	[image: image4.jpg]

 NCICB
	

[image: image8.emf]�

sd Attribute Level - Runtime

�

When User Logs Out

�

When Query is Fired

�

When The User Logs In

�

Client (SDK / Non SDK

�

System)

�

Hibernate::Session

�

Hibernate::SessionFactory «interface»

�

security::AuthorizationManager

�

attributeLevel::UserObjectAttributeMapCache

�

attributeLevel::AttributeSecuritySessionInterceptor

setAttributeMap(userName,sessionFactory)

String:= getAttributeMap(userName,className)

Session:= openSession(interceptor)

List:= query(criteria)

boolean:= onLoad(object,id,state,propertyNames,types)

String:= getAttributeMap(userName,objectName)

removeClassAttributeMap(userName)

Common Security Module

Instance Level and Attribute Level Security
Design Document
Version No: 0.5
Last Modified: 07/01/07
Author
:
Kunal Modi
Team
:
Common Security Module

Purchase Order # 34552

Client
:
National Cancer Institute - Center for Bioinformatics,

National Institutes of Health,

US Department of Health and Human Services

Document History

Document Location

The most current version of this document is located in CVS under c3pr/docs/designs.

Revision History
	Version Number
	Revision Date
	Author
	Summary of Changes

	0.1
	6/21/2007
	Kunal Modi
	Initial Version

	0.5
	7/01/2007
	Kunal Modi
	Added Attribute Level Security

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Review

	Name
	Team/Role
	Version

	Date Reviewed
	Reviewer Comments

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Related Documents

More information can be found in the following related CSM documents:
	Document Name

	

	

	

	

	

	

	

Table of Contents

41.
Introduction

52.
Overview

52.1
Problem Scenario

52.2
Requirements

52.2.1
Requirements for Instance Level Security

62.2.2
Requirements for Attribute Level Security

72.3
Assumptions

72.4
Dependencies

72.5
Known Issues or Future Considerations

83.
Detail Design

83.1
Instance Level Security

83.1.1
Overview

83.1.2
Class Diagram

83.1.3
Provisioning Changes

83.1.4
Runtime Integration with SDK / Non SDK Systems

83.1.5
Database Changes

83.2
Attribute Level Security

83.2.1
Overview

83.2.2
Class Diagram

113.2.3
Provisioning Changes

123.2.4
Runtime Integration with SDK / Non SDK Systems

153.2.5
Database Changes

164.
Unit Testing

164.1
JUnit Test Cases

164.2
Test Case Scenarios

165.
Configuration/Deployment Considerations

165.1
Property/Configuration Files

165.2
Deployment Considerations

Query Optimization and Enhancements
1. Introduction

The Common Security Module APIs provides extensive querying and provisioning functionality. The API query evaluation indicated performance enhancements can be made to improve performance and security of API. This document details the performance enhancements made to the Common Security Module API.
Overview
1.1 Problem Scenario

Enhancements need to be made to the Common Security Module for queries. Currently certain queries are having performance impact which needs to be addressed.
1.2 Requirements

1.2.1 Requirements for Instance Level Security

1.2.1.1 Functional Requirements

1. Direct Instance Level Security

The solution should provide Direct Instance Level Security. Direct Instance Level Security can be defined as where security for a particular instance is dependant on it own self. A user has access to a particular object based on the value of one of its attribute. There is no relation or association with another object. This type of instance level security is adhoc and dependant on the associations done between that instance and the user by security admin

For eg. Out of 456 patients in the patient table, user ABC has access to these assigned 28 based on the patient id.

Here out of the total patients in that database, the security admin has assigned 28 patient ids to the user ABC. Based on this the solution should filter any query fired on that patient table such that for that user ABC only those 28 records are accessible.

2. Cross Dependant Instance Level Security

The solution should provide Cross Dependant Instance Level Security. Cross Dependant Instance Level Security can be defined as where security for a particular instance is dependant on some other object. A user has access to a particular object based on its association to some other higher level object on which the user has been granted access. There is an association with another object which is generally higher up in the data graph. This type of instance level security is based on the relationship between the queried table to the table to which the security is assigned. This type of security is used generally where it is much easier to assigned and manage security at a higher level of data

For eg. User has access only those Lab Results which are associated to the Study (via patients) on which he as access.

