Annotation cascading

Lloyd McKenzie

2005/10/10

The requirement

The requirement for “Annotation Cascading” comes from the realization that often when a committee creates models derived from a parent model, the business names, descriptions, constraints, rationale and other annotations associated with the elements in the parent model often remain the same. Also, even within a model, commonly occurring attributes such as classCode and moodCode frequently share the same description wherever they are represented. The effort required to maintain separate versions of the descriptive elements for the parent and each derived model is considerable, especially when making changes.

“Annotation cascading” allows for annotations to be defined and maintained semi-independently of the static models the annotations relate to. These annotations are stored in an “annotation library” and can be ‘merged’ into a collection of static models, with the annotations associated with a particular element in a static model being selected from the list of available annotations in the library based on a precedence algorithm.

The result is that committees can define generic descriptions, rational, constraints, mappings, implementation notes and other guidance in their D-MIMs and higher level R-MIMs and have that information cascade down to other models, while still being able to override the descriptions for specific message types and classes where necessary. If a change needs to be made to a description, it only needs to be made in one place, automatically being reflected in all other models which reference that annotation.

Basic implementation

Support for annotation cascading requires four changes:

1. The extension of all annotation elements with a set of ‘cascade’ information that indicates the types of models, classes and attributes that the annotation applies to

2. The definition of a library format that allows collections of annotations to be stored independently of the models they annotate

3. The creation of an editor which allows modifying annotations independent of data models and which also allows asserting the locator properties for that annotation indicating what models and model components the annotation should apply to

4. A tool that will update the annotations associated with all elements in a collection of static models using the annotations found in a given annotation library.

Referencing other annotations

Annotation cascading works on the principle of “overrides” where annotations with more specific localization information will take precedence over annotations with less-specific locator information. In some circumstances, rather than completely replacing the annotation of an ancestor in the derivation tree, what is really desired is to add to it, perhaps inserting an extra paragraph onto the beginning or end of an existing description or rationale. This is supported by associating an appendAnnotationId or a prependAnnotationId with each annotation
. The id references the specific annotation to append or prepend to the content within the current annotation. If the content of the referenced annotation changes, it will thus be automatically reflected in all referencing annotations.
There is a constraint that the type of annotation being prepended or appended must have the same type as the annotation to which it is being added. For example, descriptions can be appended or prepended to descriptions but not to definitions. If there is a desire to re-use an annotation in a circumstance where inheritance is not possible (for example, two sibling models derived from a parent which must have a different description), this reuse can be accommodated by specifying the annotation in the second sibling model to ‘prepend’ the definition from the first, and define no additional content.

When rendering an annotation with pre-pended or appended contents, the complete text of the referenced annotation is incorporated, including any annotations that may be prepended or appended to it, processing all referenced annotations recursively. It is an error for an annotation to reference itself in the chain of prepended and appended annotations. For example, it is an error if annotation A prepends annotation B which appends annotation A.

Note: Append and prepend work across all realms and translations. Care should be taken that the additional content is structured such that it appears correctly for all language and realm translations provided for the annotation being defined and the annotation being referenced.

What can be cascaded?

Annotation cascading is really only useful when dealing with models and model elements which have derivation relationships with other models and model elements. As a result, use of annotation cascading will be restricted to static models and datatypes which are the two places where HL7 makes extensive use of derivation
. Specifically, cascading of annotations will be supported for:
· Static models
· Classes/Stubs/CMETs
· Entry points

· Attributes

· Associations

· Association ends

· Generalizations

· State machines

· States

· State transitions

· Datatype

· Datatype operation

Annotation cascading will not be supported for static model subject areas (which do not have derivation relationships). They also won’t be supported for CMET or Stub interface definitions, storyboards, domain analysis models or dynamic model artifacts. Note that annotations for these elements can still use the ‘prepend’ and ‘append’ referencing capabilities described earlier. Cascading annotations for Associations (rather than just association ends) is proposed to not be supported because the only place this happens is in the RIM.

