CRF Template Management Conceptual Functional Service Specification v0.0.3

Conceptual Functional Service Specification

CRF Template Management
0.0.5
05/11/2010
	Architecture Inception Team
	Kalpesh Patel, Christo Andonyadis

	Editors
	Kunal Modi, Santosh Joshi

	Authors
	Brian McIndoe

Document History

	Document Version
	Date
	Author
	Changes

	0.0.1
	3/31/2010
	Brian McIndoe
	Initial Draft

	0.0.2
	4/11/2010
	Brian McIndoe
	Minor changes and corrections

	0.0.3
	4/16/2010
	Brian McIndoe
	Modified to incorporate review feedback from Santosh Joshi

	0.0.4
	4/22/2010
	Brian McIndoe
	Modified to incorporate review feedback from Bob Dolin, MD

	0.0.5
	5/10/2010
	Brian McIndoe
	Modified to incorporate changes from Kunal Modi resulting from the creation of the PIM

51
Overview and Business Case

51.1
Service Description and Purpose

71.2
Scope

81.3
Assumptions

92
Business Storyboards

92.1
Primary Actors

92.1.1
People Actors

92.1.2
System Actors

92.2
Story Boards

92.2.1
Overview

102.2.2
TM-SB1 – Create a New Template and Query Existing Templates

122.2.3
TM-SB2 – Update templates into Prerelease status

132.2.4
TM-SB3 – Update Template(s) for review feedback

132.2.5
TM-SB4 – Update templates into Production status

142.2.6
TM-SB5 – Publish Template

142.2.7
TM-SB6 – Add Custom Business Rules to Template

152.2.8
TM-SB7 – Create CRF

152.2.9
TM-SB8 – Version a Template and Deprecate the old version

183
Detailed Functional Model

183.1
Structure of the Service

183.2
Detail of the Capabilities

274
Profiles

274.1
Functional Profiles

284.2
Information Profiles

284.2.1
Information Model

284.2.2
Template Management State Machine

284.2
Semantic Profiles

294.3
Conformance Profiles

315
System Implementation Details

315.1
System Runtime Interaction Details

325.2
Implementation/Deployment Considerations

336
Conformance and Compliance

336.1
Compliance and Conformance Statements

357
Appendix A – Relevant Standards

368
Appendix B – References

379
Appendix C - Glossary

3810
Appendix D – Cross Reference Tables

3810.1
List of Storyboards

4010.2
Storyboards to Capabilities Mapping

4010.3
Actors

1 Overview and Business Case
1.1 Service Description and Purpose

The CRF Template Management service provides a set of interfaces for the creation, aggregation, validation, versioning, querying and generation of Clinical Document Architecture (CDA) templates, and the creation of CRFs based on generated CDA templates.
HL7 Clinical Document Architecture, Release 2 (CDA) is an ANSI-accredited standard specification for the representation of clinical documents. The "A" in "CDA" refers to the ability to constrain the CDA specification through the application of one or more templates. Various templates, drawn from a large library of reusable templates, can be assembled into a Case Report Form (CRF). Such a form represents a "templated CDA" specification, which in essence is a detailed machine processable representation of the underlying business rules pertaining to a CRF.

Within an organization that designs and conducts clinical trials, one or more people would be responsible for creating CRFs to meet data collection needs. For the purposes of this specification, these people will be designated as CRF Designers. In the case of templated CDA based CRF’s, templates would be created and managed by a CRF Designer using a custom developed Template Designer application. The service described in this specification will provide functional support and template persistence to the Template Designer application. Other potential consumers of this service could be EHR systems and CDMS systems.
There are three kinds of templates that can be created by the Template Designer application. These are: (1) entry-level templates that represent individual data elements; (2) section-level templates that represent document sections and constrain the contained entry-level templates; (3) document-level templates that represent documents or case report forms and constrain the contained section and/or entry templates.

Once the templates are created and aggregated into a document-level template, the complete set of CDA constraints (representing the document-level template) for the CRF can be generated as a technical implementation specification, which includes schemas, an implementation guide and a draft of the CRF. The CRF Designer will then use another application, the Form Designer, to modify and customize this CRF draft into a finalized CRF that can be instantiated and populated with data. This CRF Template Management service facilitates the operations of both of these applications.

A related service, the CRF Data Management service is defined in a separate CFSS. The responsibilities of the CRF Data Management service will be to manage the life cycle of the finalized CRF Instance Data for a CRF User.

The development of a common, reusable set of interfaces provided by this service will facilitate standardization, integration and interoperability between various systems that need CDA based CRFs.