Here in this example there can be 1000s of Lab Results where as the Studies could be in 10s. Also as per the business rule, if you are assigned access to the Study then you can access everything associated to that study. Also in case the assignment and management of security is much easier with Studies as they are more less in number.

3. Solution should automatically provide Instance Level Security for an SDK generated system

Solution provided should be integrated with SDK so that it can be provided as an out of the box solution for SDK generated systems.

4. Solution should provide Instance Level Security Support for a Non SDK system

The Solution provided should be adaptable for Non SDK systems with minor modifications if required. The general principle should be same as for an SDK generated system. It can be assumed that users will need to configure the solution and adapt it for their application.

1.2.1.2 Non Functional Requirements

1. Load Criteria

The solution should perform with optimum load criteria. The actual size of the tables can be assumed to be around 50K to 100K with queries returning any where from 1K to 5K records which need to be filtered. However in case of caIntegrator there are certain tables which can hold up to a billion records due to the data warehouse nature of the application. CSM Team should evaluate if the solution can be scaled to meet such load criteria.
2. Performance Criteria

There is a certain overhead in terms of time taken associated with applying security to an unsecured system. However to define these figures in terms of absolute times is not possible as it is dependant on the time taken by the actual query to execute as well as the number of records in that particular table. However this figure can be expressed in terms of percentages. Based on interactions with the caIntegrator and CTOM teams it is derived that an overhead of 10% to 20% is acceptable.

1.2.2 Requirements for Attribute Level Security

1.2.2.1 Functional Requirements

1. Attribute Level Security

The solution should provide Attribute level security at object level. Attribute level security can be defined as security where you can control access to the attributes of an object. A user can be granted and revoked access to these attributes. Based on the user’s access level, those attributes should be visible to the user or not.
For eg. A Patient object has the following five attributes Name, Address, Social Security, Phone Number and Disease. Then a researcher who has access to all the attributes except Social Security should be able to see the Patient object with all attributes except the Social Security attributed filled with data.
2. Solution should work for both single or many object retrieval
The solution should provide Attribute level security both for queries which result in a single object being returned from the database as well as a list of the objects being returned from the database. In case of the list each object in the list should be filtered based attributes to which the user has access too.

3. Solution should automatically provide Instance Level Security for an SDK generated system

Solution provided should be integrated with SDK so that it can be provided as an out of the box solution for SDK generated systems.

4. Solution should provide Instance Level Security Support for a Non SDK system

The Solution provided should be adaptable for Non SDK systems with minor modifications if required. The general principle should be same as for an SDK generated system. It can be assumed that users will need to configure the solution and adapt it for their application.

1.2.2.2 Non Functional Requirements

1. Load Criteria

The solution should perform with optimum load criteria. The actual size of the tables can be assumed to be around 50K to 100K with queries returning any where from 10K to 50K records which need to be filtered. The solution should be able to filter through the returned result set and also be able to scale to higher load numbers.
2. Performance Criteria

There is a certain overhead in terms of time taken associated with applying security to an unsecured system. However to define these figures in terms of absolute times is not possible as it is dependant on the time taken by the actual query to execute as well as the number of records in that particular table. However this figure can be expressed in terms of percentages. Based on interactions with the caIntegrator and CTOM teams it is derived that an overhead of 10% to 20% is acceptable.

1.3 Assumptions

1. Hibernate Based Solution

This design provides a solution that leverages Hibernate as a persistent framework. Hibernate is the most used framework here at NCICB as well as across caBIG. Also since EJB 3 framework closely follows Hibernate in all the provided functionality. This solution can be easily adapted for a EJB 3 based system.

1.4 Dependencies

1. Hibernate Based Solution

This design provides a solution that leverages Hibernate as a persistent framework. Hibernate is the most used framework here at NCICB as well as across caBIG. Also since EJB 3 framework closely follows Hibernate in all the provided functionality. This solution can be easily adapted for a EJB 3 based system.

