	[image: image9.jpg] NCICB
	



[image: image15.emf]�sd Instance Level - Runtime

�Just Before the Query when Client Application Obtains Session�During Initialization of Clients Hibernate Session Factory�Client (SDK / Non SDK�System)�instanceLevel::InstanceLevelSecurityHelper«interface»�security::AuthorizationManager�Hibernate::Configuration�Hibernate::SessionaddFilters(authorizationManager,configuration)java.util.List:= getObjects(searchCriteria)addFilterDefinition(filterDefinition)initializeFilter(userName,session)Filter:= enableFilter(filterName)


Common Security Module

Instance Level and Attribute Level Security
Design Document
Version No: 0.5
Last Modified: 07/01/07
Author
: 
Kunal Modi
Team
:  
Common Security Module


Purchase Order # 34552

Client
:
National Cancer Institute - Center for Bioinformatics,



National Institutes of Health,



US Department of Health and Human Services 

Document History

Document Location

The most current version of this document is located in CVS under c3pr/docs/designs. 

Revision History
	Version Number
	Revision Date
	Author
	Summary of Changes

	0.1
	6/21/2007
	Kunal Modi
	Initial Version

	0.5
	7/01/2007
	Kunal Modi
	Added Attribute Level Security

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	


Review

	Name
	Team/Role
	Version


	Date Reviewed
	Reviewer Comments 

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	


Related Documents

More information can be found in the following related CSM documents:
	Document Name

	

	

	

	

	

	

	


Table of Contents

41.
Introduction


41.1
Overview


41.2
Problem Scenario


41.3
Scope


52.
Requirement Analysis


52.1
Requirements


52.1.1
Instance Level


62.1.2
Attribute Level


72.2
Assumptions


72.3
Dependencies


72.4
Known Issues or Future Considerations


72.4.1
Instance Level


82.4.2
Attribute Level


93.
Detail Design


93.1
Instance Level Security


93.1.1
Overview


93.1.2
Class Diagram


193.1.3
Provisioning Changes


233.1.4
Runtime Integration with SDK / Non SDK Systems


253.1.5
Database Changes


303.2
Attribute Level Security


303.2.1
Overview


303.2.2
Class Diagram


333.2.3
Provisioning Changes


343.2.4
Runtime Integration with SDK / Non SDK Systems


373.2.5
Database Changes


384.
Unit Testing


384.1
JUnit Test Cases


384.2
Test Case Scenarios


395.
Configuration/Deployment Considerations


395.1
Property/Configuration Files


395.2
Deployment Considerations




1. Introduction

1.1 Overview

The CSM was chartered to provide a comprehensive solution to common security objectives so not all development teams need to create their own security methodology. CSM is flexible enough to allow application developers to integrate security with minimal coding effort. Going on the same philosophy there is a need to provide out of the box Instance Level as well as Attribute Level Security Solutions for client applications which would require minimal effort in integration.
1.2 Problem Scenario

Currently CSM APIs provide instance level and attribute level security. However this security is provided in the java tier. The typical flow of events in case of instance level security would be as follows. The user fires a business query on the database to obtain the resultset. Now the entire resultset is iterated through in java and for each and every record in it, a call is made to the CSM APIs to check if the user has access to that particular instance or not. Also in case of attribute filtering the for each of the accessible object in the resultset you need to invoke the CSM APIs to check which attributes the user can see.

In the both the solutions mentioned above, there are several issues

1. The entire result set is to be returned from the database to the application resulting in network traffic and latency

2. Once the resultset is obtained, it needs to be iterated through in java adding to processing time

3. For each record there is a database call to CSM to determine if the user has access or not.

The new design should address all the performance issues mentioned above.

1.3 Scope

This document defines the detailed design for both instance and attribute level security. It doesn’t provide details on how to use these features from a client application perspective. A separate document will address that. 
Requirement Analysis
1.4 Requirements

1.4.1 Instance Level

1.4.1.1 Functional Requirements

1. Direct Instance Level Security

The solution should provide Direct Instance Level Security. Direct Instance Level Security can be defined as where security for a particular instance is dependant on it own self. A user has access to a particular object based on the value of one of its attribute. There is no relation or association with another object. This type of instance level security is adhoc and dependant on the associations done between that instance and the user by security admin

For eg. Out of 456 patients in the patient table, user ABC has access to these assigned 28 based on the patient id.

Here out of the total patients in that database, the security admin has assigned 28 patient ids to the user ABC. Based on this the solution should filter any query fired on that patient table such that for that user ABC only those 28 records are accessible.

2. Cross Dependant Instance Level Security

The solution should provide Cross Dependant Instance Level Security. Cross Dependant Instance Level Security can be defined as where security for a particular instance is dependant on some other object. A user has access to a particular object based on its association to some other higher level object on which the user has been granted access. There is an association with another object which is generally higher up in the data graph. This type of instance level security is based on the relationship between the queried tables to the table to which the security is assigned. This type of security is used generally where it is much easier to assigned and manage security at a higher level of data 

For eg. User has access only those Lab Results which are associated to the Study (via patients) on which he as access.

Here in this example there can be 1000s of Lab Results where as the Studies could be in 10s. Also as per the business rule, if you are assigned access to the Study then you can access everything associated to that study. Also in case the assignment and management of security is much easier with Studies as they are less in number.

3. Solution should automatically provide Instance Level Security for an SDK generated system

Solution provided should be integrated with SDK so that it can be provided as an out of the box solution for SDK generated systems. 

4. Solution should provide Instance Level Security Support for a Non SDK system

The Solution provided should be adaptable for Non SDK systems with minor modifications if required. The general principle should be same as for an SDK generated system. It can be assumed that users will need to configure the solution and adapt it for their application.

1.4.1.2 Non Functional Requirements

1. Load Criteria

The solution should perform with optimum load criteria. The actual size of the tables can be assumed to be around 50K to 100K with queries returning any where from 1K to 5K records which need to be filtered. However in case of caIntegrator there are certain tables which can hold up to a billion records due to the data warehouse nature of the application. CSM Team should evaluate if the solution can be scaled to meet such load criteria.
2. Performance Criteria

There is a certain overhead in terms of time taken associated with applying security to an unsecured system. However to define these figures in terms of absolute times is not possible as it is dependant on the time taken by the actual query to execute as well as the number of records in that particular table. However this figure can be expressed in terms of percentages. Based on interactions with the caIntegrator and CTOM teams it is derived that an overhead of 10% to 20% is acceptable.

1.4.2 Attribute Level

1.4.2.1 Functional Requirements

1. Attribute Level Security

The solution should provide Attribute level security at object level. Attribute level security can be defined as security where you can control access to the attributes of an object. A user can be granted and revoked access to these attributes. Based on the user’s access level, those attributes should be visible to the user or not. 
For eg. A Patient object has the following five attributes Name, Address, Social Security, Phone Number and Disease. Then a researcher who has access to all the attributes except Social Security should be able to see the Patient object with all attributes except the Social Security attributed filled with data.
2. Solution should work for both single or many object retrieval
The solution should provide Attribute level security both for queries which result in a single object being returned from the database as well as a list of the objects being returned from the database. In case of the list each object in the list should be filtered based attributes to which the user has access too. 

3. Solution should automatically provide Instance Level Security for an SDK generated system

Solution provided should be integrated with SDK so that it can be provided as an out of the box solution for SDK generated systems.

4. Solution should provide Instance Level Security Support for a Non SDK system

The Solution provided should be adaptable for Non SDK systems with minor modifications if required. The general principle should be same as for an SDK generated system. It can be assumed that users will need to configure the solution and adapt it for their application.

1.4.2.2 Non Functional Requirements

1. Load Criteria

The solution should perform with optimum load criteria. The actual size of the tables can be assumed to be around 50K to 100K with queries returning any where from 10K to 50K records which need to be filtered. The solution should be able to filter through the returned result set and also be able to scale to higher load numbers.
2. Performance Criteria

There is a certain overhead in terms of time taken associated with applying security to an unsecured system. However to define these figures in terms of absolute times is not possible as it is dependant on the time taken by the actual query to execute as well as the number of records in that particular table. However this figure can be expressed in terms of percentages. Based on interactions with the caIntegrator and CTOM teams it is derived that an overhead of 10% to 20% is acceptable.

