

Version 4.2.1 – Programmer’s Guide

Center for Biomedical Informatics
and Information Technology

This is a U.S. Government work. November 9, 2009

CACORE COMMON

SECURITY MODULE (CSM)

Revision History
The most current version of this document is located on the CSM website:
http://ncicb.nci.nih.gov/core/CSM.

Revision History

Revision Date Author Summary of Changes
09/15/07 Vijay Parmar, Kunal Modi Initial Table of Contents

10/22/07 Vijay Parmar Added new chapters

11/05/2007 Vijay Parmar Incorporate updates.

10/29/2008 Vijay Parmar Version 4.1 updates

11/07/2008 Bronwyn Gagne Doc converted to current CBIIT
template, and edited as necessary.

11/14/2008 Vijay Parmar,
Bronwyn Gagne

Final review and release of updated
4.1 guide.

11/18/2008 Vijay Parmar,
Bronwyn Gagne

Correction made to guide –
‘encryption-enable’ changed to
‘encryption-enabled’

08/19/2009 Vijay Parmar CSM 4.2 updates – Instance Level
performance enhancements, GUI
Installer, Installation steps.

9/1/2009 Vijay Parmar
Bronwyn Gagne

Final review and release of updated
guide for CSM 4.2.

11/9/2009 Vijay Parmar
Bronwyn Gagne

Minor updates made to reflect CSM
4.2.1 changes and bug fixes, as
well as document clarifications.

http://ncicb.nci.nih.gov/core/CSM�

 i

Table of Contents
About This Guide .. 1

Purpose ... 1
Scope .. 1
Typical User .. 1
Topics Covered ... 2
Related Documentation .. 2
Text Conventions Used .. 3
Credits and Resources ... 4

Chapter 1 CSM Overview ... 5
Introduction ... 5
Security Concepts ... 7
Minimum System Requirements ... 8

Chapter 2 Using the CSM API ... 9
Workflow ... 9
API Services ... 10

Authentication Manager ... 10
Authorization Manager ... 10

Integrating with the CSM Authentication Service ... 10
Importing the CSM Authentication Manager Class .. 11
Using the CSM Authentication Manager Class .. 11
Installation and Deployment Configurations .. 12
RDBMS Credential Provider Properties and Login Module Configuration 13
LDAP Credential Provider Properties and Login Module Configuration 16
Activating CLM Audit Logging .. 19

Integrating With the CSM Authorization Service .. 19
Importing and Using the CSM Authorization Manager Class... 20
Software Products and Scripts ... 21
Installation and Deployment Configurations .. 22

Audit Logging .. 24
JAR Placement ... 24
Integrating CLM APIs with CSM APIs .. 25
Deployment Steps .. 27

Chapter 3 User Provisioning Tool (UPT) ... 29
Workflow ... 29

Super Admin – To Register Applications and Admins ... 29
Admin – To Administer a Registered Application ... 29
Login ... 29
Login and Forwarding... 30

Common Basic Functions ... 31
Create New .. 31
Search for and Select Existing Elements ... 33
Update Elements .. 34
Deleting an Existing Element ... 35

Assignments and Associations ... 36
Assigning or Deassigning Elements - Individual to Group ... 36
Assigning or Deassigning Elements - Group to Individual ... 37

Super Admin Mode ... 40
Workflow for Super Admin ... 40
Application Administration – Super Admin Mode ... 41

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

ii

User Administration– Super Admin Mode .. 43
Privileges and Standard Privileges .. 46

Admin Mode .. 48
Workflow for Admin .. 50
User Administration – Admin Mode ... 51
Protection Element Administration – Admin Mode .. 53
Privilege Administration – Admin Mode ... 55
Protection Group Administration – Admin Mode .. 56
Role Administration – Admin Mode .. 59
Group Administration – Admin Mode ... 61
Instance Level Security Administration – Admin Mode .. 63

UPT Installation and Deployment ... 67
UPT Release Contents .. 67
Deployment Artifacts .. 67
Installation Modes .. 68
UPT Deployment Checklist .. 70
GUI installer - Automated UPT Deployment .. 71
Command Line installer - Automated UPT Deployment .. 85

Chapter 4 CSM Security Web Services... 93
Security Web Service WSDL .. 93
Security Web Service Operations ... 93

Login Operation .. 93
CheckPermission Operation .. 94

Workflow for CSM Security Web Service ... 95
Installation of CSM Security Web Service .. 95

Create and Prime Database .. 95
Configure Datasource .. 96
Configure JBoss JAAS Login Parameters ... 97
Deploy the Security WS .war File .. 98

Chapter 5 CSM Instance Level and Attribute Level Security 99
Instance Level Security .. 99

Requirements Addressed... 99
Overall Design .. 101
Provisioning Instance Level Security ... 101
Using Instance Level Security .. 105

Instance Level Security Performance Enhancements.. 106
Instance Level Mapping Element ... 106
New Functionality - API .. 107
New Functionality – UPT.. 108
Using Instance Level Security Performance Enhancement... 108
Known Issues ... 109

Attribute Level Security ... 110
Requirements Addressed... 110
Overall Design .. 110
Strict Or Lenient Behavior .. 111
Provisioning Attribute Level Security ... 111
Using Attribute Level Security .. 111
Known Issues ... 112

Chapter 6 Acegi Adapter ... 115
Implementation ... 115

Method Level Security.. 116
Method Parameter Level Security .. 116

Workflow ... 116

Table of Contents

iii

Integrating and Configuring .. 117
Configure Acegi Security .. 117
Database Properties and Configuration ... 118
User provisioning via UPT .. 123

Chapter 7 CSM caGrid Authentication .. 125
Authentication for caGrid .. 125

CSM Configuration for IDP/Authentication Service .. 125
Authorization for caGrid .. 127

Using Grid Group Names for Check Permission ... 127

Appendix A CSM/ACEGI Sample Configuration File....................................... 129

Appendix B Migrating to CSM v4.2 .. 133
Migrating from CSM v3.2 to CSM 4.0 ... 133

MySQL Migration – CSM 3.2 to CSM 4.0 .. 133
Migrating from CSM v4.0 to CSM v4.1 ... 134

MySQL Migration – CSM 4.0 to CSM 4.1 .. 134
Migrating from CSM v4.1 to CSM v4.2 ... 134

MySQL Migration – CSM 4.1 to CSM 4.2 .. 134

Appendix C Sample Local Deployment- Single Installation/Single Schema 137

Glossary ... 141

Index ... 143

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

iv

1

About This Guide
This preface introduces you to the caCORE Common Security Module (CSM) V
4.2

Topics in this section include:

.1 Programmer's Guide.

