements

42.2.1
Requirements for Instance Level Security

52.3
Assumptions

52.4
Dependencies

52.5
Known Issues or Future Considerations

62.6
Proposed Solution

62.6.1
New/Modified Classes

62.6.2
Database Objects

73.
Unit Testing

73.1
JUnit Test Cases

73.2
Test Case Scenarios

74.
Configuration/Deployment Considerations

74.1
Property/Configuration Files

84.2
Deployment Considerations

Query Optimization and Enhancements
1. Introduction

The Common Security Module APIs provides extensive querying and provisioning functionality. The API query evaluation indicated performance enhancements can be made to improve performance and security of API. This document details the performance enhancements made to the Common Security Module API.
2. Detail Design

2.1 Problem Scenario

Enhancements need to be made to the Common Security Module for queries. Currently certain queries are having performance impact which needs to be addressed.

2.2 Requirements

2.2.1 Requirements for Instance Level Security

2.2.1.1 Functional Requirements

1. Direct Instance Level Security

The solution should provide Direct Instance Level Security. Direct Instance Level Security can be defined as where security for a particular instance is dependant on it own self. A user has access to a particular object based on the value of one of its attribute. There is no relation or association with another object. This type of instance level security is adhoc and dependant on the associations done between that instance and the user by security admin

For eg. Out of 456 patients in the patient table, user ABC has access to these assigned 28 based on the patient id.

Here out of the total patients in that database, the security admin has assigned 28 patient ids to the user ABC. Based on this the solution should filter any query fired on that patient table such that for that user ABC only those 28 records are accessible.

2. Cross Dependant Instance Level Security

The solution should provide Cross Dependant Instance Level Security. Cross Dependant Instance Level Security can be defined as where security for a particular instance is dependant on some other object. A user has access to a particular object based on its association to some other higher level object on which the user has been granted access. There is an association with another object which is generally higher up in the data graph. This type of instance level security is based on the relationship between the queried table to the table to which the security is assigned. This type of security is used generally where it is much easier to assigned and manage security at a higher level of data

For eg. User has access only those Lab Results which are associated to the Study (via patients) on which he as access.

Here in this example there can be 1000s of Lab Results where as the Studies could be in 10s. Also as per the business rule, if you are assigned access to the Study then you can access everything associated to that study. Also in case the assignment and management of security is much easier with Studies as they are more less in number.

3. Solution should automatically provide Instance Level Security for an SDK generated system

Solution provided should be integrated with SDK so that it can be provided as an out of the box solution for SDK generated systems.

4. Solution should provide Instance Level Security Support for a Non SDK system

The Solution provided should be adaptable for Non SDK systems with minor modifications if required. The general principle should be same as for an SDK generated system. It can be assumed that users will need to configure the solution and adapt it for their application.

2.2.1.2 Non Functional Requirements

1. Load Criteria

The solution should perform with optimum load criteria. The actual size of the tables can be assumed to be around 50K to 100K with queries returning any where from 1K to 5K records which need to be filtered. However in case of caIntegrator there are certain tables which can hold up to a billion records due to the data warehouse nature of the application. CSM Team should evaluate if the solution can be scaled to meet such load criteria.
2. Performance Criteria

There is a certain overhead in terms of time taken associated with applying security to an unsecured system. However to define these figures in terms of absolute times is not possible as it is dependant on the time taken by the actual query to execute as well as the number of records in that particular table. However this figure can be expressed in terms of percentages. Based on interactions with the caIntegrator and CTOM teams it is derived that an overhead of 10% to 20% is acceptable.

2.2.2 Requirements for Attribute Level Security

2.2.2.1 Functional Requirements

1. Attribute Level Security

The solution should provide Attribute level security at object level. Attribute level security can be defined as security where you can control access to the attributes of an object. A user can be granted and revoked access to these attributes. Based on the user’s access level, those attributes should be visible to the user or not.
For eg. A Patient object has the following five attributes Name, Address, Social Security, Phone Number and Disease. Then a researcher who has access to all the attributes except Social Security should be able to see the Patient object with all attributes except the Social Security attributed filled with data.
2. Solution should work for both single or many object retrieval
The solution should provide Attribute level security both for queries which result in a single object being returned from the database as well as a list of the objects being returned from the database. In case of the list each object in the list should be filtered based attributes to which the user has access too.

3. Solution should automatically provide Instance Level Security for an SDK generated system

Solution provided should be integrated with SDK so that it can be provided as an out of the box solution for SDK generated systems.