1.5 Assumptions

1. Hibernate Based Solution

This design provides a solution that leverages Hibernate as a persistent framework. Hibernate is the most used framework here at NCICB as well as across caBIG. Also since EJB 3 framework closely follows Hibernate in all the provided functionality. This solution can be easily adapted for a EJB 3 based system. 

1.6 Dependencies

1. Hibernate Based Solution

This design provides a solution that leverages Hibernate as a persistent framework. Hibernate is the most used framework here at NCICB as well as across caBIG. Also since EJB 3 framework closely follows Hibernate in all the provided functionality. This solution can be easily adapted for a EJB 3 based system. 

1.7 Known Issues or Future Considerations

1.7.1 Instance Level
1. In case of  eager loading filtering of the child object doesn’t work
Hibernate by default inject only the filter for the parent object, so incase you have the eager loading mode set to true, the child object’s (the associated objects which are eagerly loaded) filter are not injected. SDK by default comes with eager loading set to false leaving up to the users to explicitly turn it on.

2. Multiple filters on a single object will be always ANDed 
If you have multiple filters defined for a single domain object, Hibernate would inject all of them with an AND conditions between them. This is the default behavior of Hibernate and would require programmatic enhancements to handle the ORing of filters

3. Filtering incase of inheritance needs to be further investigated
Hibernate DTD has a limitation not allowing user to add a filter for the inherited classes. The DTD allows filters only to be added to the super class. However Hibernate API allows adding of these filters. This issue will be investigated in detail during implementation and results will be posted accordingly.
1.7.2 Attribute Level

1. In case of  eager loading the attribute filtering happens only for parent object
The onLoad method is invoked for each record returned from the database. However this works only for the parent object, so if you have eager loading set to true, the child object’s (the associated objects which are eagerly loaded) attributes aren’t filtered. SDK by default comes with eager loading set to false leaving up to the users to explicitly turn it on.
2. Primitive attribute type filtering is not possible
Since a primitive data type cannot be set to null, the current attribute solution doesn’t work if the domain objects contain primitive data types as attribute. The default values for primitive (0 for int, false for a boolean) can be a valid value, hence setting primitive attributes to their default values is also not an option.

3. Filtering on queries with projection on certain attributes wont work
For queries, where the user have set a project on certain attributes of the object rather than returning the whole object back, this solution wont work. This is because in case of projections, Hibernate returns the attribute value is directly from the database as Java data types. As a result, the onLoad method of the session interceptor is not invoked thereby not injecting the attribute level security.
2. Detail Design

2.1 Instance Level Security
This design provides a solution that leverages Hibernate as a persistent framework. Hibernate is the most used framework here at NCICB as well as across caBIG. Also since EJB 3 framework closely follows Hibernate in all the provided functionality. This solution can be easily adapted for a EJB 3 based system. 

2.1.1 Overview
<<TO BE UPDATED>>
2.1.2 Class Diagram

Following is a class diagram depicting the classes that will be used to provide instance level security using CSM 

[image: image2.wmf]�

cd Instance Level Security

�

Runtime

�

Provisioning

action::InstanceLevelAction

+ 

add(ActionMapping, ActionForm, HttpServletRequest, HttpServletResponse) : ActionForward

+ 

delete(ActionMapping, ActionForm, HttpServletRequest, HttpServletResponse) : ActionForward

+ 

loadAdd(ActionMapping, ActionForm, HttpServletRequest, HttpServletResponse) : ActionForward

+ 

loadSearch(ActionMapping, ActionForm, HttpServletRequest, HttpServletResponse) : ActionForward

+ 

loadSearchResult(ActionMapping, ActionForm, HttpServletRequest, HttpServletResponse) : ActionForward

+ 

loadUpload(ActionMapping, ActionForm, HttpServletRequest, HttpServletResponse) : ActionForward

+ 

read(ActionMapping, ActionForm, HttpServletRequest, HttpServletResponse) : ActionForward

+ 

search(ActionMapping, ActionForm, HttpServletRequest, HttpServletResponse) : ActionForward

+ 

update(ActionMapping, ActionForm, HttpServletRequest, HttpServletResponse) : ActionForward

+ 

upload(ActionMapping, ActionForm, HttpServletRequest, HttpServletResponse) : ActionForward

util::HibernateHelper

+ 

generateSQL(FilterClause, Session) : void

+ 

getAllClassName(SessionFactory) : String[]

+ 

getAssociatedClasses(String, SessionFactory) : Hashmap

+ 

getAttributeType(String, String, SessionFactory) : void

+ 

loadSessionFactory(String) : SessionFactory

util::FileLoader

+ 

getInstance() : FileLoader

+ 

loadFile(File) : void

instanceLevel::InstanceLevelSecurityHelper

+ 

addFilters(AuthorizationManager, Configuration) : void

+ 

initializeFilter(String, Session) : void

«interface»

security::AuthorizationManager

+ 

assignGroupRoleToProtectionGroup(String, String, String) : void

+ 

assignGroupsToUser(String, String[]) : void

+ 

assignOwners(String, String[]) : void

+ 

assignParentProtectionGroup(String, String) : void

+ 

assignPrivilegesToRole(String, String[]) : void

+ 

assignProtectionElement(String, String, String) : void

+ 

assignProtectionElement(String, String) : void

+ 

assignProtectionElements(String, String[]) : void

+ 

assignToProtectionGroups(String, String[]) : void

+ 

assignUserRoleToProtectionGroup(String, String[], String) : void

+ 

checkPermission(AccessPermission, Subject) : boolean

+ 

checkPermission(AccessPermission, String) : boolean

+ 

checkPermission(String, String, String, String) : boolean

+ 

checkPermission(String, String, String) : boolean

+ 

createApplication(Application) : void

+ 

createFilterClause(FilterClause) : FilterClause

+ 

createGroup(Group) : void

+ 

createPrivilege(Privilege) : void

+ 

createProtectionElement(ProtectionElement) : void

+ 

createProtectionGroup(ProtectionGroup) : void

+ 

createRole(Role) : void

+ 

createUser(User) : void

+ 

deAssignProtectionElements(String, String) : void

+ 

getApplicationById(String) : Application

+ 

getApplicationContext() : ApplicationContext

+ 

getAttributeMap(String, String) : String[]

+ 

getFliterClauseById(String) : FilterClause

+ 

getGroupById(String) : Group

+ 

getGroups(String) : Set

+ 

getObjects(SearchCriteria) : java.util.List

+ 

getOwners(String) : Set

+ 

getPrincipals(String) : Principal[]