• Purpose on this page

• Scope on this page

• Typical User on this page

• Topics Covered on page 2

• Related Documentation on page 2

• Text Conventions Used on page 3

• Credits and Resources on page 4

Purpose
This guide provides all the information application developers need to successfully
integrate with NCICB’s Common Security Module (CSM). The CSM was chartered
to provide a comprehensive solution to common security objectives so not all
development teams need to create their own security methodology. CSM is flexible
enough to allow application developers to integrate security with minimal coding
effort. This phase of the Common Security Module brings the NCICB team one step
closer to the goal of application security management, single sign-on, and Health
Insurance Portability and Accountability Act (HIPPA) compliance.

Scope
This document is a master document that covers all CSM modules and shows how
to deploy and integrate the CSM services, including Authentication, Authorization,
User Provisioning Tool, CSM Security Web Services, CSM Acegi Adapter, and CSM
caGrid Integration. This document covers the User Guide and Application
Developers Guide for all modules of CSM including CSM API, CSM UPT, CSM
Security Web services, CSM Acegi Adapter, and CSM caGrid Integration. The CSM
GAARDS Migration Module (CGMM) is out of scope. Refer the CGMM Guide for
information

Typical User
The primary audience of this guide is the application developer who wants to
integrate security. This guide assumes that you are familiar with the Java
programming language and/or other programming languages, database concepts,
and the Internet. If you intend to use caCORE CSM resources in software
applications, it assumes that you have experience with building and using complex
data systems.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

2

Topics Covered
This brief overview explains what you will find in each section of this guide.

• Chapter 1, CSM Overview provides an overview of CSM and its capabilities.

• Chapter 2, Using the CSM API provides detailed information and a workflow
for how to successfully integrate CSM into your applications.

• Chapter 3, User Provisioning Tool (UPT) provides information about
installing the UPT, the workflow for its use, and details about the
administrative tasks available in Super Admin and Admin modes.

• Chapter 4, CSM Security Web Services explains how to use the CSM
Authentication and Authorization services exposed as a web service to the
web service consumers.

• Chapter 5, CSM Instance Level and Attribute Level Security describes
Instance and Attribute level security features available in CSM v4.2.

• Chapter 6, Acegi Adapter explains how method level and method parameter
level security is implemented and available out of the box for applications
that use or want to use Acegi and leverage CSM Authentication and
Authorization features. This chapter also provides a workflow and steps
necessary to integrate the CSM Acegi adapter into existing or new
applications using the Acegi framework.

• Chapter 7, CSM caGrid Authentication describes how to leverage CSM in
the caGrid environment.

• Appendix A, CSM/ACEGI Sample Configuration File provides the entire
CSM Acegi Sample configuration file.

• Appendix B Migrating to CSM v4. provides the steps necessary to migrate
your existing CSM system (from 3.2, 4.0, or 4.1) to CSM 4.2.

• Appendix C Sample Local Deployment- Single Installation/Single Schema
provides specific configuration information for a sample deployment of CSM
in a single installation/single schema configuration

Related Documentation
More information can be found in the following related CSM documents:

• Software Architecture Document

• CSM Enterprise Architect Model

• Acegi Security CSM Adapter Design Document

• CLM Guide for Application Developers

These and other documents can be found on the CSM website:
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm

You can also find additional information on the CSM page of the caBIG website:
https://cabig.nci.nih.gov/tools/CSM/, and on the CSM Wiki page of the NCI Wiki:
https://wiki.nci.nih.gov/x/4wBB.

http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm�
https://cabig.nci.nih.gov/tools/CSM/�
https://wiki.nci.nih.gov/x/4wBB�

About This Guide

3

Text Conventions Used
This section explains conventions used in this guide. The various typefaces
represent interface components, keyboard shortcuts, toolbar buttons, dialog box
options, and text that you type.

Convention Description Example

Bold Highlights names of option buttons,
check boxes, drop-down menus, menu
commands, command buttons, or
icons.

Click Search.

URL Indicates a Web address. http://domain.com

text in SMALL CAPS Indicates a keyboard shortcut. Press ENTER.

text in SMALL CAPS +
text in SMALL CAPS

Indicates keys that are pressed
simultaneously.

Press SHIFT + CTRL.

Italics Highlights references to other
documents, sections, figures, and
tables.

See Figure 4.5.

monospace type Used to identify directory or file names
located in the text.

Move the edited
project.properties
file to the /build/ folder
in the project directory

Italic boldface
monospace type

Represents text that you type. In the New Subset text
box, enter Proprietary
Proteins.

NOTE: Highlights information of particular
importance.

Note: This concept is
used throughout this
document.

{ } Surrounds replaceable items. Replace {last name, first
name} with the Principal
Investigator’s name.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

4

Credits and Resources
CSM Development

Team
Other Development

Teams
Documentation Program

Management
Vijay Parmar1 Satish Patel1 Vijay Parmar1 Avinash Shanbhag3

Santhosh Garmilla 1 Dan Dumitru1 Bronwyn Gagne4 Satish Patel1

Aynur Abdurazik2

1 Ekagra Software
Technologies

2 Science Applications
International
Corporation (SAIC)

3 National Cancer
Institute Center for
Bioinformatics

4 Lockheed Martin

CSM Resources

Name URL
Mailing List security-csm-user@gforge.nci.nih.gov

Mailing List Archive http://gforge.nci.nih.gov/pipermail/security-csm-user

GForge Project Home http://gforge.nci.nih.gov/projects/security

CSM Support Tracker http://gforge.nci.nih.gov/tracker/?atid=131&group_id=12&func=browse

Contacts and Support

NCICB Application Support
http://ncicb.nci.nih.gov/NCICB/support
Telephone: 301-451-4384
Toll free: 888-478-4423

Submitting a Support Issue
A GForge Support tracker group, which is actively monitored by CSM developers,
has been created to track any support requests. If you believe there is a bug/issue
in the CSM software itself, or have a technical issue that cannot be resolved by
contacting the NCICB Application Support group, please submit a new support
tracker using the following link:

https://gforge.nci.nih.gov/tracker/?atid=131&group_id=12&func=browse.