1.5 Known Issues or Future Considerations

1. Hibernate Based Solution

This design provides a solution that leverages Hibernate as a persistent framework. Hibernate is the most used framework here at NCICB as well as across caBIG. Also since EJB 3 framework closely follows Hibernate in all the provided functionality. This solution can be easily adapted for a EJB 3 based system.
2. Detail Design

2.1 Instance Level Security
This design provides a solution that leverages Hibernate as a persistent framework. Hibernate is the most used framework here at NCICB as well as across caBIG. Also since EJB 3 framework closely follows Hibernate in all the provided functionality. This solution can be easily adapted for a EJB 3 based system.

2.1.1 Overview
2.1.2 Class Diagram

2.1.3 Provisioning Changes

2.1.4 Runtime Integration with SDK / Non SDK Systems

2.1.5 Database Changes
N/A

2.2 Attribute Level Security

The following section provides the detailed design for Attribute Level Security

2.2.1 Overview

2.2.2 Class Diagram

Following is a class diagram depicting the classes that will be used to provide attribute level security using CSM

[image: image2.emf]�

cd Attribute Level

attributeLevel::AttributeSecuritySessionInterceptor

+ onLoad(Object, Serializable, Object[], String[], Type[]) : boolean

Hibernate::

EmptyInterceptor

attributeLevel::UserObjectAttributeMapCache

- userCache: Hashmap

+ getAttributeMap(String, String) : String[]

+ removeClassAttributeMap(String) : void

+ setAttributeMap(String, SessionFactory) : void

«interface»

security::AuthorizationManager

+ assignGroupRoleToProtectionGroup(String, String, String) : void

+ assignGroupsToUser(String, String[]) : void

+ assignOwners(String, String[]) : void

+ assignParentProtectionGroup(String, String) : void

+ assignPrivilegesToRole(String, String[]) : void

+ assignProtectionElement(String, String, String) : void

+ assignProtectionElement(String, String) : void

+ assignProtectionElements(String, String[]) : void

+ assignToProtectionGroups(String, String[]) : void

+ assignUserRoleToProtectionGroup(String, String[], String) : void

+ checkPermission(AccessPermission, Subject) : boolean

+ checkPermission(AccessPermission, String) : boolean

+ checkPermission(String, String, String, String) : boolean

+ checkPermission(String, String, String) : boolean

+ createApplication(Application) : void

+ createFilterClause(FilterClause) : FilterClause

+ createGroup(Group) : void

+ createPrivilege(Privilege) : void

+ createProtectionElement(ProtectionElement) : void

+ createProtectionGroup(ProtectionGroup) : void

+ createRole(Role) : void

+ createUser(User) : void

+ deAssignProtectionElements(String, String) : void

+ getApplicationById(String) : Application

+ getApplicationContext() : ApplicationContext

+ getAttributeMap(String, String) : String[]

+ getFliterClauseById(String) : FilterClause

+ getGroupById(String) : Group

+ getGroups(String) : Set

+ getObjects(SearchCriteria) : java.util.List

+ getOwners(String) : Set

+ getPrincipals(String) : Principal[]

+ getPrivilegeById(String) : Privilege

+ getPrivilegeMap(String, Collection) : Collection

+ getPrivileges(String) : Set

+ getProtectionElement(String) : ProtectionElement

+ getProtectionElement(String, String) : ProtectionElement

+ getProtectionElementById(String) : ProtectionElement

+ getProtectionElements(String) : Set

+ getProtectionGroupById(String) : ProtectionGroup

+ getProtectionGroupRoleContextForGroup(String) : Set

+ getProtectionGroupRoleContextForUser(String) : Set

+ getProtectionGroups() : java.util.List

+ getProtectionGroups(String) : Set

+ getRoleById(String) : Role

+ getUser(String) : User

+ getUserById(String) : User

+ initialize(String) : void

+ modifyApplication(Application) : void

+ modifyFilterClause(FilterClause) : FilterClause

+ modifyGroup(Group) : void

+ modifyPrivilege(Privilege) : void

+ modifyProtectionElement(ProtectionElement) : void

+ modifyProtectionGroup(ProtectionGroup) : void

+ modifyRole(Role) : void

+ modifyUser(User) : void

+ removeApplication(String) : void

+ removeFilterClause(String) : void

+ removeGroup(String) : void

+ removeGroupFromProtectionGroup(String, String) : void

+ removeGroupRoleFromProtectionGroup(String, String, String[]) : void

+ removePrivilege(String) : void

+ removeProtectionElement(String) : void

+ removeProtectionElementsFromProtectionGroup(String, String[]) : void

+ removeProtectionGroup(String) : void

+ removeRole(String) : void

+ removeUser(String) : void

+ removeUserFromGroup(String, String) : void

+ removeUserFromProtectionGroup(String, String) : void

+ removeUserRoleFromProtectionGroup(String, String, String[]) : void

+ secureCollection(String, Collection) : Collection

+ secureObject(String, Object) : Object

+ setOwnerForProtectionElement(String, String[]) : void

+ setOwnerForProtectionElement(String, String, String) : void

«use»