+ 

getPrivilegeById(String) : Privilege

+ 

getPrivilegeMap(String, Collection) : Collection

+ 

getPrivileges(String) : Set

+ 

getProtectionElement(String) : ProtectionElement

+ 

getProtectionElement(String, String) : ProtectionElement

+ 

getProtectionElementById(String) : ProtectionElement

+ 

getProtectionElements(String) : Set

+ 

getProtectionGroupById(String) : ProtectionGroup

+ 

getProtectionGroupRoleContextForGroup(String) : Set

+ 

getProtectionGroupRoleContextForUser(String) : Set

+ 

getProtectionGroups() : java.util.List

+ 

getProtectionGroups(String) : Set

+ 

getRoleById(String) : Role

+ 

getUser(String) : User

+ 

getUserById(String) : User

+ 

initialize(String) : void

+ 

modifyApplication(Application) : void

+ 

modifyFilterClause(FilterClause) : FilterClause

+ 

modifyGroup(Group) : void

+ 

modifyPrivilege(Privilege) : void

+ 

modifyProtectionElement(ProtectionElement) : void

+ 

modifyProtectionGroup(ProtectionGroup) : void

+ 

modifyRole(Role) : void

+ 

modifyUser(User) : void

+ 

removeApplication(String) : void

+ 

removeFilterClause(String) : void

+ 

removeGroup(String) : void

+ 

removeGroupFromProtectionGroup(String, String) : void

+ 

removeGroupRoleFromProtectionGroup(String, String, String[]) : void

+ 

removePrivilege(String) : void

+ 

removeProtectionElement(String) : void

+ 

removeProtectionElementsFromProtectionGroup(String, String[]) : void

+ 

removeProtectionGroup(String) : void

+ 

removeRole(String) : void

+ 

removeUser(String) : void

+ 

removeUserFromGroup(String, String) : void

+ 

removeUserFromProtectionGroup(String, String) : void

+ 

removeUserRoleFromProtectionGroup(String, String, String[]) : void

+ 

secureCollection(String, Collection) : Collection

+ 

secureObject(String, Object) : Object

+ 

setOwnerForProtectionElement(String, String[]) : void

+ 

setOwnerForProtectionElement(String, String, String) : void

domainobjects::FilterClause

- 

applicationId:  int

- 

className:  String

- 

filterChain:  String

- 

id:  int

- 

sqlClause:  String

- 

tagetClassAttribute:  String

- 

targetClassAlias:  String

- 

targetClassAttributeAlias:  String

+ 

FilterClause() : void

�

property get

+ 

getapplicationId() : int

+ 

getclassName() : String

+ 

getfilterChain() : String

+ 

getid() : int

+ 

getsqlClause() : String

+ 

gettagetClassAttribute() : String

+ 

gettargetClassAlias() : String

+ 

gettargetClassAttributeAlias() : String

�

property set

+ 

setapplicationId(int) : void

+ 

setclassName(String) : void

+ 

setfilterChain(String) : void

+ 

setid(int) : void

+ 

setsqlClause(String) : void

+ 

settagetClassAttribute(String) : void

+ 

settargetClassAlias(String) : void

+ 

settargetClassAttributeAlias(String) : void

dao::FilterClauseSearchCriteria

- 

filterClause:  FilterClause

+ 

FilterClauseSearchCriteria(FilterClause)

+ 

getFieldAndValues() : Hashtable

+ 

getObjectType() : Class

dao::SearchCriteria

+ 

getFieldAndValues() : Hashtable

+ 

getObjectType() : Class

1

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»

«use»


Class Name:
InstanceLevelAction
Type:

Class    MERGEFIELD Element.BaseClasses
This is a Struts Action which extends the DispatchAction. Based on the value selected by the user on the front end corresponding operation of this action is executed.

This action displays all the pages to upload the jar as well as add a new filtering clause or search through old clauses

Operations
	Method
	Notes
	Parameters

	add() ActionForward 

Public 
	This method stores the final filtering clause into the database. User selects the Class on which he wants to apply the instance level security. Now using AJAX he navigates through the Object Graph to select the classes on which the security for that class is dependant. Once established, It obtains the generated SQL using the hibernate session and the object graph selected by the user. It stores this SQL along with other information into the database using the createFilterClause method of the Authorization Manager
MERGEFIELD Meth.Behavior
	HttpServletResponse response 

[in] MERGEFIELD MethParameter.Notes
HttpServletRequest request 

[in] MERGEFIELD MethParameter.Notes
ActionForm form 

[in] MERGEFIELD MethParameter.Notes
ActionMapping mapping 

[in] MERGEFIELD MethParameter.Notes


	delete() ActionForward 

Public 
	This operation deletes the Filter Clause object from the database. It invokes the removeFilterClause method of the AuthorizationManager
MERGEFIELD Meth.Behavior
	HttpServletResponse response 

[in] MERGEFIELD MethParameter.Notes
HttpServletRequest request 

[in] MERGEFIELD MethParameter.Notes
ActionForm form 

[in] MERGEFIELD MethParameter.Notes
ActionMapping mapping 

[in] MERGEFIELD MethParameter.Notes


	loadAdd() ActionForward 

Public 
	This method loads the page which is used to create and add new Filtering Clause for instance level security. It also checks if the Hibernate file has been loaded successfully and a Session has been created and stored in the Session or not. If not it takes user back to the Instance Level home page with appropriate message
MERGEFIELD Meth.Behavior
	HttpServletResponse response 

[in] MERGEFIELD MethParameter.Notes
HttpServletRequest request 

[in] MERGEFIELD MethParameter.Notes
ActionForm form 

[in] MERGEFIELD MethParameter.Notes
ActionMapping mapping 

[in] MERGEFIELD MethParameter.Notes


	loadSearch() ActionForward 

Public 
	This page loads the search criteria page. User can search for all filtering clause or the filtering clause pertaining to a particular object.
MERGEFIELD Meth.Behavior
	HttpServletResponse response 

[in] MERGEFIELD MethParameter.Notes
HttpServletRequest request 

[in] MERGEFIELD MethParameter.Notes
ActionForm form 

[in] MERGEFIELD MethParameter.Notes
ActionMapping mapping 

[in] MERGEFIELD MethParameter.Notes


	loadSearchResult() ActionForward 

Public 
	This operation loads the result obtained for the user's entered search criteria
MERGEFIELD Meth.Behavior
	HttpServletResponse response 

[in] MERGEFIELD MethParameter.Notes
HttpServletRequest request 

[in] MERGEFIELD MethParameter.Notes
ActionForm form 

[in] MERGEFIELD MethParameter.Notes
ActionMapping mapping 

[in] MERGEFIELD MethParameter.Notes


	loadUpload() ActionForward 

Public 
	This operation prepares and displays the upload page. The upload page allows the user to upload the jar containing the complete Hibernate configuration file, the domain objects and their Hibernate mapping files
MERGEFIELD Meth.Behavior
	HttpServletResponse response 

[in] MERGEFIELD MethParameter.Notes
HttpServletRequest request 

[in] MERGEFIELD MethParameter.Notes
ActionForm form 

[in] MERGEFIELD MethParameter.Notes
ActionMapping mapping 

[in] MERGEFIELD MethParameter.Notes


	read() ActionForward 

Public 
	This method retrieves the object which the user has selected on the search result page and displays it on the details page with all its attributes. It obtain the detailed object by calling the getFilterClauseById method of the Authorization Manager
MERGEFIELD Meth.Behavior
	HttpServletResponse response 

[in] MERGEFIELD MethParameter.Notes
HttpServletRequest request 

[in] MERGEFIELD MethParameter.Notes
ActionForm form 

[in] MERGEFIELD MethParameter.Notes
ActionMapping mapping 

[in] MERGEFIELD MethParameter.Notes


	search() ActionForward 

Public 
	This operation accepts the user's entered search criteria It then prepares the FilterClauseSearchCriteria object form it and invokes the getObject mehtod of the Authorizaiton Manager. It returns the resultset to the screen for user to browse
MERGEFIELD Meth.Behavior
	HttpServletResponse response 

[in] MERGEFIELD MethParameter.Notes
HttpServletRequest request 

[in] MERGEFIELD MethParameter.Notes
ActionForm form 

[in] MERGEFIELD MethParameter.Notes
ActionMapping mapping 

[in] MERGEFIELD MethParameter.Notes


	update() ActionForward 

Public 
	This method updates the user made changes to the filtering clause and persist them into the database. It invokes the updateFilterClause method of the Authorization Manager
MERGEFIELD Meth.Behavior
	HttpServletResponse response 

[in] MERGEFIELD MethParameter.Notes
HttpServletRequest request 

[in] MERGEFIELD MethParameter.Notes
ActionForm form 

[in] MERGEFIELD MethParameter.Notes
ActionMapping mapping 

[in] MERGEFIELD MethParameter.Notes


	upload() ActionForward 

Public 
	This method uploads the Hibernate file which the user has selected on his browser. It then initializes the FileLoader class and loads the jar file into the memory so that all the classes and file within it becomes available to the program. Using the passed hibernate file name, it initilializes the Hibernate Session. Once all these operations are successfully completed the control is returned to the Client.
MERGEFIELD Meth.Behavior
	HttpServletResponse response 

[in] MERGEFIELD MethParameter.Notes
HttpServletRequest request 

[in] MERGEFIELD MethParameter.Notes
ActionForm form 

[in] MERGEFIELD MethParameter.Notes
ActionMapping mapping 

[in] MERGEFIELD MethParameter.Notes



Class Name:
FileLoader
Type:

Class    MERGEFIELD Element.BaseClasses
This class accepts a jar file which the user has uploaded and loads it into the classpath.
Operations
	Method
	Notes
	Parameters

	Static 

MERGEFIELD Meth.Const

MERGEFIELD Meth.Pure

MERGEFIELD Meth.NamegetInstance() FileLoader 

Public 
	Return the single instance of the FileLoader Class.
MERGEFIELD Meth.Behavior
	

	Static 

MERGEFIELD Meth.Const

MERGEFIELD Meth.Pure

MERGEFIELD Meth.NameloadFile() void 

Public 
	Loads the file which the user has uploaded into the current class loader. This was all the classes and files within that jar are available to the programs
MERGEFIELD Meth.Behavior
	File file 

[in] MERGEFIELD MethParameter.Notes



Class Name:
HibernateHelper
Type:

Class    MERGEFIELD Element.BaseClasses
This class aids the provisioning tools in performing all the hibernate related operations on the uploaded jar. It also acts as the server side component for all the AJAX calls from the UI.
Operations
	Method
	Notes
	Parameters

	generateSQL() void 

Public 
	This method accepts the user's select object graph and the Class on which the filter is to be applied as well as the Alias which the user wants to use instead of the actual attributes. It now formulates a hibernate criteria using all these passed values and the Session object. It then fires the criteria on the database and traps the resulting SQL from hibernate. It then massages this SQL to formulate the WHERE Clause SQL which will be injected into the filter.
MERGEFIELD Meth.Behavior
	Session session 

[in] MERGEFIELD MethParameter.Notes
FilterClause filterClause 

[in] MERGEFIELD MethParameter.Notes


	getAllClassName() String 

Public 
	This methods is used by the AJAX operations to obtain a list of all the classes from the hibernate configuration
MERGEFIELD Meth.Behavior
	SessionFactory sessionFactory 

[in] MERGEFIELD MethParameter.Notes


	getAssociatedClasses() Hashmap 

Public 
	This method returns the associated classes for the passed class name
MERGEFIELD Meth.Behavior
	SessionFactory sessionFactory 

[in] MERGEFIELD MethParameter.Notes
String className 

[in] MERGEFIELD MethParameter.Notes


	getAttributeType() void 

Public 
	Returns the attribute type of the passed attribute name. This will one of the possible java type of an attribute which is supported by hibernate
MERGEFIELD Meth.Behavior
	SessionFactory sessionFactory 

[in] MERGEFIELD MethParameter.Notes
String className 

[in] MERGEFIELD MethParameter.Notes
String attributeName 

[in] MERGEFIELD MethParameter.Notes


	loadSessionFactory() SessionFactory 

Public 
	This method loads the session factory object using the hibernate file name in the memory.
MERGEFIELD Meth.Behavior
	String hibernateFileName 

[in] MERGEFIELD MethParameter.Notes



Class Name:
InstanceLevelSecurityHelper
Type:

Class    MERGEFIELD Element.BaseClasses
This class helps the client application (SDK / Non SDK Generated System) to inject Instance Level Security. It use the CSM's AuthorizationManager to obtain the security Filter Clause and inject them into the Hibernate configurations supplied by the client
Operations
	Method
	Notes
	Parameters

	addFilters() void 

Public 
	This method connects to the CSM Database and retrieves the Filter Clauses using the passed Authorization Manager. It then injects these filters into the passed Hibernate configuration object. It first creates the filter and attaches it to the configuration object. Then it also attaches this filter to the class on which the filter is to be applied. This method should be called before initializing the Session Factory. The Configuration Object returned from this method should then be used to initialize the SessionFactory by the client application
MERGEFIELD Meth.Behavior
	Configuration configuration 

[in] MERGEFIELD MethParameter.Notes
AuthorizationManager authorizationManager 

[in] MERGEFIELD MethParameter.Notes


	initializeFilter() void 

Public 
	This method initializes the filters which were added in the addfilters method. This accepts the session object and initializes all the filters in that session. It uses the list of the filter created by the addFilters method to iterate through all the filters. Once each filter is initialized it substitutes the User Name parameter in the filter. Now we have all the filters initialized and configured for that particular user. This method is to be invoked after obtaining the Session from the Session Factory and before firing the actual query.
MERGEFIELD Meth.Behavior
	Session session 

[in] MERGEFIELD MethParameter.Notes
String userName 

[in] MERGEFIELD MethParameter.Notes



Class Name:
FilterClause
Type:

Class    MERGEFIELD Element.BaseClasses
This Class stores the filter clause which the user has created. It holds the class name for which the filter is to be applied and also the hierarchy chain to the associated class on which the filter for the current Class depends. If there are any aliases to be used for the final target Class and target class attribute, then they are recorded in this class. Finally it also stores the generated Filtering SQL which will be used in the hibernate filter
Attributes
	Attribute
	Notes
	Constraints and tags 

	applicationId int 
Private MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity MERGEFIELD Att.Stereotype

MERGEFIELD Att.Default
	Holds the application id for which the filter is created
	Default: MERGEFIELD Att.Default


	className String 
Private MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity MERGEFIELD Att.Stereotype

MERGEFIELD Att.Default
	The class name on which the filter is to be applied
	Default: MERGEFIELD Att.Default


	filterChain String 
Private MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity MERGEFIELD Att.Stereotype

MERGEFIELD Att.Default
	The chain of class from the current class to the target class on which the security is dependant
	Default: MERGEFIELD Att.Default


	id int 
Private MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity MERGEFIELD Att.Stereotype

MERGEFIELD Att.Default
	The internal primary id associated with the filter clause
	Default: MERGEFIELD Att.Default


	sqlClause String 
Private MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity MERGEFIELD Att.Stereotype

MERGEFIELD Att.Default
	The resulting SQL Clause which is to be applied to the hibernate filter for that class
	Default: MERGEFIELD Att.Default


	tagetClassAttribute String 
Private MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity MERGEFIELD Att.Stereotype

MERGEFIELD Att.Default
	The final class attribute name on whose value the security for the current class is dependant
	Default: MERGEFIELD Att.Default


	targetClassAlias String 
Private MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity MERGEFIELD Att.Stereotype

MERGEFIELD Att.Default
	The alias which is to be used for the final class on which the security for the current object is dependant
	Default: MERGEFIELD Att.Default


	targetClassAttributeAlias String 
Private MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity MERGEFIELD Att.Stereotype

MERGEFIELD Att.Default
	The alias which is to be used for the final class's attribute on whose value the security for the current object is dependant
	Default: MERGEFIELD Att.Default



Operations
	Method
	Notes
	Parameters

	Const 

MERGEFIELD Meth.Pure

MERGEFIELD Meth.NameFilterClause() void 

Public 
	Default Constructor. Creates an empty FilterClause object
MERGEFIELD Meth.Behavior
	

	getapplicationId() int 

Public 
	Returns the application id for which the filter is created
MERGEFIELD Meth.Behavior
	

	getclassName() String 

Public 
	MERGEFIELD Meth.Notes
MERGEFIELD Meth.Behavior
	

	getfilterChain() String 

Public 
	Returns the stored filter chain
MERGEFIELD Meth.Behavior
	

	getid() int 

Public 
	Returns the primary id for this object
MERGEFIELD Meth.Behavior
	

	getsqlClause() String 

Public 
	returns the SQL Clause for the filter
MERGEFIELD Meth.Behavior
	

	gettagetClassAttribute() String 

Public 
	Get the Target Class Attribute Name on whose value the security is dependant
MERGEFIELD Meth.Behavior
	

	gettargetClassAlias() String 

Public 
	Returns the alias of the target class on which the security for the current class is depenant
MERGEFIELD Meth.Behavior
	

	gettargetClassAttributeAlias() String 

Public 
	Returns the alias of the target class's attribute on whose value the security for the current class is depenant
MERGEFIELD Meth.Behavior
	

	setapplicationId() void 

Public 
	Sets the application id for which the filter is created
MERGEFIELD Meth.Behavior
	int newVal 