Make sure to review any existing support request trackers prior to submitting a new
one in order to help avoid duplicate submissions.

Release Schedule
This guide is updated for each caCORE CSM release. It may be updated between
releases if errors or omissions are found. The current document refers to the 4.2.1
version of caCORE CSM, which was released in November 2009 by the NCI Center
for Biomedical Informatics and Information Technology (CBIIT), formerly the
National Cancer Institute Center for Bioinformatics (NCICB).

mailto:security-csm-user@gforge.nci.nih.gov�
http://gforge.nci.nih.gov/pipermail/security-csm-user�
http://gforge.nci.nih.gov/projects/security�
http://gforge.nci.nih.gov/tracker/?atid=131&group_id=12&func=browse�
http://ncicb.nci.nih.gov/NCICB/support�
http://ncicb.nci.nih.gov/NCICB/support�
https://gforge.nci.nih.gov/tracker/?atid=131&group_id=12&func=browse�

5

Chapter 1 CSM Overview
This chapter provides an overview of the Common Security Module (CSM). Topics
in this chapter include:

• Introduction on this page.

• Security Concepts on page 7.

• Minimum System Requirements on this page 8.

Introduction
The CSM provides application developers with powerful security tools in a flexible
delivery. CSM provides solutions for:

• Authentication - validating and verifying a user’s credentials to allow
access to an application. CSM, working with credential providers
(Lightweight Directory Access Protocol (LDAP), Relational Database
Management Systems (RDBMS), etc.), confirms that a user exists and that
the password is valid for that application. It also provides a lockout manager
which locks out unauthorized users for a pre-configured amount of time after
the (also pre-configured) number of allowed attempts is reached.

• Authorization - granting access to data, methods, and objects. CSM
incorporates an Authorization schema and database so that users can only
perform the operations or access the data to which they have access rights.

• Instance and Attribute Level Security - allows users to perform instance
level filtering of data. The User Provision Tool (UPT) allows administrators to
provision security filters for instances of domain classes and the API filters
the results of the queries based on the access policy. The filtering of data is
done at the database level with minimum overheads. It also does attribute
level filtering of data based on user permissions.

• User Provisioning - creating or modifying users and their associated
access rights to your application and its data. CSM provides a web-based
UPT that can easily be integrated with a single or multiple applications and
authorization databases. The UPT provides functionality to create
authorization data elements like Roles, Protection Elements, Users, etc., and
also provides functionality to associate them with each other. The runtime
API can then use this authorization data to authorize user actions. The UPT
consists of two modes – Super Admin and Admin.

o Super Admin – accessed by the UPT’s overall administrator; used to
register an application, assign administrators, and create or modify
standard privileges.

o Admin – used by application administrators to modify authorization data,
such as roles, users, protection elements, etc

• Audit Logging - In an effort to make CSM compliant with CRF 21/ part 11,
CSM provides auditing and logging functionality. CSM uses NCICB’s
Common Logging Module (CLM), which is another caCORE product, for the

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

6

purpose of event logging as well as automated object state change logging
into a persistent database.

Figure 1-1 CSM Architecture

CSM works with Java Authentication and Authorization Service (JAAS) to
authenticate and authorize for the application ABC. To authenticate, it references
credential providers such as an LDAP or RDBMS. CSM can be configured to check
multiple credential providers in a defined order. To authorize, CSM refers to the
Authorization Schema. The Authorization Schema contains the Users, Roles,
Protection Elements, etc., and their associations, so that the application knows
whether or not to allow a user to access a particular object. The Authorization data
can be stored on a variety of databases. It is created and modified by the application
Administrator using the web-based UPT.

CSM uses NCICB’s Common Logging Module (CLM) to perform all the audit and
logging. CSM logs all of the events and object state changes (security objects stated
below in Table 1-1). These logs will be stored in a separate Common Logging
Database for backup and review. Since logging can be configured using log4j, client
applications have control over the logging of audit trails. More details regarding audit
logging by CSM can be found in the Audit Logging section, beginning on page 24.

Audit Messages

Authorize

Credential Providers

LDAP Application server

Application ABC

Security module

Common
Authorization

Schema

Web server

User
Provisioning

Web
interface

Application
server

User
Provisioning
application

RDBMS

JAAS

Authenticate

Authenticate

Common
Logging
Database

Authorize

Chapter 1–0BCSM Overview

7

Security Concepts
In order to successfully integrate CSM with an application, it is important to
understand the definitions for the security concepts defined in the table below.
Application Developers should understand these concepts and begin to understand
how they apply to their particular application.

Security Concept Definition

Application Any software or set of software intended to achieve business or
technical goals.

User
A User is someone that requires access to an application. Users
can become part of a Group, and can have an associated
Protection Group and Roles.

Group
A Group is a collection of application users. By combining users
into a Group, it becomes easier to manage their collective roles
and access rights in your application.

Protection Element

A Protection Element is any entity (typically data) that has
controlled access. Examples include Social Security Number,
City, and Salary. Protection Elements can also include
operations, buttons, links, etc.

Protection Group

A Protection Group is a collection of application Protection
Elements. By combining Protection Elements into a Protection
Group, it becomes easier to associate Users and Groups with
rights to a particular data set. Examples include Address and
Personal Information.

Privilege

A Privilege refers to any operation performed upon data. CSM
makes use of a standard set of privileges. This will help
standardize authorization to comply with JAAS and
Authorization Policy and allow for adoption of technology such
as SAML in the future.

Role A Role is a collection of application Privileges. Examples include
Record Admin and HR Manager.

Table 1-1 Security concept definitions

CSM users need to identify aspects of the application that should be labeled as
Protection Elements. These elements are combined to Protection Groups, and then
users are assigned Roles for that Protection Group.