Different types of annotations

Not all annotations are created equal and the cascading approach defined above will not necessarily make sense, or even work for all annotation types. This section describes exceptions for different types of annotations:

Single-repetition ‘documentation’ annotations

This category includes definition, description, usage notes, rationale, design comments, walkthrough and open-issues. For the purposes of handling cascading, this category also includes “business names”, which though not strictly an annotation has similar realm-specific and translation variances and also provides use for translation. These are all annotations that consist of simple text and its translations with no special attributes or elements. Only one annotation of a given type is allowed for a particular element. If there are multiple usage notes for an element, they are all included as separate paragraphs, sections, list items etc. within a single annotation.

This category of annotations uses the cascade and prepend/append reference capability exactly as defined above with one exception. Business names do not support prepend/append reference capability.

Repeating ‘documentation’ annotations

This category includes ‘Other’ and Appendix annotations. It is similar to the single-repetition category with the distinction that multiple repetitions are allowed. However, ‘Other’ and Appendix have ‘type’ and ‘name’ attributes respectively which essentially produce distinct annotations. Multiple annotations of the same ‘type’ or ‘name’ are not permitted for a single model/class/attribute/etc. As a result, the same approach to cascading can be used, provided that each ‘type’ and ‘name’ is treated as a distinct annotation. Similarly, the constraint on only referencing annotations of the same variety will now constrain to only allowing referencing annotations of the same type or name. For example, an Other annotation of type “A” may only prepend or append Other annotations of type “A”.

Appendix, BallotComment, Static Example and Change Request annotations

The use-case for cascading any of these items is quite limited. ‘Appendix’ only exists for static models and datatype models and the chances of needing to cascade a full-blown appendix from a DIM to a CIM or a CIM to child CIMs or LIMs is slim.
Ballot comments and Change Requests by definition must apply to individual models and cannot be cascaded. They must be independently resolved, even if related.

Static Examples are specific to the set of constraints associated with a single model, including all constraints. Examples cannot reliably be cascaded between models because the constraints may vary.
AppInfo annotations

This category of annotations includes Mappings, Constraints and Deprecation information.. (It also includes Static examples, Ballot comments and Change Requests, however they were discussed above..)
There are three complications with these types of annotations:

1. These types of annotations are complex – they have additional structural attributes that makes prepending and appending inappropriate or even dangerous.

2. These types of annotations tend to be very specific to the static model hierarchy because they depend on the constraints beneath the model element in addition to just the RIM derivation and context of the element. As a result, the level of generality at which these types of annotations can be defined is reduced. For example, you can’t define an example or mapping for “All ActEvent.id” occurrences.

3. They repeat, and therefore a strict approach of ‘override’ cannot work without some modification.

As a result of these complications, the prependAnnotationId and appendAnnotationId attributes will not be supported for appInfo annotations. Furthermore, the ‘locator’ info will be constrained to not permit the ‘flexible’ cascade mechanisms marked in italics documented in Appendix A of this document. Annotations may only be associated with elements that actually exist in real models. In the case of Static examples, Ballot comments and Change Requests, cascading is not appropriate and will not be supported at all.
Locator Information

The following information can be specified on an annotation to determine what model elements it will bind to:

Annotation Type – Indicates the type of element to which the annotation applies (see “what can be cascaded”). This must always be populated.

Model id – The identifier of the RIM, DIM, CIM, LIM or datatype model that places an upper bound on the models the annotation can bind to. (An annotation tied to a model may also be associated with all models derived from that model.) The model id has the following components which may be included or excluded:

Model Type – Must be specified. Populated as “RIM” when defining model-independent specifications for static models

Realm – Must be populated for AppInfo and ‘model’ annotations

Domain – Must be populated for AppInfo and ‘model’ annotations

Model number – Must be populated for AppInfo and ‘model’ annotations

Version

Classifier Name – This is the name of the class or datatype the annotation should be specified for. It must be populated unless dealing with ‘model’ annotations. For classes, this may be either the exact name of the class the annotation must match, or for annotations not marked as “Classifier Name Exact?”, it may also be the formal name of one of the classes higher up the vocabulary specialization tree. (See Appendix B)

Classifier Name Exact? – Indicates whether the class name must be an exact match or whether it may match any class with the same formal name in its naming tree. For ‘AppInfo’ annotations and for datatype annotations, this must always be “true”. This exists to allow differentiation of when a name like “ActEvent” is intended to match a specific clone name and when it is intended to be a default match for all Act Events.