[in] MERGEFIELD MethParameter.Notes


	setclassName() void 

Public 
	Set the current class name on which the security filter is to be applied 
MERGEFIELD Meth.Behavior
	String newVal 

[in] MERGEFIELD MethParameter.Notes


	setfilterChain() void 

Public 
	Set the filter hirearchy chain from the current object to the target class on which the security for current object is dependant
MERGEFIELD Meth.Behavior
	String newVal 

[in] MERGEFIELD MethParameter.Notes


	setid() void 

Public 
	Sets the primary id for this object
MERGEFIELD Meth.Behavior
	int newVal 

[in] MERGEFIELD MethParameter.Notes


	setsqlClause() void 

Public 
	Sets the SQL Clause which is to be applied in the hibernate Filter
MERGEFIELD Meth.Behavior
	String newVal 

[in] MERGEFIELD MethParameter.Notes


	settagetClassAttribute() void 

Public 
	Sets the target class attribute on whose value the security for the current class is depenant
MERGEFIELD Meth.Behavior
	String newVal 

[in] MERGEFIELD MethParameter.Notes


	settargetClassAlias() void 

Public 
	Sets the alias for the Target Class
MERGEFIELD Meth.Behavior
	String newVal 

[in] MERGEFIELD MethParameter.Notes


	settargetClassAttributeAlias() void 

Public 
	Sets the target class attribute's alias
MERGEFIELD Meth.Behavior
	String newVal 

[in] MERGEFIELD MethParameter.Notes



Class Name:
FilterClauseSearchCriteria
Type:

Class SearchCriteria MERGEFIELD Element.BaseClasses
This is the Search Criteria Created for retrieving the FilterClause. It allows you to search based on the Class Name for which the filter is created. If no class name is provided it returns the filter clause for all the classes
Attributes
	Attribute
	Notes
	Constraints and tags 

	filterClause FilterClause 
Private MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity MERGEFIELD Att.Stereotype

MERGEFIELD Att.Default
	The passed FilterClause attribute which contains the user entered search criteria
	Default: MERGEFIELD Att.Default



Operations
	Method
	Notes
	Parameters

	Const 

MERGEFIELD Meth.Pure

MERGEFIELD Meth.NameFilterClauseSearchCriteria() MERGEFIELD Meth.Type 

Public 
	This constructor accepts a FilterClauseObject which contains the user entered search criteria. 
MERGEFIELD Meth.Behavior
	FilterClause filterClause 

[in] MERGEFIELD MethParameter.Notes


	getFieldAndValues() Hashtable 

Public 
	Returns the value of the user entered search criteria from the FilterClause 
MERGEFIELD Meth.Behavior
	

	getObjectType() Class 

Public 
	Returns the Type of the object this search criterion is holding. In this case it will return FilterClause
MERGEFIELD Meth.Behavior
	


Class Name:
AuthorizationManager
Type:

Interface    MERGEFIELD Element.BaseClasses
A new method will be added to the AuthorizationManager to support the new Instance Level security design as shown below.

Operations
	Method
	Notes
	Parameters

	createFilterClause() FilterClause 

Public 
	Persists the passed Filter Clause object into the database
MERGEFIELD Meth.Behavior
	FilterClause filterClause 

[in] MERGEFIELD MethParameter.Notes


	getFliterClauseById() FilterClause 

Public 
	This method returns the FilterClause object from the database for the id provided.
MERGEFIELD Meth.Behavior
	String filterClauseId 

[in] MERGEFIELD MethParameter.Notes


	modifyFilterClause() FilterClause 

Public 
	This method updates the FilterClause object in the database
MERGEFIELD Meth.Behavior
	FilterClause filterClause 

[in] MERGEFIELD MethParameter.Notes


	removeFilterClause() void 

Public 
	Removes the Filter Clause object from the database for the passed id.
MERGEFIELD Meth.Behavior
	String filterClauseId 

[in] MERGEFIELD MethParameter.Notes



2.1.3 Provisioning Changes

A new menu tab will be visible to the admins when they log into an application on the UPT. This tab lets them configure the filter clauses for various classes in their application. Once the filtering clauses are configured then the admins can create Protection Elements for the Instances of Objects on which the users have access and assign them access. The following activity diagram shows how the new menu tab for adding the filter clause would operate.
[image: image3.emf]�ad Instance Level Activitiy Flow�Instance Level Home�ScreenLogin�New Filter Clause Entry�Screen�Search for Filter Clause�Upload the Hibernate Jar�File�List of Resulting Filter�Clause�Create a new Filter�Clause�Filter Clause Detail�Screen�Modify Filter Clause�Delete Filter Clause�Select a Filter Clause


Following sequence diagram depicts the sequence of events which for the following scenarios
1. Uploading a Jar File

2. Adding a new Filter Clause

[image: image4]
Connections
	Connector
	Source
	Target
	Notes

	Sequence  loadUpload(ActionMapping, ActionForm, HttpServletRequest, HttpServletResponse) 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
User
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
InstanceLevelAction
 
	This method loads the upload page for the user. This page contains a file upload control along with a text box for the user to enter the fully qualified file name of the hibernate file. The user should upload a file containing the following

1. Hibernate Configuration File (fully complete with the valid database connection information)

2. Hibernate Mapping Files for the domain objects correctly mapping them to the database

3. Domain Objects.

 

	Sequence  upload(ActionMapping, ActionForm, HttpServletRequest, HttpServletResponse) 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
User
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
InstanceLevelAction
 
	Uploads the jar file containing the Hibernate configurations and domain objects from the client browser onto the server
 

	Sequence  getInstance() 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
InstanceLevelAction
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
FileLoader
 
	This method returns the singleton instance of hte FileLoader class
 

	Sequence  loadFile(File) 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
InstanceLevelAction
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
FileLoader
 
	This methods loads the uploaded jar file into the classpath at runtime
 

	Sequence  loadSessionFactory(String) 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
InstanceLevelAction
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
HibernateHelper
 
	Now using the user entered hibernate file name and the user's jar file loaded in the memory, obtain the hibernate session factory 
 

	Sequence  loadAdd(ActionMapping, ActionForm, HttpServletRequest, HttpServletResponse) 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
User
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
InstanceLevelAction
 
	This method loads a page to add new filter clauses for an class. The screen flow is as decribed below:

1. It allows the user to first select the class for which the filter is to be applied from the list of available classes 

2. Now using AJAX it obtains the list of associated classes for the selected class allowing user to select the next class

3. It repeats step two till the user has reached the target class on which the security for the class selected in step 1 depends.

4. Now it lets the user selected the attribute of the target class on whose value the security depends for the original class.

5. Incase the target class and attribute names have alias which are to be used at the time of provisioning, it allows the user to enter the same

6. It then lets the user persist the filter clause into the database

 

	Sequence  getAllClassName(SessionFactory) 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
User
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
HibernateHelper
 
	This method returns all the class names from the Session Factory. This method is invoked only once at the initial load of the page
 

	Sequence  getAssociatedClasses(String, SessionFactory) 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
User
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
HibernateHelper
 
	This method returns the list associated classes for the selected class
 

	Sequence  add(ActionMapping, ActionForm, HttpServletRequest, HttpServletResponse) 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
User
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
InstanceLevelAction
 
	This method takes in the user entered information and persists the same into the CSM Database. This method first tries to obtain the SQL for the user entered criteria. It then proceed to persist the user entered filter clauses with the generated SQL into the database
 

	Sequence  FilterClause() 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
InstanceLevelAction
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
FilterClause
 
	This method creats a new Filter Clause object using the user entered parameters
 

	Sequence  generateSQL(FilterClause, Session) 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
InstanceLevelAction
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
HibernateHelper
 
	This method takes in the user entered filter criteria and then creates a hibernate Criteria using that information. Now it fires this criteria using a dummy value and traps the generated SQL. It then calls internal method to render this SQL so tht it can be added as a filter. This SQL is added to the passed filter clause object
 

	Sequence  createFilterClause(FilterClause) 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
InstanceLevelAction
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
AuthorizationManager
 
	This method persists the filter clause in the CSM Database
 


2.1.4 Runtime Integration with SDK / Non SDK Systems

The following sequence diagram shows how a client system (SDK / Non SDK) would integrate the attribute level security.  