Shown below in Table 1-2 are definitions of related security terms.

Related Concept Definition

Credential Provider

A credential is a data or set of data which represents an individual
unique to a given application (username, password, etc.). Credential
providers are trusted organizations that create secure directories or
databases that store credentials. In an authentication transaction,
organizations check with the credential providers to verify entered
information is valid. For example, the NCI network uses a credential
provider to verify that a user name and password match and are valid
before allowing access.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

8

Related Concept Definition

JAAS

Set of Java packages that enable services to authenticate and
enforce access controls upon users. JAAS implements a Java version
of the standard Pluggable Authentication Module framework, and
supports user- based authorization.

LDAP

Credential providers may choose to store credential information using
a directory based on LDAP. An LDAP is simply a set of protocols for
accessing information directories. Using LDAP, client programs can
login to a server, access a directory, and verify credential entries.

RDBMS
Credential providers may choose to store credential information with a
RDBMS. Unlike with LDAP, credential data is stored in the form of
related tables.

Login Module Responsible for authenticating users and for populating users and
groups. A Login Module is a required component of an authentication
provider, and can be a component of an identity assertion provider if
you want to develop a separate LoginModule for perimeter
authentication. LoginModules that are not used for perimeter
authentication also verify the proof material submitted (for example, a
user password).

Table 1-2 Related Security Concept Definitions

Minimum System Requirements
The following software is required and not included with CSM Software as listed in
the table below. The software name, version, description, and URL hyperlinks are
indicated in the table.

Software Description Version URL

JDK

The J2SE Software
Development Kit (SDK)
supports creating J2SE
applications

1.5.0_11 or
higher

http://java.sun.com/j2se/1.5.0/d
ownload.html

Oracle
Database Server
(only one is required)

9i http://www.oracle.com/technolo
gy/products/oracle9i/index.html

MySQL 5.0.27 http://dev.mysql.com/download
s/mysql/5.0.html

JBoss
Application Server
(only one is required)

4.0.5 http://labs.jboss.com/jbossas/do
wnloads

Tomcat 5.5.20 http://tomcat.apache.org/downl
oad-55.cgi

Ant Build Tool 1.6.5 or
higher

http://ant.apache.org/bindownlo
ad.cgi

Table 1-3 Minimum Software Requirement

9

Chapter 2 Using the CSM API
This chapter provides an overview of the CSM API and how to use it. Topics in this
chapter include:

• Workflow on this page.

• API Services on page 10.

• Integrating with the CSM Authentication Service on page 10.

• Integrating With the CSM Authorization Service on page 19.

• Audit Logging on page 24.

Workflow
This workflow section outlines the basic steps, both strategic and technical, for
successful CSM integration.

1. Decide which services you would like to integrate with an application. If the
application should authenticate users against an LDAP or other directory,
select Authentication. If granular data protection is important, also integrate
with the authorization and provisioning services. These options allow
administrators to specify which users have access to particular components
of the application.

2. Review the information in this document. It provides an overview, workflow,
and specific deployment and integration steps. If using the provisioning
service, pay special attention to Chapter 3, User Provisioning Tool (UPT)
beginning on page 29.

3. Appoint a Security Schema Administrator who is familiar with the application
and its user base. Using the User Provisioning Tool (UPT), these individuals
input users, roles, etc., and ultimately gives privileges to users for certain
application elements.

4. Determine a security authorization strategy. In this step, the Schema
Administrator and the application team determines what data or links should
be protected and what groups of people should have access to what.

5. Decide upon a deployment approach. As discussed in Table 3-3 UPT
Release Contents

6. Deployment Artifacts on page 67, authorization data can be stored on
separate servers or as part of a common authorization schema. Similarly,
the UPT can be hosted locally or commonly. Your decision may be made
based on speed, security, user commonality, or other factors.

7. Deploy authentication, authorization, and user provisioning. These steps are
listed in detail later in this chapter.

8. Decide if you want to enable audit logging for these services or not. If yes
then configure as explained in the Audit Logging section of this chapter,
beginning on page 24.

9. Input the authorization data using the UPT.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

10

10. Integrate the application code using the integration steps for authentication,
authorization, and user provisioning.

11. Test and refine CSM integration with your application. Confirm that your
authorization policy and implementation meets requirements.

API Services
The Security API’s consist of primary components – Authentication, Authorization,
and User Provisioning. The following corresponding managers control these
components:

• AuthenticationManager – for Authentication

• AuthorizationManager – for Authorization and User Provisioning.

Authentication Manager
The AuthenticationManager is an interface that authenticates a user against a
credential provider. See Integrating with the CSM Authentication Service below to
learn how to integrate with the AuthenticationManager. Developers will work
primarily with the login method. Detailed descriptions about each method’s
functionality and its parameters are present in the CSM API Javadocs.

Authorization Manager
The AuthorizationManager is an interface which provides run-time methods with the
purpose of checking access permissions. See Integrating With the CSM
Authorization Service on page 19 to learn how to integrate with the
AuthorizationManager. This manager also provides an interface where application
developers can provision user access rights.

The user provisioning functionality is primarily used internally by the User
Provisioning Tool (UPT) hence there is no integration shown in this document.
Detailed descriptions about each method’s functionality and its parameters are
present in the CSM API Javadocs.

Integrating with the CSM Authentication Service
The CSM authentication service provides a simple and comprehensive solution for
user authentication. Developers can easily incorporate the service into their
applications with simple configuration and coding changes to their applications.
Currently, the authentication service allows authentication using LDAP and RDBMS
credential providers only.

The CSM authentication service is available for any application. It can be used
exclusively and is effective on its own. However, if you want to use CSM, you do not
have to replace the existing authentication in an application. CSM’s authentication
service can also be used to supplement an application’s current authentication
mechanism.