This service specification provides a key infrastructure component for NCI to support CDA based CRF management and integration with other systems. This service serves as a main platform for integrating CRF Template management needs among all heterogeneous systems/components independent of platform within the clinical domain.
The following diagram shows the major components and artifacts of the CRF Template Management service. This diagram is reproduced from the Templated CDA for Case Report Forms – Scope and Vision Document
[image: image1.emf] cmp Components

Instance Editor

Form Designer

Publisher

Template Designer

CDA Artifacts Repository

Instance Repository

Instance Viewer«flow»Implementation Guide;Validation Rule Set;Template XML«flow»Templates«flow»Templates«flow»CD«flow»Initial ORUpdated CRF«flow»UpdatedCRF«flow»Current orInitial CRF«flow»

Figure 1 – Templated CDA – Major components

1.2 Scope

	Items
	Scope / Out of Scope
	Source

	Ability to Create a Template. A template can be either a document-level, section-level, or entry-level template. Entry-level templates will be able to be associated with CDEs in the standard repository (caDSR).
	Scope
	CRF Template Management Service Scope Document

	Ability to Aggregate templates via the containment relationship.
	Scope
	CRF Template Management Service Scope Document

	Ability to Version an existing CDA Template.

	Scope
	CRF Template Management Service Scope Document

	Ability to Publish a set of templates that correspond to a CRF. Publishing a document-level template and all of its contained templates creates a Validation Rule Set, an Implementation Guide and Template XML for a CRF.
	Scope
	CRF Template Management Service Scope Document

	Ability to Query for templates, and draft and production CRFs.

	Scope
	CRF Template Management Service Scope Document

	Ability to aggregate production CRFs into a study book
	Out of Scope
	Templated CDA for Case Report Forms – Scope and Vision Document

1.3 Assumptions

	Assumption
	Affects
	Source

	This service will be a centralized service hosted by NCI.

	A centralized service will promote standardization and sharing of templates, and reduce redundant template and form design work.
	Project Team Discussion

	
	
	

2 Business Storyboards

2.1 Primary Actors

The following actors are used in the storyboards below.
2.1.1 People Actors

	Name
	Role
	Notes

	Mike Smith
	CRF Designer
	A person who creates and versions templates for use in a CRF. Also responsible for aggregating existing templates into a CRF or another Section or Document-level template, and generating implementation guides for a CRF template. May also be responsible for constructing a corresponding CRF.

2.1.2 System Actors
	Name
	Notes

	Template Designer
	The set of user interface with which the CRF Designer interacts to create, aggregate, version templates, generate implementation guides, validation rules and default CRFs.

	Form Designer
	The set of user interfaces with which the CRF Designer interacts to customize a default CRF into a production CRF.

2.2 Story Boards

2.2.1 Overview

Approval has been obtained for a multi-site Phase III randomized Lung Cancer study to be coordinated at the Mayo Clinic. Activities are underway to setup all applications and services required to support this major trial. This includes creation of all CRF’s required for collecting patient data. The project team has decided to use templated CDA as the foundation for all CRF’s and desires to reuse existing entry-level templates across the project were possible. Mike Smith, a CRF Designer assigned to the project has been tasked with creating a ‘Vital Signs’ CRF for the Lung Cancer study. The Vital Signs CRF will be used in conjunction with a Patient Encounter CRF to record data for each visit.
2.2.2 TM-SB1 – Create a New Template and Query Existing Templates
	Outline
	The process begins by creating new, or identifying existing entry-level templates for all data fields on a CRF. Once the entry-level templates exist, section-level templates are created which aggregate logically related entry level templates together through ‘containment’ relationships. A document-level template is then created to contain all section-level templates that comprise a CRF. The query function is used extensively to check whether a template exists already, or to find templates that are close to what is needed and just need minor changes.

	Detail
	Mike Smith, a CRF Designer has been provided with the necessary data elements and layout required to create a ‘Vital Signs’ CRF for the Lung Cancer study. The data elements that need to be captured on the CRF have been identified by the Principal Investigator as the following:

Study ID, Site ID, StudySubject ID, Study Nurse ID, Date of Measurement, Time of Measurement, Participant Position, Performance Status (Karnofsky), ECOG Performance Status, Weight, Ideal Weight, Weight Unit of Measure, Height, Height Unit of Measure, Body Surface Area, Body Mass Index, Body Temperature, Temperature Unit of Measure, Pulse, Respiratory Rate, Systolic BP, Diastolic BP

Mike is familiar with CDA and performs a mapping between the data elements required for the CRF and the CDA specification. His analysis shows that some of the above elements map to document-level template header metadata, and others will need to be expressed within entry-level templates.
Mike knows that at least one of the required entry-level templates has already been created. He knows that both Height and Height Unit of Measure are contained in an entry-level template called “Height”.