[image: image5]
Connections
	Connector
	Source
	Target
	Notes

	Sequence  addFilters(AuthorizationManager, Configuration) 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
Client (SDK / Non SDK System)
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
InstanceLevelSecurityHelper
 
	This method adds the Filters into the hibernate configuration object passed. This method should be called before the client initializes the Hibernate Session Factory. This method retrieves all filter clause from the CSM Database and then registers them to the hibernate configuration object it also attaches them to the Class on which they should be applied. It creates the filter name using the Class Name and the Filter Clause Id. This way multiple filter can be assigned to the same class as they will have different filter name.
 

	Sequence  getObjects(SearchCriteria) 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
InstanceLevelSecurityHelper
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
AuthorizationManager
 
	This method is invoked passing the blank FilterClauseSearchCriteria as a result of which all the Filter Clauses are returned from the database.
 

	Sequence  addFilterDefinition(FilterDefinition) 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
AuthorizationManager
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
Configuration
 
	This method registers the filter with the Hibernate configuration object. Also parallely it obtains the Class for which the filter is to be applied using the Filter Class name and attaches the filter to that class.
 

	Sequence  enableFilter(String) 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
InstanceLevelSecurityHelper
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
Session
 
	This method enables the filter.
 


2.1.5 Database Changes
A new table is added to hold the store the Filter Clauses. The following diagram and table describes the new table and its association to existing CSM Schema
[image: image6.emf]�cd INSTANCE_LEVELCSM_FILTER_CLAUSE�column*FKAPPLICATION_ID:  NUMBER(38)*CLASS_NAME:  VARCHAR2(100)*FILTER_CHAIN:  VARCHAR2(1024)*PKFILTER_CLAUSE_ID:  NUMBER(38)*SQL_CLAUSE:  VARCHAR2(4000) TARGET_CLASS_ALIAS:  VARCHAR2(100)*TARGET_CLASS_ATTRIBUTE:  VARCHAR2(100) TARGET_CLASS_ATTRIBUTE_ALIAS:  VARCHAR2(100)�FK+ FK_CSM_FILTER_CL_CSM_APPLICATI(NUMBER)�PK+ PK_CSM_FILTER_CLAUSE(NUMBER)CSM_APPLICATION�column*ACTIVE_FLAG:  NUMBER(1)*APPLICATION_DESCRIPTION:  VARCHAR2(200)*PKAPPLICATION_ID:  NUMBER(38)*APPLICATION_NAME:  VARCHAR2(100) DECLARATIVE_FLAG:  NUMBER(1)*UPDATE_DATE:  DATE�PK+ PK_APPLICATION(NUMBER)�unique+ UQ_APPLICATION_NAME(VARCHAR2)+FK_CSM_FILTER_CL_CSM_APPLICATI0..*(APPLICATION_ID = APPLICATION_ID)«FK»+PK_APPLICATION1


Class Name:
CSM_APPLICATION
Type:

TableMERGEFIELD Element.BaseClasses
The application entity describes the name of the application. The authorization context is derived from application name or application context.
Connections
	Connector
	Source
	Target
	Notes

	Association  (APPLICATION_ID = APPLICATION_ID) 

Unspecified 
	Public FK_CSM_GROUP_CSM_APPLICATION MERGEFIELD ConnSource.RoleNote
CSM_GROUP
 
	Public PK_APPLICATION MERGEFIELD ConnTarget.RoleNote
CSM_APPLICATION
 
	MERGEFIELD Connector.Notes
 

	Association  (APPLICATION_ID = APPLICATION_ID) 

Unspecified 
	Public FK_ROLE_APPLICATION MERGEFIELD ConnSource.RoleNote
CSM_ROLE
 
	Public PK_APPLICATION MERGEFIELD ConnTarget.RoleNote
CSM_APPLICATION
 
	MERGEFIELD Connector.Notes
 

	Association  (APPLICATION_ID = APPLICATION_ID) 

Unspecified 
	Public FK_PG_APPLICATION MERGEFIELD ConnSource.RoleNote
CSM_PROTECTION_GROUP
 
	Public PK_APPLICATION MERGEFIELD ConnTarget.RoleNote
CSM_APPLICATION
 
	MERGEFIELD Connector.Notes
 

	Association  (APPLICATION_ID = APPLICATION_ID) 

Unspecified 
	Public FK_PE_APPLICATION MERGEFIELD ConnSource.RoleNote
CSM_PROTECTION_ELEMENT
 
	Public PK_APPLICATION MERGEFIELD ConnTarget.RoleNote
CSM_APPLICATION
 
	MERGEFIELD Connector.Notes
 

	Association  (APPLICATION_ID = APPLICATION_ID) 

Unspecified 
	Public FK_CSM_FILTER_CL_CSM_APPLICATI MERGEFIELD ConnSource.RoleNote
CSM_FILTER_CLAUSE
 
	Public PK_APPLICATION MERGEFIELD ConnTarget.RoleNote
CSM_APPLICATION
 
	MERGEFIELD Connector.Notes
 


Attributes
	Attribute
	Notes
	Constraints and tags 

	ACTIVE_FLAG NUMBER 
Public MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity column

MERGEFIELD Att.Default
	It shows if the application is active or not.
	Default: MERGEFIELD Att.Default


	APPLICATION_DESCRIPTION VARCHAR2 
Public MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity column

MERGEFIELD Att.Default
	In this column description of the application may be provided.

e.g. what this application does and what it pertains to.

	Default: MERGEFIELD Att.Default


	APPLICATION_ID NUMBER 
Public MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity column

MERGEFIELD Att.Default
	It will be a sequential number. This column is the primary key for this table
	Default: MERGEFIELD Att.Default
[property = AutoNum=1;StartNum=1;Increment=1; ] 



	APPLICATION_NAME VARCHAR2 
Public MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity column

MERGEFIELD Att.Default
	Name of the application e.g. caArray
	Default: MERGEFIELD Att.Default


	DECLARATIVE_FLAG NUMBER 
Public MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity column

MERGEFIELD Att.Default
	To indicate if this application uses declarative security or not.
	Default: MERGEFIELD Att.Default


	UPDATE_DATE DATE 
Public MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity column

MERGEFIELD Att.Default
	This column will indicate the last update of the record.
	Default: MERGEFIELD Att.Default



Operations
	Method
	Notes
	Parameters

	PK_APPLICATION() MERGEFIELD Meth.Type 

Public 
	MERGEFIELD Meth.Notes
MERGEFIELD Meth.Behavior
	NUMBER APPLICATION_ID 

[in] MERGEFIELD MethParameter.Notes


	UQ_APPLICATION_NAME() MERGEFIELD Meth.Type 

Public 
	MERGEFIELD Meth.Notes
MERGEFIELD Meth.Behavior
	VARCHAR2 APPLICATION_NAME 

[in] MERGEFIELD MethParameter.Notes



Class Name:
CSM_FILTER_CLAUSE
Type:

Table    MERGEFIELD Element.BaseClasses
This table stores the Filter Clause which will be used to inject instance level security for various classes in an application. It holds the filtering criteria that is entered by the user and also the resulting SQL which should be applied to all the queries which the user enters
Connections
	Connector
	Source
	Target
	Notes

	Association  (APPLICATION_ID = APPLICATION_ID) 

Unspecified 
	Public FK_CSM_FILTER_CL_CSM_APPLICATI MERGEFIELD ConnSource.RoleNote
CSM_FILTER_CLAUSE
 
	Public PK_APPLICATION MERGEFIELD ConnTarget.RoleNote
CSM_APPLICATION
 
	MERGEFIELD Connector.Notes
 


Attributes
	Attribute
	Notes
	Constraints and tags 

	APPLICATION_ID NUMBER 
Public MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity column

MERGEFIELD Att.Default
	Holds the application id for which the filter is created
	Default: MERGEFIELD Att.Default


	CLASS_NAME VARCHAR2 
Public MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity column

MERGEFIELD Att.Default
	The class name on which the filter is to be applied
	Default: MERGEFIELD Att.Default