Chapter 2–1BUsing the CSM API

11

Importing the CSM Authentication Manager Class
To use the CSM authentication service, add the last two import statements shown in
the sample below to the action classes that require authentication.

import gov.nih.nci.abcapp.UserCredentials;

import gov.nih.nci.abcapp.model.Form;

import gov.nih.nci.abcapp.util.Constants;

import gov.nih.nci.security.SecurityServiceProvider;

import gov.nih.nci.security.AuthenticationManager;

The class SecurityServiceProvider is the common interface class exposed by
the CSM application. It contains methods to obtain the correct instance of the
AuthenticationManager configured for that application.

The client application then uses the AuthenticationManager to perform the actual
authentication using CSM.

NOTE: The above import statements identify the client application as “abcapp”; this same
application is used for the examples provided throughout this document.

Using the CSM Authentication Manager Class
The example provided below illustrates how to use the CSM AuthenticationManager
service class in the “abcapp” application.

UserCredentials credentials = new UserCredentials();

credentials.setPassword(Form.getPassword());

credentials.setUsername(Form.getUsername());

//Get the user credentials from the database and login

try{

AuthenticationManager authenticationManager =
SecurityServiceProvider.getAuthenticationManager(“abcapp”);

boolean loginOK = authenticationManager.login(credentials.getUsername(),
credentials.getPassword());

 if (loginOK)System.out.println("SUCESSFUL LOGIN");

 else System.out.println("ERROR IN LOGIN");

 }catch (CSException cse){

 System.out.println("ERROR IN LOGIN");

}

The client class obtains the default implementation of the AuthenticationManager by
calling the static getAuthenticationManager method of the SecurityServiceProvider
class and passing the Application Context name (“abcapp”). It then invokes the login
method, passing the user’s ID and password.

Note that the application name should match the name used in the configuration
files for JAAS to work correctly. If the credentials provided are correct, a Boolean
true is returned indicating that the user is authenticated. If there is an

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

12

authentication error, a CSException is thrown with the appropriate error message
embedded.

Installation and Deployment Configurations
This section serves as a guide to help developers integrate applications with CSM’s
authentication service. It outlines the process required and provides the information
developers need to know in order to successfully integrate CSM’s authentication
service. This includes:

• CSM API JAR placement

• LDAP/RDBMS properties and configuration

• Database properties and configuration

• If audit logging, CLM API JAR placement and configuration.

The CSM authentication service can be used on its own or to supplement an
application’s current authentication mechanism. Currently, only RDBMS-based and
LDAP-based authenticated is supported.

JAR Placement
The CSM API’s application is available as a JAR file, csmapi.jar, which must be
placed in the class path of the application. Along with this JAR, there are many
supporting JARs on which the CSM API depends. In case of web applications, these
files should be added into the folder: <application-web-root>\WEB-INF\lib.

Configuring Lock-out In Authentication Manager
If desired, you can use the optional user lockout feature provided by CSM’s default
JAAS implementation of Authentication Manager.

There are three properties (listed below) that must be properly configured in order to
use the lockout manager. If any of the three do not have a valid value, the lockout
manager is disabled. To be valid, these values must be non-zero positive integers.

• lockout-time: This property specifies the time (in milliseconds) that the
user will be locked out after the configured number of unsuccessful login
attempts has been reached. Default value = 1800000 milliseconds.

• allowed-login-time: This property specifies the time in milliseconds in
which the configured number of unsuccessful login attempts must occur in
order to lock the user out. Default value = 60000 milliseconds

• allowed-attempts: This property specifies the number of unsuccessful
login attempts allowed before the user account is locked out. Default value
= 3.

Alternatively, in the client application class, you can call and provide values for the
lockout parameters by using the following method of SecurityServiceProvider Class:

public static AuthenticationManager getAuthenticationManager(String
applicationContextName, String lockoutTime, String allowedLoginTime, String
allowedAttempts) throws CSException, CSConfigurationException

Chapter 2–1BUsing the CSM API

13

RDBMS Credential Provider Properties and Login Module
Configuration

In order to authenticate using an RDBMS database, developers must provide:

• The details about the database,

• The actual query which will make the database calls.

The CSM goal is to make authentication work with any compatible application or
credential provider. To do this, CSM uses the same Login Modules to perform
authentication, requiring these modules to possess a standard set of properties.

The properties needed to establish a connection to the database include:

• Driver - The database driver loaded in memory to perform database
operations.

• URL - The URL used to locate and connect to the database.

• User - The user name used to connect to the database.

• Password - The password used to connect to the database.

The following property provides the database query to be used to retrieve the user:

• Query - The query that will be fired against the RDBMS tables to verify the
user ID and the password passed for authentication.

The next sections provide instructions for configuring a login module using either
JAAS or the JBoss login-config.xml file.

Configuring an RDBMS Login Module in JAAS
Developers can configure a login module for each application by making an entry in
the JAAS configuration file for that application name or context.

The general format for making an entry into the configuration files is shown below:
Application 1 {

 ModuleClass Flag ModuleOptions;

 ModuleClass Flag ModuleOptions;

 ...

 };

Application 2 {

 ModuleClass Flag ModuleOptions;

 ...

 };

Application 1 {

For “abcapp”, which uses RDBMSLoginModule, the JAAS configuration file entry
would appear as follows:

abcapp

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

14

{

 gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule
Required

 driver="oracle.jdbc.driver.OracleDriver"

 url="jdbc:oracle:thin:@oracle_db_server:1521:abcappdb"

 user="USERNAME"

 passwd="PASSWORD"

 query="SELECT * FROM users WHERE username=? and password=?"

}

The configuration file entry shown above contains the following:

• The application is abcapp.

• The ModuleClass is
gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule.

• The Required flag indicates that authentication using this credential source
is a must for overall authentication to be successful.

• The ModuleOptions are a set of parameters that are passed to the
ModuleClass to perform its actions.

• The database driver is passed as:
driver="oracle.jdbc.driver.OracleDriver".

• The URL for the database is:
url="jdbc:oracle:thin:@oracle_db_server.nci.nih.gov:1521:abcappdb"

• The User (user ID) is passed as: user="USERNAME"

• The Password given is passed as: passwd="PASSWORD"

• The Query sent to the database to verify the user is:
query="SELECT * FROM users WHERE username=? and password=?"

The example shown indicates that since the “abcapp” application has only one
credential provider, only one corresponding entry is made in the configuration file.