He wants to confirm this so he Invokes the Template Designer application and then initiates the Query function. He enters “Height” into the search box, selects the “Templates Only” check box, and initiates the search. The results show that exactly one entry-level template called “Height” contains the search string.

He then moves on to create entry-level templates for all of the other data elements on the above list. He invokes the Create Template function. The screen requests Mike to enter metadata for the template. Some of the metadata is already filled in such as the auto-generated unique templateID, his name appears in the templateAuthor field. Mike selects the templateType as entry and then enters the rest of the required metadata (see Supplementary Specifications document listed in the References section of this document for more details). He notes that the publication status of the template is shown as “Draft”.

He then proceeds to complete the body of each entry-level template. As they are all very similar he begins each by copying and editing a template skeleton file into which he adds the details for each data field. He adds constraints to each template to constrain the appropriate value set and cardinality for each entry. Once each entry-level template is completed he submits it to the template repository for validation and storage.

When all of the entry-level templates are complete, he then begins creating the section-level templates. The idea behind a section-level template is to group together related entry-level templates via the ‘containment’ relationship.

He determines that it makes sense to group together the following entry-level templates into a section-level template called “Heart Signs”:

· Pulse
· Systolic BP

· Diastolic BP
Creating a section-level template is a similar process to an entry-level template in that he invokes the Create Template function as before, but this time he selects Section as the templateType. The template is in “Draft” publication status. He enters the OID’s for the entry-level templates into the section-level template via a containment relationship.

He performs a similar exercise with the remaining entry-level templates, combining them into section-level templates where doing so makes sense and maximizes their reuse potential.

As he is creating the section-level template containing the following entry-level templates:

· Weight
· Ideal Weight
He receives an urgent meeting request from his manager and has to stop work and save it in draft as it is not yet completed. He invokes the Save Template in Draft function. The application asks him for a location and a file name. He enters the information and submits it. The application confirms that the draft has been saved.

Once he returns from his meeting he Invokes the Template Designer application and is presented with a list of templates he has previously stored in Draft status. He selects the one that he was working on when he was interrupted and it opens up in a window ready for editing.

He enters the missing parts of the template definition and submits it to the template repository for validation and storage. The application responds that there is a validation error with the template and it cannot be stored until it is fixed. The application window highlights the problem text.

Mike fixes the problem and resubmits the template for validation and storage with no errors noted.

Once he has all of the necessary section-level templates created Mike moves on to create the document-level template. He begins by creating the template header which contains information about the template author, the type of document and date/time of creation. His analysis has identified StudyID, SiteID and StudySubjectID as existing elements in the template header. For example, he has determined that StudySubjectID maps to clinicalDocument.recordTarget.patientRole.id.
He then creates the template body for the document-level template. In the body he references the section-level templates created previously for this CRF.

Once he is satisfied the section level templates are included correctly in the document-level template he submits it for validation and storage. The document-level template and all of its contained section and entry level templates are in Draft publication status.

2.2.3 TM-SB2 – Update templates into Prerelease status
	Outline
	CRF’s are a key data collection tool for a clinical trial, so it is important that they be reviewed for correctness and updated as necessary. By placing templates into a “Prerelease” status they can then be reviewed by other project members.

	Detail
	Mike retrieves a list of all section and entry-level templates that are contained by the “Vital Signs” document-level template. They are all currently shown in the “Draft” publication status, except for those that previously existed and Mike simply reused.

Mike selects all templates under Vital Signs that are in the Draft status, and then invokes the Change to Prerelease function. The list of templates is updated and the status for all is now shown as “Prerelease”.

Mike sends a notification to his colleagues that the Vital Signs templates are available for review.

2.2.4 TM-SB3 – Update Template(s) for review feedback
	Outline
	As a result of review, a template may need to be updated. While being edited, it will be placed into “Draft” status.

	Detail
	All templates except one are considered by reviewers to be acceptable. A problem however exists with the “Weight Measurement” entry-level template. By an oversight, Mike had not included the Weight Measurement Time constraint in the Weight entry-level template.