4. Solution should provide Instance Level Security Support for a Non SDK system

The Solution provided should be adaptable for Non SDK systems with minor modifications if required. The general principle should be same as for an SDK generated system. It can be assumed that users will need to configure the solution and adapt it for their application.

2.2.2.2 Non Functional Requirements

1. Load Criteria

The solution should perform with optimum load criteria. The actual size of the tables can be assumed to be around 50K to 100K with queries returning any where from 10K to 50K records which need to be filtered. The solution should be able to filter through the returned result set and also be able to scale to higher load numbers.
2. Performance Criteria

There is a certain overhead in terms of time taken associated with applying security to an unsecured system. However to define these figures in terms of absolute times is not possible as it is dependant on the time taken by the actual query to execute as well as the number of records in that particular table. However this figure can be expressed in terms of percentages. Based on interactions with the caIntegrator and CTOM teams it is derived that an overhead of 10% to 20% is acceptable.

2.3 Assumptions

1. Hibernate Based Solution

This design provides a solution that leverages Hibernate as a persistent framework. Hibernate is the most used framework here at NCICB as well as across caBIG. Also since EJB 3 framework closely follows Hibernate in all the provided functionality. This solution can be easily adapted for a EJB 3 based system.

2.4 Dependencies

1. Hibernate Based Solution

This design provides a solution that leverages Hibernate as a persistent framework. Hibernate is the most used framework here at NCICB as well as across caBIG. Also since EJB 3 framework closely follows Hibernate in all the provided functionality. This solution can be easily adapted for a EJB 3 based system.

2.5 Known Issues or Future Considerations

1. Hibernate Based Solution

This design provides a solution that leverages Hibernate as a persistent framework. Hibernate is the most used framework here at NCICB as well as across caBIG. Also since EJB 3 framework closely follows Hibernate in all the provided functionality. This solution can be easily adapted for a EJB 3 based system.
2.6 Proposed Solution - Instance Level Security
This design provides a solution that leverages Hibernate as a persistent framework. Hibernate is the most used framework here at NCICB as well as across caBIG. Also since EJB 3 framework closely follows Hibernate in all the provided functionality. This solution can be easily adapted for a EJB 3 based system.

2.6.1 Provisioning Changes
	New (*) or Modified (#)
	Package Name
	Class/Interface Name
	Method Name
	Description

	
	gov.nih.nci.security.dao
	Queries
	
	This class is a helper class which provides Queries in PreparedStatement format for optimised querying.

	
	gov.nih.nci.security.dao
	AuthorizationDAOImpl
	
	This Class is used for persistence to the appropriate application. The

 Class will persist to and retrive the data from the database.

	
	
	
	
	

* The description should be javadoc for the class if a new class or javadoc for a method for method level changes.
2.6.2 Database Objects

N/A

3. Unit Testing

3.1 JUnit Test Cases

Instruction: List and provide a description of the new, modified, or existing JUnit Test Case classes that will be utilized to unit test the enhancement.
	New (*) or Modified (#)
	Package Name
	Class/Interface Name
	Method Name
	Description

	*
	test.gov.nih.nci.security
	UserProvisionManagerImpl
	
	Junit Test Case to test scenarios with CSM API. This test case covers all the scenarios relating to user provisioning.

* The description should be javadoc for the class if a new class or javadoc for a method for method level changes.

3.2 Test Case Scenarios

Instruction: Describe scenarios other than JUnit Tests that are used to unit test the enhancement resulting from this design.

The existing test.gov.nih.nci.security.UserProvisioningManagerImpl.java JUnit Test case has shown performance improvement. Prior to the query optimization and enhancement the JUnit Test case took approx 10 mins and with the improvements it takes approx 5 mins. This observation indicates 100% performance improvement. The Test Case creates, retrieves, updates, adds/remove associations and deletes Users,Groups,Roles, Privileges, ProtectionElements and ProtectionGroups.
4. Configuration/Deployment Considerations

4.1 Property/Configuration Files

Instruction: List all property files and configuration files that will be changed as a result of this design in the table below, including launch HTML or changes to web forms config files.
	New (*) or Modified (#)
	File Location
	File Name
	Description of Change

	
	
	
	

4.2 Deployment Considerations

N/A
[image: image1.png][image: image2.jpg][image: image3.jpg][image: image4.png]_1135871162.bin