If the application uses multiple credential providers, the LoginModules can be
stacked. In addition, as shown by the generic format for the configuration file (seen
on the previous page), a single configuration file can contain entries for multiple
applications.

Configuring an RDBMS Login Module in JBOSS
If the application uses a JBoss server, you can configure a login module by using
the JBoss login-config.xml file, located at: {jboss-home}\server\{server-
name}\conf\login-config.xml.

The example below shows how the entry for the “abcapp” application would appear:
<application-policy name = "abcapp">

 <authentication>

Chapter 2–1BUsing the CSM API

15

 <login-module code =
"gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule" flag =
"required" >

 <module-option name="driver"> oracle.jdbc.driver.OracleDriver</module-
option>

 <module-option
name="url">jdbc:oracle:thin:@oracle_db_server:1521:abcappdb</module-option>

 <module-option name="user">USERNAME</module-option>

 <module-option name="passwd">PASSWORD</module-option>

 <module-option name="query">SELECT * FROM users WHERE username=?
and password=?</module-option>

 <module-option name="encryption-enabled">YES</module-option>

 </login-module>

 </authentication>

</application-policy>

As shown in this example:

• The application-policy specifies the application for which we are defining
the authentication policy: abcapp.

• The login-module is the LoginModule class to be used to perform the
authentication task:
gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule

• The flag provided is required.

• The module-options list the parameters passed to the LoginModule to
perform the authentication task. In the above example they are:

<module-option name="driver">oracle.jdbc.driver.OracleDriver</module-
option>

<module-option name="url">jdbc:oracle:thin:@cbiodb2-
d.nci.nih.gov:1521:cbdev</module-option>

<module-option name="user">USERNAME</module-option>

<module-option name="passwd">PASSWORD</module-option>

<module-option name="query">SELECT * FROM users WHERE
username=? and password=?</module-option>

<module-option name=”encryption-enabled”>YES</module-option>

Enabling Encryption in the RDBMS Login Module
Encrypted passwords have been supported since CSM v3.2, and for version 4.0,
encrypted passwords by default and stored them in the CSM database.

If an application is using the CSM User Table as the credential provider, you must
use a module-option entry (shown below and in the abcapp example above) in the
JBoss login-config.xml to tell the RDMBS Login Module to use encryption.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

16

<module-option name="encryption-enabled">YES</module-option>

Adding the encryption-enabled option with a YES value uses the default CSM
encryption to encrypt the user entered password before verifying it against CSM’s
User Table.

LDAP Credential Provider Properties and Login Module Configuration
The CSM default implementation provides an LDAP-based authentication module
for use by client applications. In order to authenticate using LDAP, developers must
provide:

• Details about the LDAP server, and

• The label for the user ID Common Name (CN) or User Identification (UID) in
the LDAP server.

The properties needed to establish a connection to the LDAP include:

• ldapHost – The URL of the actual LDAP server.

• ldapSearchableBase – The base of the LDAP tree from where the search
should begin.

• ldapUserIdLabel – The actual user ID label used for the CN entry in LDAP.

For LDAP credential providers that do not allow anonymous binding to verify user
credentials, you will need to provide the common admin user name and password
as additional properties to the LDAP Login Module configuration. Those properties
are as follows:

• ldapAdminUserName – The fully qualified name of the common admin
user, or the look up to be used to bind to the LDAP server in order to verify
individual user ids and passwords.

• ldapAdminPassword – Password for the LDAP admin user mentioned
above.

See Configuring LDAP Login Module Using Anonymous Bind on page 18 for details.

Configuring LDAP Login Module in JAAS
Developers can configure a login module for each application by making an entry in
the JAAS configuration file for that application name or context.

The general format for making an entry into the configuration files is shown below:
Application 1 {

 ModuleClass Flag ModuleOptions;

 ModuleClass Flag ModuleOptions;

 ...

 };

Application 2 {

 ModuleClass Flag ModuleOptions;

 ...

Chapter 2–1BUsing the CSM API

17

 };

Application 1 {

The example below shows the JAAS config file entries needed for abcapp to use the
LDAP Login Module.

abcapp

{

 gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule Required

 ldapHost= “ldaps://ncids2b.nci.nih.gov:636”

 ldapSearchableBase= “ou=nci,o=nih”

 ldapUserIdLabel=”cn”;

};

As shown in the above example:

• The application is abcapp.

• The ModuleClass is
gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule.

• The Required flag indicates that authentication using this credential source
is a must for overall authentication to be successful.

• The LDAP details are passed as follows:

ldapHost="ldaps://ncids2b.nci.nih.gov:636"

ldapSearchableBase= “ou=nci,o=nih”

ldapUserIdLabel=”cn”

The example shown indicates that since the “abcapp” application has only one
credential provider, only one corresponding entry is made in the configuration file.

If the application uses multiple credential providers, the LoginModules can be
stacked. In addition, as shown by the generic format for the configuration file, a
single configuration file can contain entries for multiple applications.

Configuring LDAP Login Module in JBOSS
If the application uses a JBoss server, you can configure a login module by using
the JBoss login-config.xml file, located at: {jboss-home}\server\{server-
name}\conf\login-config.xml.

The example below shows how the entry for the “abcapp” application would appear:
<application-policy name = "abcapp">

 <authentication>

 <login-module code =
"gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule" flag =
"required" >

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

18

 <module-option name="ldapHost">ldaps://ncids2b.nci.nih.gov:636</module-
option>

 <module-option name="ldapSearchableBase">ou=nci,o=nih</module-option>

 <module-option name="ldapUserIdLabel">cn</module-option>

 </login-module>

 </authentication>

</application-policy>

As shown in this example:

• The application-policy specifies the application for which we are defining
the authentication policy: abcapp.

• The login-module is the LoginModule class to be used to perform the
authentication task:
gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule.

• The flag provided is required.