He invokes the edit function on the Weight Measurement entry-level template. The edit window opens and the template is automatically placed into “Draft” publication status. Mike corrects the template by including the missing Weight Measurement Time constraint. He updates the publication status of this entry-level template to “Prerelease” and submits it for validation and storage. He then notifies the reviewers to re-review the Vital Signs CRF to verify that the Weight is now shown correctly.

Note that Mike did not have to Version the Vital Signs document-level template as the template was not in the Production status yet. If the Vital Signs template had been in Production status, and a change was made to a contained template, then he would have had to create a new Version and Deprecate the old version.

2.2.5 TM-SB4 – Update templates into Production status
	Outline
	Once a template has been reviewed and is acceptable, it has to be placed into Production status. Once the template is in Production status, it will need to be Versioned if any subsequent changes are required to it.

	Detail
	Mike is now ready to place the Vital Signs document-level template and all of its contained section and entry-level templates into Production publication status.

Mike retrieves a list of all section and entry-level templates under Vital Signs document template that previously did not exist and were created by Mike. They are all currently shown in the “Prerelease” publication status.

Mike invokes the Select All function, and then invokes the Change to Production status function. The list of templates is updated and the status for all is now shown as “Production”.

2.2.6 TM-SB5 – Publish Template
	Outline
	A document-level template has to be published before it can be turned into a CRF. The Publish process creates three things; 1) the Validation Rule Set (Schematron), 2) The Implementation Guide and 3) the Template XML. The Template XML is the input to the Form Designer application, and the Validation Rule Set (Schematron) is used in CRF Instance Validation.

	Detail
	Mike retrieves the Vital Signs document-level template and views it in a Template Designer window. He then invokes the Publish operation.

The application asks him where he would like to put the output of the Publish operation. He indicates to the application the desired folder locations and names for 1) the Validation Rules (Schematron), 2) the Implementation Guide and 3) the Raw CR Entry Form.

The Publish operation checks that the document-level template and all templates contained by it are in Production publication status and are compliant with the CDA specification. It then creates the Schematron output, the Implementation Guide and the draft CRF.

When these artifacts have been successfully created, the application indicates back to Mike that Publish has successfully completed.

2.2.7 TM-SB6 – Add Custom Business Rules to Template
	Outline
	In order to improve data quality it is necessary to update templates with business rules which catch an entry error at the point of data entry. These rules are over and above the cardinality constraints and value set constraints that were added during the creation of the templates.

	Detail
	Mike realizes that additional rules have to be added to the entry, section and document-level templates to constrain entries and capture data entry errors, beyond what is possible with the standard constraints supported by the template development environment.

Mike enters his Schematron rule constraint editor and begins entering the necessary code to express the custom constraints into the selected templates. The first rule he adds is to the entry-level template for the Date of Measurement. He adds a rule that the date of entry cannot be before the current date.

The second rule he adds is to the section-level template for the blood pressure readings. He adds a rule that the Diastolic BP should not be greater than the Systolic BP.

2.2.8 TM-SB7 – Create CRF
	Outline
	Once the document-level template has been successfully Published, the Template XML can be opened and customized in the Form Designer to create a CRF Entry Form.

	Detail
	Mike invokes the Form Designer application on the Raw CR Entry Form he created when he Generated the document-level template. The application constructs and displays the CRF including all of the contained section-level and entry-level templates.

After viewing the CRF in the Form Designer, Mike determines that some changes need to be made to the presentation of the CRF’s components (entry and section-level). The Form Designer enables Mike to 1) relocate a component on the screen, 2) customize the display name of a component, 3) change the font of a component, 4) change the color of a component; 5) decide between check box, radio button, drop down list, etc; 6) limit the cardinality for a section to a value less that the maximum cardinality specified in the template.
He makes some modifications to the form and then submits the CRF for saving.

The system saves the relationship between the CRF and the document-level template that forms its foundation.

2.2.9 TM-SB8 – Version a Template and Deprecate the old version
	Outline
	Once a template has been placed into Production state, it may need to be revised. This can be difficult as the template may have already been used to create CRF instance data. Therefore to modify a Production template requires that it be Versioned. There are two types of binding between a template and its contained templates, these are static and dynamic. Static binding is to an explicit template version, whereas, dynamic binding is resolved to the latest version of a template at run-time.

	Detail
	Mike is informed that a minor change is required to the Vital Signs CRF. An additional entry-level template is required to be added to one of the section-level templates.

Mike retrieves the section-level template in question and notes that it is used in 4 document-level templates. He invokes the Version function on this section-level template which increments its version level (in this case from 1 to 2).