«use»

Class Name:
AttributeSecuritySessionInterceptor
Type:

Class EmptyInterceptor
This class intercepts the data stream returning from the database and before hibernate proceeds to create the database it filters the attribute on which the user doesnt have access.
Operations
	Method
	Notes
	Parameters

	onLoad() boolean

Public
	This method is actually invoked by Hibernate whenever an object is loaded/ created in the memory. So whenever the resultset returns from the database, this method gets invoked. In case the resultset return a single object, this method is invoked once for that object. However in case the resultset returns a list of objects, this method gets invoked for each of the returning object from that resultset. This method receives the raw stream of the attributes values for that object from the underlying resultset. This method now checks whether the user has permission on a particular attribute or not using the Attribute Map obtained and cached for the particular user from CSM. In order to obtain the user name, this method will either look for ACEGI's UserDetails Object in the threadlocal variable (in case of an SDK generated system) or the User Name value directly in the threadlocal variable (in case of a NON SDK generated system)
MERGEFIELD Meth.Behavior
	Type[] types

[in] MERGEFIELD MethParameter.Notes
String[] propertyNames

[in] MERGEFIELD MethParameter.Notes
Object[] state

[in] MERGEFIELD MethParameter.Notes
Serializable id

[in] MERGEFIELD MethParameter.Notes
Object object

[in] MERGEFIELD MethParameter.Notes

Class Name:
UserObjectAttributeMapCache
Type:

Class MERGEFIELD Element.BaseClasses
This Class holds the cache containing the list of attributes for a given class for different users. The cache is organized for every user. It contains a list of the all classes and the accessible attributes on which the user has access.
Attributes
	Attribute
	Notes
	Constraints and tags

	userCache Hashmap
Private MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity MERGEFIELD Att.Stereotype

MERGEFIELD Att.Default
	This attributes holds the attribute cache for all the objects on which the user has access. This Hashmap contains the username as key and stores a Hashmap as value for the user. This hashmap consist of the Object Names as the key and list of accessible attributes as values. So in a way it is a three level tree with user name being the top node, followed by the list of object to which the user has access followed by the attributes of those objects on which the user has access.
	Default: MERGEFIELD Att.Default

Operations
	Method
	Notes
	Parameters

	getAttributeMap() String

Public
	This method returns the array of accessible Attributes of the passed Class name on which the user has access. This method is invoked by the interceptor's onload method to obtain the list of the attributes the user has access on so incoming data can be filtered based on them.
MERGEFIELD Meth.Behavior
	String objectName

[in] MERGEFIELD MethParameter.Notes
String userName

[in] MERGEFIELD MethParameter.Notes

	removeClassAttributeMap() void

Public
	This method removes the Attribute map from the cache for the passed user name. This method should be invoked when the user logout of the system.
MERGEFIELD Meth.Behavior
	String userName

[in] MERGEFIELD MethParameter.Notes

	setAttributeMap() void

Public
	This method first obtains the list of all the domain object using the passed hibernate session factory object. Now for each object name and the user name it invokes the getAttributeMap method of the Authorization Manager. It then stores the returned attribute in the internal cache hashmap. This method should be invoked when the user logs in.
MERGEFIELD Meth.Behavior
	SessionFactory sessionFactory

[in] MERGEFIELD MethParameter.Notes
String userName

[in] MERGEFIELD MethParameter.Notes

Class Name:
AuthorizationManager
Type:

Interface MERGEFIELD Element.BaseClasses
A new method will be added to the AuthorizationManager as shown below.
Operations
	Method
	Notes
	Parameters

	getAttributeMap() String []