• The module-options list the parameters passed to the LoginModule to
perform the authentication task. In the above example they are:

<module-option
name="ldapHost">ldaps://ncids2b.nci.nih.gov:636</module-option>

<module-option name="ldapSearchableBase">ou=nci,o=nih</module-
option>

<module-option name="ldapUserIdLabel">cn</module-option>

Configuring LDAP Login Module Using Anonymous Bind
If an application uses an LDAP server that does not support using anonymous binds
to perform lookups, you will need to specify an Admin ID (or a lookup user) and
password in order to bind to the LDAP server to verify user names and passwords.
To do this you must provide additional parameters for the LDAP LoginModule entry
in the JAAS Login Configuration file.

Below is an example of the JBoss login-config.xml file containing an
anonymous bind configuration for the abcapp application:

<application-policy name = "OpenLDAP">

 <authentication>

 <login-module code =
"gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule" flag =
"required" >

 <module-option name="ldapHost">ldap://ncicbds-dev.nci.nih.gov:389</module-
option>

 <module-option name="ldapSearchableBase">ou=csm,dc=ncicb-
dev,dc=nci,dc=nih,dc=gov</module-option>

 <module-option name="ldapUserIdLabel">uid</module-option>

Chapter 2–1BUsing the CSM API

19

 <module-option
name="ldapAdminUserName">uid=csmAdmin,ou=csm,dc=ncicb-
dev,dc=nci,dc=nih,dc=gov</module-option>

 <module-option name="ldapAdminPassword">PASSWORD</module-option>

 </login-module>

 </authentication>

</application-policy>

As shown in the example:

• The application-policy specifies the application for which we are defining
the authentication policy: abcapp.

• The login-module is the LoginModule class to be used to perform the
authentication task:
gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule.

• The flag provided is required.

• The module-options list the parameters passed to the LoginModule to
perform the authentication task. In this example they are:

<module-option
name="ldapHost">ldaps://ncids2b.nci.nih.gov:636</module-option>

<module-option name="ldapSearchableBase">ou=nci,o=nih</module-
option>

<module-option name="ldapUserIdLabel">cn</module-option>

<module-option
name="ldapAdminUserName">uid=csmAdmin,ou=csm,dc=ncicb-
dev,dc=nci,dc=nih,dc=gov</module-option>

<module-option
name="ldapAdminPassword">PASSWORD</module-option>

Activating CLM Audit Logging
In order to activate the CLM’s audit logging capabilities for Authorization, the user
needs to follow the steps to deploy audit logging service as mentioned in the Audit
Logging section on page 24.

Integrating With the CSM Authorization Service
The CSM security APIs can be used programmatically to facilitate security needs at
runtime. The APIs have been written using Java, so it is assumed that developers
using them are familiar with the Java language.

This section provides instructions for integrating the CSM APIs with JBoss. The
integration is flexible enough to meet most users’ needs, depending on the number
of applications hosted on the JBoss server, and whether or not a common schema
is used.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

20

The following scenarios are supported for using CSM APIs with JBoss:

• JBOSS hosts a number of applications

o using a common schema

o using separate schemas

• BOSS hosts only one application

o using a common schema

o using separate schemas

Importing and Using the CSM Authorization Manager Class
To import the CSM authorization service, add the last two import statements shown
in the sample below to the action classes that require authentication.

import gov.nih.nci.abcapp.UserCredentials;

import gov.nih.nci.abcapp.model.Form;

import gov.nih.nci.abcapp.util.Constants;

import gov.nih.nci.security.SecurityServiceProvider;

import gov.nih.nci.security.AuthorizationManager;

The class SecurityServiceProvider is the common interface class exposed by
the CSM application. It contains methods to obtain the correct instance of the
AuthorizationManager configured for that application.

NOTE: The above import statements identify the client application as “abcapp”; this same
application is used for the examples provided throughout this document.

The client application then uses the AuthorizationManager to perform the actual
authentication using CSM. The example below illustrates how to use the CSM
AuthorizationManager service class in the “abcapp” application.

try {

AuthorizationManager authorizationManager =
SecurityServiceProvider.getAuthorizationManager(“abcapp”);

boolean hasPermission = authorizationManager.checkPermission(“user
name” , “resource name”, “operation”);

if (hasPermission){ System.out.println(“PERMISSION GRANTED.");

}else{ System.out.println(“PERMISSION DENIED "); }

}catch (CSException cse){

 System.out.println("ERROR IN AUTHORIZATION ");

}

The client class obtains the default implementation of the AuthorizationManager by
calling the static getAuthorizationManager method of the SecurityServiceProvider
class and passing the Application Context name (“abcapp”). It then invokes the
checkPermission method, passing the user’s ID, the resources it is trying to access,
and the operation it wants to perform.

Chapter 2–1BUsing the CSM API

21

Note that the application name should match the name used in the configuration
files as well as configured for the databases for authorization to work correctly. If the
user has the required access permission, a Boolean true is returned, indicating
that the user is authorized. If there is an authorization error, a CSException is
thrown with the appropriate error message embedded.

 Software Products and Scripts
The tables below describe the products and files used for authorization.

Software Product Description

JBoss Server
JBoss is the leading open source, standards-compliant, J2EE-
based application server implemented in 100% Pure Java. Most
caCORE applications use JBoss to host their applications.

MySQL Database

MySQL is an open source database. Its speed, scalability and
reliability make it a popular choice for Web developers. CSM
recommends storing authorization data in a MySQL database
because it is a light database, easy to manage and maintain.

Oracle Database
Oracle’s relational database was the first to support the SQL
language, which has since become the industry standard. It is a
proprietary database which requires licenses.

Hibernate

Hibernate is an object/relational persistence and query service
for Java. CSM requires developers to modify a provided
Hibernate configuration file (hibernate.cfg.xml) in order to
connect to the appropriate application authorization schema.

Table 2-1 Authorization software products

File Description

hibernate.cfg.xml The sample XML file, which contains the hibernate-
mapping and the database connection details.

AuthSchemaMySQL.sql OR
AuthSchemaOracle.sql OR
AuthSchemaPostgres.sql

This Structured Query Language (SQL) script is used
to create an instance of the Authorization database
schema which will be used for the purpose of
authorization. In 3.0.1 and subsequent releases, this
script populates the database with CSM Standard
Privileges that can be used to authorize users. The
same script can be used to create instances of
authorization schema for a variety of applications.