Mike makes the necessary modifications to the template and then submits it for validation and storage. The modified version is placed into the “Draft” publication status. He updates this status to “Prerelease” and notifies his colleagues that it is available for review. When the template is approved by the reviewers it is updated to Production status. At this point, the old version of the template (version 1) is marked as Deprecated. This means that the template can no longer be used in new CRF’s, however, it is still available for CRF’s which have used it to create CRF instances.
If the document-level template that contains the newly versioned template was bound statically to the section-level template, then at run-time, the document-level template will still use the old version. However, if dynamic binding was used instead, then the run-time resolution will be to the most recent version of the contained template.

The following activity diagram shows the major interactions between the CRF Designer, the Template Designer application and the CRF Template Management Service.

[image: image2.png]
3 Detailed Functional Model
3.1 Structure of the Service

	Name
	Description

	Query Template
	Provide ability to query the repository for Templates and CRF’s.

	Retrieve Template
	Provide ability to retrieve a template or a CRF from the repository.

	Validate Template
	Provide the ability to confirm that a template is a valid constraint against the CDA R2 specification.

	Create Template
	Provide ability to create a template in the repository.

	Update Template
	Provide the ability to update an existing template in the repository.

	Update Template Status
	Provide ability to update the status of a template in the repository.

	Publish Template
	Provide ability to publish a template for use. Template Publishing involves three separate processes, which are 1) Create Validation Rule Set (Schematron), 2) Create the Implementation Guide, 3) Create a Template XML.

	Add Custom Business Rules
	Provide ability to generate custom business rules for individual fields and combinations of fields.

	Version Template
	Provide the ability to version a template that has been placed into Production status.

	Save CRF
	Provide the ability to save a CRF created by Form Designer to a repository.

3.2 Detail of the Capabilities
	Name [M]
	Query

	Description [M]
	Provides ability to query the repository for Templates and CRF’s.
Query will retrieve the logged in users “Draft” and “Prerelease” templates by default.

Query By Example.

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	Access control mechanism needs to be in place to ensure that the user is logged in and has valid privileges of a Template Designer to perform Query capability.

	Inputs [M]
	Any template and/or CRF metadata attribute
templateType [O]

CRFs Only [O]

	Outputs [M]
	A collection of metadata objects for matching templates

	Post-Conditions [O]
	None

	Exception Conditions [M]
	No matching templates found

	Aspects left for Technical Bindings [O]
	

	Notes [O]
	

	Name [M]
	Retrieve

	Description [M]
	Provides the ability to retrieve a template or CRF given a templateID

	Pre-Conditions [M]
	templateID exists

	Security Pre-Conditions [M]
	Access control mechanism needs to be in place to ensure that the user is logged in and has valid privileges of a Template Designer to perform Retrieve capability.

	Inputs [M]
	templateID / CRF OID
template TRUE|FALSE (if FALSE, then the associated CRF is retrieved)

	Outputs [M]
	Template XML (Header and Body)

	Post-Conditions [O]
	Template is delivered to consumer

	Exception Conditions [M]
	templateID is invalid
template does not exist

	Aspects left for Technical Bindings [O]
	

	Notes [O]
	

	Name [M]
	Validate Template

	Description [M]
	Provide the ability to validate a template against CDA R2.
Makes sure CDA file is well-formed, and conforms to CDA XSD as well as to the constrained template's XSD.

	Pre-Conditions [M]
	Template exists

	Security Pre-Conditions [M]
	Access control mechanism needs to be in place to ensure that the user is logged in and has valid privileges of a Template Designer to perform Validate Template capability.

	Inputs [M]
	Template Structure (Header and Body)

	Outputs [M]
	List of validation errors, or success

	Post-Conditions [O]
	Validation tests have been executed

	Exception Conditions [M]
	Invalid CDA – list of errors delivered by the validator

	Aspects left for Technical Bindings [O]
	

	Notes [O]
	

	Name [M]
	Create Template

	Description [M]
	Provide ability to create a template in the repository. The template will be created in “Draft” status.
The metadata item templateName is used as the name of the template in the repository.

	Pre-Conditions [M]
	None

	Security Pre-Conditions [M]
	Access control mechanism needs to be in place to ensure that the user is logged in and has valid privileges of a Template Designer to perform Create Template capability.

	Inputs [M]
	Template Structure (Header and Body)

	Outputs [M]
	Template ID

	Post-Conditions [O]
	Template is saved.

	Exception Conditions [M]
	Unable to save template

	Aspects left for Technical Bindings [O]
	Format of the Template Structure parameter as well as Template persistence.