RIM Feature Name? – This is the name of the attribute, association, association end, generalization, state, state-transition or datatype-operation as defined in the RIM or abstract datatype specification. It must be specified unless dealing with annotations for models, classes or datatypes.

Target Class Name –This is only used when working with associations in which case it must be defined. It indicates the name of the class the association is walking towards. It may be either the exact name of the class the annotation must match, or for annotations not marked as “Target Class Name Exact?”, it may also be the formal name of one of the classes higher up the vocabulary specialization tree. (See Appendix B)

Target Class Name Exact? – This is only used when working with associations in which case it must be defined. It indicates whether the targetclass name must be an exact match or whether it may match any class with the same formal name in its naming tree. For ‘AppInfo’ annotations, this must always be “true”.

Context Class Name – This is the name of the class which is the parent of the class the annotation is associated with. It allows for generic descriptions of such relationships as “Author of an ActEvent” as opposed to “Author of an ActRequest”. It is always optional and may only be specified with class annotations. It is always treated as being a formal name for one of the classes higher up the vocabulary specialization tree. (See Appendix B)

Datatype Name – This is the name the type of the attribute must have for the annotation apply. It allows for different descriptions or constraints for different datatypes and flavors.

User Interface

There are several components to the user-interface
:

1. A text area for viewing a fully-rendered annotation (including any prepended and appended contents, as well as potentially resolving references

2. A text area for editing an annotation. (This could be the same as the above, toggled between ‘view’ and ‘edit’ mode, with ‘edit’ mode only displaying the current annotation, not prepended or appended content

3. The ability to select what type of annotations you want to manipulate

4. The ability to view and change the locator information for an annotation, likely using list boxes or scroll boxes to select from among the list of model options, class name options, etc. that could apply.

5. The ability to open and view a static model and select the element to be annotated

6. The ability to see a list view of the hierarchy of annotations that exist for a selected element, showing which annotations override which, and ability to see the locator information for an annotation

7. The ability to list, for a given annotation, the model elements that currently expose that annotation. I.e. how many places is the annotation currently used based on its position in the hierarchy

Conformance & Versioning

For the purpose of determining conformance of applications for annotations that affect behavior, such as definitions and constraints, each model will have a reference to the “annotation repository” from which its annotations are to be drawn. (That repository may in turn reference other repositories, inheriting any annotations for which it does not itself have a key defined). The annotations associated with a particular static message will be those which existed in the repository at the time the static model that past membership or DSTU ballot was generated. At this time, the annotations will be propagated into the static model and be versioned as part of the static model. (This is the same time a ‘version id’ is assigned to the static model.)
Open Issues

1. Do we need to add anything to allow referencing ‘internal’ datatypes that are defined inside another datatype? Assumption is that for now, we won’t worry about them
.

2. Do we need to extend support for annotation cascading to dynamic model or other artifacts to support profiles?
Appendix A – Annotation locator precedence

This appendix discusses how precedence is determined when finding the appropriate ‘matching’ annotation for different combinations of locator information.

Annotations for static models

For annotations pertaining directly to a static model itself, where the annotation type is DIM, CIM or LIM, only the “package id” portion of the annotation may be specified. The “best match” algorithm works as follows:

1. Exact match – Look for an annotation that directly matches the target model, including version

2. Earlier version – Look for an annotation that matches an earlier version of the target model (only versions older than the target model considered, with more recent versions taking precedence over older versions.)

3. Non-version specific – Look for an annotation that matches the id of the target model and is non-specific as to version. (I.e. no version specified).

4. Ancestor match – Look for the specified version of one of the models from which the target model is derived, following the same sequence of exact match, earlier version, then non-version-specific. Work from the last derivation specified (e.g. HMD) to the first (e.g. RIM)

Example:

When looking for annotations corresponding to static model PORX_MT123456CA03 that is derived from RIM0205, PORX_DM000000UV02, PORX_DM000000CA01, PORX_RM010000UV04, PORX_RM000001CA02 and PORX_HD011000CA01 the list of possible matching annotations, in descending order of preference is:

PORX_MT12345CA03
exact match

PORX_MT12345CA02
most recent previous version of current model

PORX_MT12345CA01
next most recent previous version of current model

PORX_MT12345CA
non-version-specific version of current model

PORX_HD011000CA01
referenced version of last listed “derived from” model

PORX_HD011000CA
non-specific version of last listed “derived from” model

PORX_RM000001CA02
referenced version of next last listed “derived from” model

PORX_RM000001CA01
most recent previous version of next lasted derived from model

PORX_RM000001CA

PORX_RM010000UV04

. . .