Public
	This method returns the List of Attributes for the passed Class Name on which the user has access
MERGEFIELD Meth.Behavior
	String className

[in] MERGEFIELD MethParameter.Notes
String userName

[in] MERGEFIELD MethParameter.Notes

2.2.3 Provisioning Changes

There are no changes required to the existing UPT Tool for provisioning of the attribute level security. The attribute level security will be provisioned through the existing Protection Element. Protection element has a field called attribute which can hold the value of the attributes on which the user has access (the class name will be stored in the objectId attribute of it). These Protection Elements then can be assigned to the user who has rights to see those attributes
2.2.4 Runtime Integration with SDK / Non SDK Systems

The following sequence diagram shows how a client system (SDK / Non SDK) would integrate the attribute level security.

[image: image3]
	Connector
	Source
	Target
	Notes

	Sequence setAttributeMap(String, SessionFactory)

Source -> Destination
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
Client (SDK / Non SDK System)

	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
UserObjectAttributeMapCache

	When the user logs in, this method should be invoked passing the SessionFactory and the User Name. It retrieves all the domain class names from the SessionFactory and passes them one by one to obtain the Attribute Cache from the CSM Authorization Manager for that user.

	Sequence getAttributeMap(String, String)

Source -> Destination
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
UserObjectAttributeMapCache

	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
AuthorizationManager

	Returns the list of Accessible Attributes by the user for the passed class name. This method is invoked for each of the class name obtained from the SessionFactory

	Sequence openSession(Interceptor)

Source -> Destination
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
Client (SDK / Non SDK System)

	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
SessionFactory

	At query time, whenever the session is obtained, it should now be obtained with the AttributeSecuritySessionInterceptor attached to it.

	Sequence query(Criteria)

Source -> Destination
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
Client (SDK / Non SDK System)

	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
Session

	User fires the query. This query gets executed on the database and the resultset is returned back to hibernate from the database. Now whenever a domain object is getting created from that resultset, hibernate invokes the onLoad Method of the interceptor for each of the row in the resultset.

	Sequence onLoad(Type[], String[], Object[], Serializable, Object)

Source -> Destination
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
Session

	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
AttributeSecuritySessionInterceptor

	This method obtains the raw stream of data. Based on the passed username (via threadlocal) and the class name of the object being retrieved from the database, it obtains the attribute cache. Now based on the list of accessible attribute, it clears all the attributes from the data stream on which the user doesnt have access. Once it is done, it gives control back to hibernate, letting it proceed with creation of the object. This object now contains only the attributes on which the use as access

	Sequence getAttributeMap(String, String)

Source -> Destination
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
AttributeSecuritySessionInterceptor

	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
UserObjectAttributeMapCache

	This method returns the list of accessible attribute for the passed user name and class name from the cache which was created at the time of user login

	Sequence removeClassAttributeMap(String)

Source -> Destination
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
Client (SDK / Non SDK System)

	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
UserObjectAttributeMapCache

	This method should be invoked when the user logs out. It removes the cached attribute map for the user.

2.2.5 Database Changes

There are no database changes required to the CSM Authorization Schema for Attribute Level Security. The current Protection Element table has attribute column which will hold the name of the attribute on which the user has access.
Unit Testing

2.3 JUnit Test Cases

Instruction: List and provide a description of the new, modified, or existing JUnit Test Case classes that will be utilized to unit test the enhancement.
	New (*) or Modified (#)
	Package Name
	Class/Interface Name
	Method Name
	Description

	*
	test.gov.nih.nci.security
	UserProvisionManagerImpl
	
	Junit Test Case to test scenarios with CSM API. This test case covers all the scenarios relating to user provisioning.

* The description should be javadoc for the class if a new class or javadoc for a method for method level changes.

2.4 Test Case Scenarios

Configuration/Deployment Considerations

2.5 Property/Configuration Files

Instruction: List all property files and configuration files that will be changed as a result of this design in the table below, including launch HTML or changes to web forms config files.
	New (*) or Modified (#)
	File Location
	File Name
	Description of Change

	
	
	
	

2.6 Deployment Considerations

N/A
[image: image1.png]

[image: image4.jpg][image: image5.jpg]

[image: image6.png]

[image: image7.png]

_1135871162.bin