	FILTER_CHAIN VARCHAR2 
Public MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity column

MERGEFIELD Att.Default
	The chain of class from the current class to the target class on which the security is dependant
	Default: MERGEFIELD Att.Default


	FILTER_CLAUSE_ID NUMBER 
Public MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity column

MERGEFIELD Att.Default
	The chain of class from the current class to the target class on which the security is dependant
	Default: MERGEFIELD Att.Default


	SQL_CLAUSE VARCHAR2 
Public MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity column

MERGEFIELD Att.Default
	The resulting SQL Clause which is to be applied to the hibernate filter for that class
	Default: MERGEFIELD Att.Default


	TARGET_CLASS_ALIAS VARCHAR2 
Public MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity column

MERGEFIELD Att.Default
	The alias which is to be used for the final class on which the security for the current object is dependant
	Default: MERGEFIELD Att.Default


	TARGET_CLASS_ATTRIBUTE VARCHAR2 
Public MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity column

MERGEFIELD Att.Default
	The final class attribute name on whose value the security for the current class is dependant
	Default: MERGEFIELD Att.Default


	TARGET_CLASS_ATTRIBUTE_ALIAS VARCHAR2 
Public MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity column

MERGEFIELD Att.Default
	The alias which is to be used for the final class's attribute on whose value the security for the current object is dependant
	Default: MERGEFIELD Att.Default



Operations
	Method
	Notes
	Parameters

	FK_CSM_FILTER_CL_CSM_APPLICATI() MERGEFIELD Meth.Type 

Public 
	MERGEFIELD Meth.Notes
MERGEFIELD Meth.Behavior
	NUMBER APPLICATION_ID 

[in] MERGEFIELD MethParameter.Notes


	PK_CSM_FILTER_CLAUSE() MERGEFIELD Meth.Type 

Public 
	MERGEFIELD Meth.Notes
MERGEFIELD Meth.Behavior
	NUMBER FILTER_CLAUSE_ID 

[in] MERGEFIELD MethParameter.Notes



2.2 Attribute Level Security

The following section provides the detailed design for Attribute Level Security 

2.2.1 Overview

<<TO BE UPDATED>>
2.2.2 Class Diagram

Following is a class diagram depicting the classes that will be used to provide attribute level security using CSM 

[image: image7.emf]�cd Attribute Level

attributeLevel::AttributeSecuritySessionInterceptor+ onLoad(Object, Serializable, Object[], String[], Type[]) : booleanHibernate::EmptyInterceptorattributeLevel::UserObjectAttributeMapCache- userCache:  Hashmap+ getAttributeMap(String, String) : String[]+ removeClassAttributeMap(String) : void+ setAttributeMap(String, SessionFactory) : void«interface»security::AuthorizationManager+ assignGroupRoleToProtectionGroup(String, String, String) : void+ assignGroupsToUser(String, String[]) : void+ assignOwners(String, String[]) : void+ assignParentProtectionGroup(String, String) : void+ assignPrivilegesToRole(String, String[]) : void+ assignProtectionElement(String, String, String) : void+ assignProtectionElement(String, String) : void+ assignProtectionElements(String, String[]) : void+ assignToProtectionGroups(String, String[]) : void+ assignUserRoleToProtectionGroup(String, String[], String) : void+ checkPermission(AccessPermission, Subject) : boolean+ checkPermission(AccessPermission, String) : boolean+ checkPermission(String, String, String, String) : boolean+ checkPermission(String, String, String) : boolean+ createApplication(Application) : void+ createFilterClause(FilterClause) : FilterClause+ createGroup(Group) : void+ createPrivilege(Privilege) : void+ createProtectionElement(ProtectionElement) : void+ createProtectionGroup(ProtectionGroup) : void+ createRole(Role) : void+ createUser(User) : void+ deAssignProtectionElements(String, String) : void+ getApplicationById(String) : Application+ getApplicationContext() : ApplicationContext+ getAttributeMap(String, String) : String[]+ getFliterClauseById(String) : FilterClause+ getGroupById(String) : Group+ getGroups(String) : Set+ getObjects(SearchCriteria) : java.util.List+ getOwners(String) : Set+ getPrincipals(String) : Principal[]+ getPrivilegeById(String) : Privilege+ getPrivilegeMap(String, Collection) : Collection+ getPrivileges(String) : Set+ getProtectionElement(String) : ProtectionElement+ getProtectionElement(String, String) : ProtectionElement+ getProtectionElementById(String) : ProtectionElement+ getProtectionElements(String) : Set+ getProtectionGroupById(String) : ProtectionGroup+ getProtectionGroupRoleContextForGroup(String) : Set+ getProtectionGroupRoleContextForUser(String) : Set+ getProtectionGroups() : java.util.List+ getProtectionGroups(String) : Set+ getRoleById(String) : Role+ getUser(String) : User+ getUserById(String) : User+ initialize(String) : void+ modifyApplication(Application) : void+ modifyFilterClause(FilterClause) : FilterClause+ modifyGroup(Group) : void+ modifyPrivilege(Privilege) : void+ modifyProtectionElement(ProtectionElement) : void+ modifyProtectionGroup(ProtectionGroup) : void+ modifyRole(Role) : void+ modifyUser(User) : void+ removeApplication(String) : void+ removeFilterClause(String) : void+ removeGroup(String) : void+ removeGroupFromProtectionGroup(String, String) : void+ removeGroupRoleFromProtectionGroup(String, String, String[]) : void+ removePrivilege(String) : void+ removeProtectionElement(String) : void+ removeProtectionElementsFromProtectionGroup(String, String[]) : void+ removeProtectionGroup(String) : void+ removeRole(String) : void+ removeUser(String) : void+ removeUserFromGroup(String, String) : void+ removeUserFromProtectionGroup(String, String) : void+ removeUserRoleFromProtectionGroup(String, String, String[]) : void+ secureCollection(String, Collection) : Collection+ secureObject(String, Object) : Object+ setOwnerForProtectionElement(String, String[]) : void+ setOwnerForProtectionElement(String, String, String) : void«use»«use»


Class Name:
AttributeSecuritySessionInterceptor
Type:

Class    EmptyInterceptor
This class intercepts the data stream returning from the database and before hibernate proceeds to create the database it filters the attribute on which the user doesnt have access.
Operations
	Method
	Notes
	Parameters

	onLoad() boolean 

Public 
	This method is actually invoked by Hibernate whenever an object is loaded/ created in the memory. So whenever the resultset returns from the database, this method gets invoked. In case the resultset return a single object, this method is invoked once for that object. However in case the resultset returns a list of objects, this method gets invoked for each of the returning object from that resultset. This method receives the raw stream of the attributes values for that object from the underlying resultset. This method now checks whether the user has permission on a particular attribute or not using the Attribute Map obtained and cached for the particular user from CSM. In order to obtain the user name, this method will either look for ACEGI's UserDetails Object in the threadlocal variable (in case of an SDK generated system) or the User Name value directly in the threadlocal variable (in case of a NON SDK generated system)
MERGEFIELD Meth.Behavior
	Type[] types 

[in] MERGEFIELD MethParameter.Notes
String[] propertyNames 

[in] MERGEFIELD MethParameter.Notes
Object[] state 

[in] MERGEFIELD MethParameter.Notes
Serializable id 

[in] MERGEFIELD MethParameter.Notes
Object object 

[in] MERGEFIELD MethParameter.Notes



Class Name:
UserObjectAttributeMapCache
Type:

Class    MERGEFIELD Element.BaseClasses
This Class holds the cache containing the list of attributes for a given class for different users. The cache is organized for every user. It contains a list of the all classes and the accessible attributes on which the user has access.
Attributes
	Attribute
	Notes
	Constraints and tags 

	userCache Hashmap 
Private MERGEFIELD Att.Static MERGEFIELD Att.Const MERGEFIELD Att.Collection MERGEFIELD Att.Multiplicity MERGEFIELD Att.Stereotype