	Notes [O]
	

	Name [M]
	Update Template

	Description [M]
	Provide ability to update an existing template created in the repository.

	Pre-Conditions [M]
	Template exists

	Security Pre-Conditions [M]
	Access control mechanism needs to be in place to ensure that the user is logged in and has valid privileges of a Template Designer to perform Update Template capability.

	Inputs [M]
	Template Structure (Header and Body)

	Outputs [M]
	Acknowledgement that template has been updated

	Post-Conditions [O]
	Template is updated.

	Exception Conditions [M]
	Unable to update template

	Aspects left for Technical Bindings [O]
	

	Notes [O]
	

	Name [M]
	Update Template Status

	Description [M]
	Provide ability to update the publication status of a template in the repository.

If the new status is Production and the template is a document-level template, then invoke the Publish function for the template.

See the state diagram for valid state transitions

	Pre-Conditions [M]
	Template exists

	Security Pre-Conditions [M]
	Access control mechanism needs to be in place to ensure that the user is logged in and has valid privileges of a Template Designer to perform Update Template Status capability.

	Inputs [M]
	templateID
newStatus

	Outputs [M]
	Acknowledgement that template publication status has been updated

	Post-Conditions [O]
	Template publication status is updated

	Exception Conditions [M]
	Invalid templateID
Invalid newStatus

Template does not exist

	Aspects left for Technical Bindings [O]
	

	Notes [O]
	

	Name [M]
	Publish Template

	Description [M]
	Provide ability to publish a template for use. Template publishing involves three separate processes, which are 1) create Validation Rule Set (Schematron), 2) Create the Implementation Guide, 3) Create Template XML.

	Pre-Conditions [M]
	Template exists
Template is valid

	Security Pre-Conditions [M]
	Access control mechanism needs to be in place to ensure that the user is logged in and has valid privileges of a Template Designer to perform Publish Template capability.

	Inputs [M]
	Document-level templateID

	Outputs [M]
	Location of Schematron, Implementation Guide and Template XML for the published template.

	Post-Conditions [O]
	Template is published

	Exception Conditions [M]
	templateID is invalid
template does not exist

Location and/or filenames for Schematron, IG or Initial Form are invalid

Insufficient privileges to write file(s) to location

	Aspects left for Technical Bindings [O]
	

	Notes [O]
	

	Name [M]
	Custom Business Rules

	Description [M]
	Provide ability to create, update and delete custom business rules for individual fields and combinations of fields in a template or across templates.

	Pre-Conditions [M]
	Template exists
Fields referenced on template exist

	Security Pre-Conditions [M]
	Access control mechanism needs to be in place to ensure that the user is logged in and has valid privileges of a Template Designer to perform Custom Business Rules capability.

	Inputs [M]
	templateID(s)
create | update | delete

Schematron code for custom business rules

	Outputs [M]
	Acknowledgement that custom business rules have been

	Post-Conditions [O]
	Custom business rules are associated with one or more templates.

	Exception Conditions [M]
	Invalid templateID(s)
Templates don’t exist

Fields referenced on templates don’t exist

	Aspects left for Technical Bindings [O]
	

	Notes [O]
	All custom constraints need to be placed into the relevant template.

	Name [M]
	Version Template

	Description [M]
	Provide the ability to version a template that has already been Generated.
[Note: This capability is very provisional as the template Versioning design has not been fully decided.]

	Pre-Conditions [M]
	Template exists
Template is in Production status

Template has been Generated

	Security Pre-Conditions [M]
	Access control mechanism needs to be in place to ensure that the user is logged in and has valid privileges of a Template Designer to perform the Version Template capability.

	Inputs [M]
	templateID

	Outputs [M]
	Acknowledgement that the template has been successfully versioned
The new version number

	Post-Conditions [O]
	The template has been versioned

	Exception Conditions [M]
	Invalid templateID
Template does not exist

Template is not in Production status

Template has not been Generated

	Aspects left for Technical Bindings [O]
	

	Notes [O]
	

	Name [M]
	Save CRF

	Description [M]
	Provide the ability to save a CRF in the repository
[Note: The CRF may have an associated XSL file. This is yet to be determined.]

	Pre-Conditions [M]
	CRF exists

	Security Pre-Conditions [M]
	Access control mechanism needs to be in place to ensure that the user is logged in and has valid privileges of a Template Designer to perform the Save CRF capability.