PORX_DM000000UV01

PORX_DM000000UV

RIM0205

RIM0204

Etc.

Annotations for Classes, State Machines and Datatypes

For the purposes of this discussion, all rules apply to classes also apply to state-machines, as there is a 0..1 relationship between a class and its state machine.

Annotations for classes and datatypes use a similar cascade approach to that for ‘model’ annotations. However, if no matches are found for the exact model, versions or ancestors there-of, four additional options are available that are not available for ‘model’ annotations. Those additional options are, in order of decreasing precedence:

1. Realm and domain only – Only the realm and domain are specified for the annotation, but not any particular model id. The annotation can apply to any model within the specified realm and domain.

2. Realm only – Only the realm is specified for the annotation, not a particular domain or model id. The annotation can apply in any model created within that realm regardless of domain.

3. Domain only – Only the domain is specified, not the realm it comes from (including universal) or a particular model id. The annotation can apply to any model created within the domain regardless of realm.

4. Unspecified – No model information is provided at all. The annotation can match classes in any model, in any realm and in any domain. Annotations in this category must go through the harmonization process to ensure that all HL7-affected groups are comfortable with the broad applicability of the annotations.

Things get even more interesting if a model is derived from models that are based on different realms or domains. In that case, the order of propagation is as follows:

1. Realm and domain of current model

2. Realm of current model and domain of ancestor models (with last derivation taking precedence over earlier derivations)

3. Realm and domain of ancestor models

4. Realm of current model

5. Realm of ancestor models

6. Domain of current model

7. Domain of ancestor models

8. Unspecified

Also note that the concept of “realm” for the purpose of artifact identifiers

includes:

· Universal – for artifacts expected to apply in all jurisdictions

· Affiliate – for artifacts specific to a particular jurisdiction

· Local – for artifacts created by organizations or individuals

In addition to specifying the optional model locator information, when creating an annotation intended to apply to a class or datatype, the annotation must have a classifier name. This name must either match the class or datatype name within the model exactly (if classifierNameExact is ‘true’), or, for classes, must match the class name based on one of the names in the formal naming hierarchy determined by the structural codes for the class. (Refer to Appendix B.)
Finally, when creating an annotation for a class, the locator may optionally specify a context class which matches on the name of a parent class. For a given classifier name, an annotation which matches a context class will take precedence of an annotation which does not specify a context class. For example,
In summary, precedence is as follows::

	Model
	Class name

	Exact match
	Exact match

	Exact match
	Matches formal naming hierarchy

	Earlier version
	Exact match

	Earlier version
	Matches formal naming hierarchy

	Non-version-specific
	Exact match

	Non-version-specific
	Matches formal naming hierarchy

	Matches ancestor model4
	Exact match

	Matches ancestor model4
	Matches formal naming hierarchy

	Realm and domain only
	Exact match

	Realm and domain only
	Matches formal naming hierarchy

	Realm only
	Exact match

	Realm only
	Matches formal naming hierarchy

	Domain only
	Exact match

	Domain only
	Matches formal naming hierarchy

	Unspecified
	Exact match

	Unspecified
	Matches formal naming hierarchy

Annotations for Attributes, States, State-transitions, Datatype properties and Entry Points

These use the same rules as for classes, with the additional requirement that rimFeatureName must be populated with the name of the attribute, state, state-transition or property as defined in the RIM/Abstract Datatype Specification. For state transitions, the name will be a concatenation of “start state” “-“ “transition name” “-“ “end state”. For Entry-points, the name will be the “Entry Point Type” code. Annotations with an exact match for the ‘datatype’ name will supercede annotations with no type specified.
Annotations for Association ends and Generalizations

Annotations for association ends build on the rules for classes, with the additional requirements that:

1. rimFeatureName must be populated with the name of the association end or generalization relationship as defined in the RIM

2. targetClassName must be populated and must either match the class name within the model exactly (if targetClassNameExact is ‘true’), or must match the class name based on one of the names in the formal naming hierarchy determined by the structural codes for the class. (Refer to Appendix B.)