MERGEFIELD Att.Default
	This attributes holds the attribute cache for all the objects on which the user has access. This Hashmap contains the username as key and stores a Hashmap as value for the user. This hashmap consist of the Object Names as the key and list of accessible attributes as values. So in a way it is a three level tree with user name being the top node, followed by the list of object to which the user has access followed by the attributes of those objects on which the user has access.
	Default: MERGEFIELD Att.Default



Operations
	Method
	Notes
	Parameters

	getAttributeMap() String 

Public 
	This method returns the array of accessible Attributes of the passed Class name on which the user has access. This method is invoked by the interceptor's onload method to obtain the list of the attributes the user has access on so incoming data can be filtered based on them.
MERGEFIELD Meth.Behavior
	String objectName 

[in] MERGEFIELD MethParameter.Notes
String userName 

[in] MERGEFIELD MethParameter.Notes


	removeClassAttributeMap() void 

Public 
	This method removes the Attribute map from the cache for the passed user name. This method should be invoked when the user logout of the system.
MERGEFIELD Meth.Behavior
	String userName 

[in] MERGEFIELD MethParameter.Notes


	setAttributeMap() void 

Public 
	This method first obtains the list of all the domain object using the passed hibernate session factory object. Now for each object name and the user name it invokes the getAttributeMap method of the Authorization Manager. It then stores the returned attribute in the internal cache hashmap. This method should be invoked when the user logs in.
MERGEFIELD Meth.Behavior
	SessionFactory sessionFactory 

[in] MERGEFIELD MethParameter.Notes
String userName 

[in] MERGEFIELD MethParameter.Notes



Class Name:
AuthorizationManager
Type:

Interface    MERGEFIELD Element.BaseClasses
A new method will be added to the AuthorizationManager to support the new Attribute Level security design as shown below.
Operations
	Method
	Notes
	Parameters

	getAttributeMap() String [] 

Public 
	This method returns the List of Attributes for the passed Class Name on which the user has access
MERGEFIELD Meth.Behavior
	String className 

[in] MERGEFIELD MethParameter.Notes
String userName 

[in] MERGEFIELD MethParameter.Notes



2.2.3 Provisioning Changes

There are no changes required to the existing UPT Tool for provisioning of the attribute level security. The attribute level security will be provisioned through the existing Protection Element. Protection element has a field called attribute which can hold the value of the attributes on which the user has access (the class name will be stored in the objectId attribute of it). These Protection Elements then can be assigned to the user who has rights to see those attributes
2.2.4 Runtime Integration with SDK / Non SDK Systems

The following sequence diagram shows how a client system (SDK / Non SDK) would integrate the attribute level security.  


[image: image8]
	Connector
	Source
	Target
	Notes

	Sequence  setAttributeMap(String, SessionFactory) 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
Client (SDK / Non SDK System)
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
UserObjectAttributeMapCache
 
	When the user logs in, this method should be invoked passing the SessionFactory and the User Name. It retrieves all the domain class names from the SessionFactory and passes them one by one to obtain the Attribute Cache from the CSM Authorization Manager for that user.
 

	Sequence  getAttributeMap(String, String) 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
UserObjectAttributeMapCache
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
AuthorizationManager
 
	Returns the list of Accessible Attributes by the user for the passed class name. This method is invoked for each of the class name obtained from the SessionFactory
 

	Sequence  openSession(Interceptor) 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
Client (SDK / Non SDK System)
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
SessionFactory
 
	At query time, whenever the session is obtained, it should now be obtained with the AttributeSecuritySessionInterceptor attached to it.
 

	Sequence  query(Criteria) 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
Client (SDK / Non SDK System)
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
Session
 
	User fires the query. This query gets executed on the database and the resultset is returned back to hibernate from the database. Now whenever a domain object is getting created from that resultset, hibernate invokes the onLoad Method of the interceptor for each of the row in the resultset.
 

	Sequence  onLoad(Type[], String[], Object[], Serializable, Object) 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
Session
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
AttributeSecuritySessionInterceptor
 
	This method obtains the raw stream of data. Based on the passed username (via threadlocal) and the class name of the object being retrieved from the database, it obtains the attribute cache. Now based on the list of accessible attribute, it clears all the attributes from the data stream on which the user doesnt have access. Once it is done, it gives control back to hibernate, letting it proceed with creation of the object. This object now contains only the attributes on which the use as access
 

	Sequence  getAttributeMap(String, String) 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
AttributeSecuritySessionInterceptor
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
UserObjectAttributeMapCache
 
	This method returns the list of accessible attribute for the passed user name and class name from the cache which was created at the time of user login
 

	Sequence  removeClassAttributeMap(String) 

Source -> Destination 
	Public MERGEFIELD ConnSource.Role MERGEFIELD ConnSource.RoleNote
Client (SDK / Non SDK System)
 
	Public MERGEFIELD ConnTarget.Role MERGEFIELD ConnTarget.RoleNote
UserObjectAttributeMapCache
 
	This method should be invoked when the user logs out. It removes the cached attribute map for the user.
 


2.2.5 Database Changes

There are no database changes required to the CSM Authorization Schema for Attribute Level Security. The current Protection Element table has attribute column which will hold the name of the attribute on which the user has access.
Unit Testing 

2.3 JUnit Test Cases

This solution requires integration with a end user application. Also the testing of these is dependant on client applications model as well as data. As a result it is not possible to formulate automated JUnits to test these features.

Hence the team is planning to perform integration tests
2.4 Test Case Scenarios

The test case scenarios will be developed in conjunction with the QA Team. Based on the initial design the overall test scenarios are as mentioned below. Note that based on data each of these scenarios can have multiple test cases
1. Testing inherited security with n level of parents (Eg. Gene to Chromosome to Taxon)

2. Testing inherited security with 1 level of parents (Eg. Lab Result to Patient)

3. Testing direct security (Access to Patients based on assigned Patient Id)

4. Testing direct security using alias (Access to Patient based on security key column)

5. Testing of multiple filters on a given domain object.

Configuration/Deployment Considerations

2.5 Property/Configuration Files

6. The current configuration step for configuring the CSM Authorization APIs would be sufficient to support both Instance Level as well as Attribute Level Security.

7. Incase of SDK, two new properties will be added to the deployment configuration, allowing the end users to configure whether they want to enable Instance Level and Attribute Level security or not. 
2.6 Deployment Considerations

1. All provisioning components will be packaged as part of CSM UPT. There is no special deployment requirement for either Instance Level or Attribute Level with respect to the UPT.
2. All runtime components will be packaged as part of CSM APIs. Again there is no special deployment requirement for either Instance Level or Attribute Level with respect to the CSM APIs.

[image: image1.png][image: image9.jpg][image: image10.jpg][image: image11.png][image: image12.png][image: image13.emf]�sd Attribute Level - Runtime

�When User Logs Out�When Query is Fired�When The User Logs In�Client (SDK / Non SDK�System)�Hibernate::Session�Hibernate::SessionFactory«interface»�security::AuthorizationManager�attributeLevel::UserObjectAttributeMapCache�attributeLevel::AttributeSecuritySessionInterceptorsetAttributeMap(userName,sessionFactory)String:= getAttributeMap(userName,className)Session:= openSession(interceptor)List:= query(criteria)boolean:= onLoad(object,id,state,propertyNames,types)String:= getAttributeMap(userName,objectName)removeClassAttributeMap(userName)

[image: image14.emf]�sd Instance Level - Provisioning

�Add a New Filter Clause�AJAX Operations�Upload Hibernate Jar File�User�action::InstanceLevelAction�util::FileLoader�util::HibernateHelper«interface»�security::AuthorizationManager�domainobjects::FilterClause�Hibernate::SessionFactoryActionForward:= loadUpload(mapping,form,request,response)ActionForward:= upload(mapping,form,request,response)FileLoader:= getInstance()loadFile(file)SessionFactory:= loadSessionFactory(hibernateFileName)ActionForward:= loadAdd(mapping,form,request,response)String:= getAllClassName(sessionFactory)Map:= getAllClassMetadata()Hashmap:= getAssociatedClasses(className,sessionFactory)ActionForward:= add(mapping,form,request,response)FilterClause()generateSQL(filterClause,session)FilterClause:= createFilterClause(filterClause)

_1135871162.bin