	Inputs [M]
	CRF structure
Name for CRF

	Outputs [M]
	Acknowledgement that the CRF was saved

	Post-Conditions [O]
	The CRF is saved to the repository

	Exception Conditions [M]
	Unable to save CRF in the repository

	Aspects left for Technical Bindings [O]
	Format of the CRF structure parameter as well as the persisted object

	Notes [O]
	

4 Profiles

4.1 Functional Profiles
Functional Profiles are intended to be deployed as a collection of operations that have been designed to provide coherent and consistent access to capabilities. The functional profiles allow a service provider to gradually implement and comply with this specification. The functional profiles that align with the Collaborations detailed in section 2 (above) are outlined below.

	Functional Profile No.
	Functional Profile Name
	Functional Profile Description
	Capability Name

	TM-FP1
	TM Query
	The Query Functional Profile provide the ability to query and retrieve templates and CRFs
	· Query
· Retrieve

	TM-FP2
	TM Design
	The Design Functional Profile provides all capabilities required by a CRF Designer
	· Validate Template

· Create Template

· Update Template

· Update Template Status

· Publish Template

· Add Custom Business Rules

· Version Template

· Save CRF

1.1 Information Profiles
1.1.1 Information Model

A Domain Analysis Model does not exist for Template Management and will need to be developed in the PIM. .
1.1.2 Template Management State Machine

A template goes through states described by following state transition diagram.

[image: image3.png]
A state machine diagram has not been defined for the CRF entry form.
4.2 Semantic Profiles
	Semantic Profile No.
	Semantic Profile Name
	Constrained Information Model
	Semantic Profile Description

	TM-SP1
	CRF Template Meta-Model
	CRF Template Meta-Model
	· Query

· Retrieve
· Validate Template
· Create Template

· Update Template

· Update Template Status

· Publish Template

· Add Custom Business Rules

· Version Template

· Save CRF

4.3 Conformance Profiles
	Conformance No
	TM-CP1

	Conformance Name
	TM Query Conformance Profile

	Description
	This is the conformance profile required for Querying Template information.

	Usage Context
	This profile is intended for people who just want to query and retrieve templates

	Mandatory
	Yes

	Functional Profile(s)
	TM-FP1: TM Query

	Semantic Profile(s)
	TM-SP1: CRF Template Meta-Model

	Conformance No
	TM-CP2

	Conformance Name
	TM Design Conformance Profile

	Description
	This is the conformance profile required for creating and manipulating templates.

	Usage Context
	This profile is intended for CRF Template Designers.

	Mandatory
	Yes

	Functional Profile(s)
	TM-FP2: TM Design

	Semantic Profile(s)
	TM-SP1: CRF Template Meta-Model

5 System Implementation Details

5.1 System Runtime Interaction Details

[image: image4.png]
[image: image5.png]
5.2 Implementation/Deployment Considerations

	Implementation Considerations
	Impacts

	This service will be centrally hosted at NCI and will provide a repository for storage of standardize templates and CRFs.
	NCI will need to plan to host this service.

6 Conformance and Compliance
6.1 Compliance and Conformance Statements
	Name
	Type
	Viewpoint
	Description
	Test method

	Query Performance
	Obligation
	Engineering
	The CRF TM Query Profile should provide a response within 0.5 seconds to support a synchronous UI based client
	Test cases to include performance testing.

	Multiple Jurisdictions
	Obligation
	Enterprise
	The CRF TM Service will span jurisdictional boundaries and will need to support a federated data model.
	Test cases include multiple domain scenarios.

	Secured Access
	Obligation
	Engineering
	The CRF TM service should have access control mechanism in place to restrict access to the secured data
	1. Design review

2. Test cases to be defined for security

	Additional Functionality
	Permission
	Computational
	The CRF TM service can provide additional functionality other than specified in these specifications
	Design Review

	Semantic Model
	Obligation
	Informational
	The CRF TM service must support the HL7 CDA R2 Template Meta-Model.
	Design Review

	Functional Profiles
	Obligation
	Computational
	Functional Profiles shall be deployed as functional wholes. Ignoring or omitting functional behavior defined within a functional profile is not permitted, nor is diverging from the detailed functional specifications provided in Section 4.
	1. Design Review

2. Test cases

	Functional Profiles – Conformant Implementation
	Obligation
	Computational
	A conformant implementation of this specification must deploy at least one Functional Profile. If that Functional Profile has dependencies on other profiles, then those dependencies must be deployed as well to support the provenance of that service instance.
	1. Design Review

2. Test cases

7 Appendix A – Relevant Standards

	Name
	Description
	Location

	HL7v3
	Health Level 7 version 3
	http://www.hl7.org/implement/standards/v3messages.cfm