	Model
	Class name
	Attribute/target class name

	Exact match
	Exact match
	Exact match

	Exact match
	Exact match
	Matches formal naming hierarchy

	Exact match
	Matches formal naming hierarchy
	Exact match

	Exact match
	Matches formal naming hierarchy
	Matches formal naming hierarchy

	Earlier version
	Exact match
	Exact match

	Earlier version
	Exact match
	Matches formal naming hierarchy

	Earlier version
	Matches formal naming hierarchy
	Exact match

	Earlier version
	Matches formal naming hierarchy
	Matches formal naming hierarchy

	Non-version-specific
	Exact match
	Exact match

	Non-version-specific
	Exact match
	Matches formal naming hierarchy

	Non-version-specific
	Matches formal naming hierarchy
	Exact match

	Non-version-specific
	Matches formal naming hierarchy
	Matches formal naming hierarchy

	Matches ancestor model
	Exact match
	Exact match

	Matches ancestor model
	Exact match
	Matches formal naming hierarchy

	Matches ancestor model
	Matches formal naming hierarchy
	Exact match

	Matches ancestor model
	Matches formal naming hierarchy
	Matches formal naming hierarchy

	Realm and domain only
	Exact match
	Exact match

	Realm and domain only
	Exact match
	Matches formal naming hierarchy

	Realm and domain only
	Matches formal naming hierarchy
	Exact match

	Realm and domain only
	Matches formal naming hierarchy
	Matches formal naming hierarchy

	Realm only
	Exact match
	Exact match

	Realm only
	Exact match
	Matches formal naming hierarchy

	Realm only
	Matches formal naming hierarchy
	Exact match

	Realm only
	Matches formal naming hierarchy
	Matches formal naming hierarchy

	Domain only
	Exact match
	Exact match

	Domain only
	Exact match
	Matches formal naming hierarchy

	Domain only
	Matches formal naming hierarchy
	Exact match

	Domain only
	Matches formal naming hierarchy
	Matches formal naming hierarchy

	Unspecified
	Exact match
	Exact match

	Unspecified
	Exact match
	Matches formal naming hierarchy

	Unspecified
	Matches formal naming hierarchy
	Exact match

	Unspecified
	Matches formal naming hierarchy
	Matches formal naming hierarchy

Annotations for Entry points

Need to figure this out

Appendix B – Structural Code Name Hierarchies

Within HL7, all classes have names that are either defaulted or assigned based on a formal naming algorithm. For most classes, this naming algorithm bases the names on the constraints placed on the structural codes within the class, such as classCode, moodCode, typeCode and determinerCode. The allowed values for these structural codes is defined by a hierarchical coding system, such that leaf level codes may be specializations of higher level ‘specialized’ and ‘abstract’ codes.

Structural Name precedence effectively means that a class can match on the formal name that would have been assigned had a code higher up the hierarchy been used. This is best demonstrated with an example.

A class has the name “PrimaryHealthCaseOrder” and the classCode “CASE” and the moodCode “INT”

The hierarchies for classCode and the names for each level of the hierarchy are:

ACT (Act)

OBS (Observation)

CASE (Case)

ActMoodCompletionTrack (Process)

INT (Intent)

RQO (Request)

The naming hierarchy, in order of decreasing precedence would be:

PrimaryHealthCaseOrder

CaseRequest

CaseIntent

CaseProcess

ObservationRequest

ObservationIntent

ObservationProcess

ActRequest

ActIntent

ActProcess

�How will this work with versioning of the “esisting description” – or, why is this done with an specific id rather than a locator?

�This is true in normative content – but likely to need expanding for localizations and implementation guides – happy for this to be addressed in release 2 (

�Is this true – there have been comments that apply to multiple models or parts of models – but agree that this is not a priority issue -- mainly because balloters cannot be expected to deal with the complexity of cascading references – better to get it sorted for editors first

�There also needs to be an excellent help file (

�agree

�I assume that these have an order of priority as well – if I am creating a local profile based on an affiliate constraint of a universal model – a local annotation would take precedence over an affiliate one, which would take precedence over an universal one

�Precedence is handled by the derivation relationships. So long as you indicate “local model xyz” is derived from affiliate model “abc” and also derived from international model “123”, then the cascading will work.