	HL7 CDA R2
	HL7 Clinical Document Architecture, Release 2
	http://www.hl7.org/implement/standards/cda.cfm

	Schematron
	Schematron XML Language for CDA Instance Validation
	http://www.schematron.com/overview.html

8 Appendix B – References

	Name
	Description
	Location

	HL7 CDA R2
	HL7 Clinical Document Architecture, Release 2
	http://www.hl7.org/implement/standards/cda.cfm

	Schematron
	Schematron XML Language for CDA Instance Validation
	http://www.schematron.com/overview.html

	HL7v3
	Health Level 7 version 3
	http://www.hl7.org/implement/standards/v3messages.cfm

9 Appendix C - Glossary

	Term
	Description

	BRIDG
	The Biomedical Research Integrated Domain Group (BRIDG) has developed a comprehensive domain analysis model representing biomedical/clinical research.

	CDA
	Clinical Document Architecture

	Schematron
	Schematron is a rule based validation language for making assertions about the absence or presence of patterns in XML trees.

10 Appendix D – Cross Reference Tables

10.1 List of Storyboards

	#
	Name
	Description
	Source

	TM-SB1
	Create a New Template and Query Existing Templates
	The process begins by creating new, or identifying existing entry-level templates for all data fields on a CRF. Once the entry-level templates exist, section-level templates are created which aggregate logically related entry level templates together through ‘containment’ relationships. A document-level template is then created to contain all section-level templates that comprise a CRF. The query function is used extensively to check whether a template exists already, or to find templates that are close to what is needed and just need minor changes.
	Discussions with Project Team

	TM-SB2
	Update templates into Prerelease status
	CRF’s are a key data collection tool for a clinical trial, so it is important that they be reviewed for correctness and updated as necessary. By placing templates into a “Prerelease” status they can then be reviewed by other project members.
	Discussions with Project Team

	TM-SB3
	Update Template(s) for review feedback
	As a result of review, a template may need to be updated. While being edited, it will be placed into “Draft” status.
	Discussions with Project Team

	TM-SB4
	Update templates into Production status
	Once a template has been reviewed and is acceptable, it has to be placed into Production status. Once the template is in Production status, it will need to be Versioned if any subsequent changes are required to it.
	Discussions with Project Team

	TM-SB5
	Publish Template

	A document-level template has to be published before it can be turned into a CRF entry form. The process of publishing creates three things, 1) the Validation Rules (Schematron), 2) the Implementation Guide and 3) The Raw CR Entry Form. The draft CRF is the input to the Form Designer application, and the Implementation Guide and XML Schema are used in CRF Instance Validation.
	Discussions with Project Team

	TM-SB6
	Add Custom Business Rules to Template
	In order to improve data quality it is necessary to update templates with business rules which catch an entry error at the point of data entry. These rules are over and above the cardinality constraints and value set constraints that were added during the creation of the templates.
	Discussions with Project Team

	TM-SB7
	Create CRF
	Once the document-level template has been successfully generated, the Raw CR Entry Form can be opened and customized in the Form Designer to create a CRF Entry Form.
	Discussions with Project Team

	TM-SB8
	Version a Template and Deprecate the old version
	After a template has been generated and is in the Production publication state, it may need to be revised. This can be a difficult as the template may have already been used in a CRF to create instance data. Therefore to modify a Production template requires that it be Versioned.
	Discussions with Project Team

10.2 Storyboards to Capabilities Mapping
	#
	Storyboard
	Capabilities
	Functional Profiles

	TM-SB1
	Create a New Template and Query Existing Templates
	Query
Retrieve
	Query

	
	
	Create Template
	Design

	TM-SB2
	Update templates into Prerelease status
	Update Template Status
	Design

	TM-SB3
	Update Template(s) for review feedback
	Update Template

Validate Template
	Design

	TM-SB4
	Update templates into Production status
	Update Template Status
	Design

	TM-SB5
	Generate Template

	Publish Template
	Design

	TM-SB6
	Add Custom Business Rules to Template
	Add Custom Business Rules
	Design

	TM-SB7
	Create CRF
	Save CRF
	Design

	TM-SB8
	Version a Template and Deprecate the old version
	Version Template
	Design

10.3 Actors
	Actors
	Functional Profile
	Type
	Operations used

	CRF Designer
	Query
Design
	Person
	· Query

· Retrieve
· Validate Template

· Create Template

· Update Template

· Update Template Status

· Publish Template

· Add Custom Business Rules

· Version Template

· Save CRF

- 34 -