DataPrimingMySQL.sql OR
DataPrimingOracle.sql OR
DataPrimingPostgres.sql

This SQL script is used for priming data in the
authorization schema. Note that if the authorization
database is going to host the UPT also then you need
to use UPT Data Priming Scripts instead and add the
application through the UPT.

mysql-ds.xml OR
oracle-ds.xml OR
Postgres-ds.xml

This file contains information for creating a
datasource. One entry is required for each database
connection. Place this file in the JBoss deploy
directory.

Table 2-2 Authorization Configuration and SQL Files

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

22

Installation and Deployment Configurations
This section serves as a guide to help developers integrate applications with CSM’s
Authorization Service. It outlines a step by step process that addresses what
developers need to know in order to successfully integrate CSM’s Authorization,
which includes:

• CSM API jar placement

• Database properties and configuration

• If audit logging, CLM API jar placement and configuration.

JAR Placement
The CSM application is available as a JAR which needs to be placed in the
classpath of the application. Along with this JAR, there are many supporting JARs
on which the CSM API depends. These should be added into the following folder:
<application-web-root>\WEB-INF\lib.

Database Properties and Configuration
You can use either MySQL or Oracle as your database of choice to host the
authorization data. Since the instructions in this section provide steps for both
database types, be sure you follow the appropriate instructions based on your
database selection.

When deploying Authorization, application developers may want to make use of a
previously-installed common Authorization Schema. In this case, a database
already exists so you do not need to create one (skip the procedures in Step 1
below).

NOTE: The Authorization Schema used by the run-time API and the UPT must be the
same.

Step 1: Create and Prime the Database
Use the following steps (if necessary) to create a new database and prime it for
authorization deployment. These procedures also install a new Authorization
Schema. If you are using a previously-installed common Authorization Schema, skip
these instructions as your database and schema already exist.

1. Log into the database using an account id that has permission to create new
databases.

2. In the AuthSchemaMySQL.sql or AuthSchemaOracle.sql script,
replace the <<database_name>> tag with the name of the authorization
schema (e.g. “caArray”).

NOTE: The Authorization Schema used by the run-time API and the UPT
must be the same.

3. Save and then run the edited script from the database prompt. This should
create a database with the <<database_name>> you provided in the script.
The new database will also include CSM Standard Privileges.

Chapter 2–1BUsing the CSM API

23

4. In the DataPrimingMySQL.sql or DataPrimingOracle.sql file, do the
following:

a. Replace the <<application_context_name>> with the name of
application (e.g., “abcapp”). In later configuration steps, this will be called
Application Context Name. This is the key to deriving security for the
application.

b. Replace the <<super_admin_login_id>>,
<<super_admin_first_name>> and
<<super_admin_last_name>> entries with the super admin user’s
login id, first name, and last name.

NOTE: The default password is always “changeme” and should used for
logging into the application’s UPT for the first time. After initial
login, change this password immediately.

5. Save and then run the edited script from the database prompt. This should
populate the database with the initial data. Verify this by querying the
application table. It should include one record only.

Step 2: Configure the Datasource
Use the steps below to modify the database file that contains information for
creating a datasource.

6. In the mysql-ds.xml or oracle-ds.xml file, edit the entries as follows:.
One entry is required for each database connection.

a. Replace the <<application_context_name>> tag with the name of
the authorization schema. If you created a database using the above
procedures, this is the name entered as the <<database_name>> in
Step 2 of those procedures. Otherwise use the name of your existing
authorization schema.

b. Replace the <<database_user_id>> and
<<database_user_password>> with the user id and password of the
user account that will be used to access the authorization schema.

c. Replace the <<database_url>> with the URL needed to access the
authorization schema residing on the database server.

7. Save and then place the edited file into the JBoss deploy directory.

Below is an example of a configured mysql-ds.xml file. The name of the
authorization schema in the example is “csmupt”.

<datasources>

 <local-tx-datasource>

 <jndi-name>csmupt</jndi-name>

 <connection-url>jdbc:mysql://mysql_db:3306/csmupt</connection-url>

 <driver-class>org.gjt.mm.mysql.Driver</driver-class>

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

24

 <user-name>name</user-name>

 <password>password</password>

 </local-tx-datasource>

 <local-tx-datasource>

 <jndi-name>security</jndi-name>

 <connection-url>jdbc:mysql://mysql_db:3306/csd</connection-url>

 <driver-class>org.gjt.mm.mysql.Driver</driver-class>

 <user-name>name</user-name>

 <password>password</password>

 </local-tx-datasource>

</datasources>

Audit Logging
This section serves as a guide to help developers integrate audit logging for CSM. It
outlines a step-by-step process that addresses what developers need to know in
order to successfully integrate the Common Logging Module (CLM), including:

• Jar placement,

• Configuring the JDBC Appender configuration file or the regular log4j
configuration file.

In an effort to make CSM compliant with CRF 21/ part 11, CSM provides auditing
and logging functionality. Currently CSM uses log4j for logging application logs.
However, CRF21/ part 11 requires that certain messages are logged in a specific
way. For example, all objects should be logged in a manner that allows them to be
audited at later stage.

There are two types of audit logging: event logging and object state logging. These
audit logging capabilities are provided through the CLM API that is available from
clm.jar.

Audit logging is configurable by the client application developer via an application
property configuration file. By placing the clm.jar file, along with the application
property configuration file, in the same class path as the csmapi.jar file, the client
application is able to utilize the built-in audit logging functionality. The logging results
can be saved in a database or in a flat text file, depending on the configuration. In
addition, logging can be enabled or disabled for any fully qualified class name.

JAR Placement
The audit logging application is available as a JAR file, called clm.jar. This JAR
file along with the csmapi.jar must be placed in the classpath of the application.

If the client application is integrating the CSM APIs as part of a web application on
JBoss, then clmwebapp.jar should be placed in the lib directory of the WEB-INF
folder, and clm.jar should be placed in the common lib directory of JBoss.

Chapter 2–1BUsing the CSM API

25

Integrating CLM APIs with CSM APIs
The various services exposed by CSM have been enabled for the purpose of using
CLM for audit and logging. If configured properly, client applications using the CSM
APIs can enable the internal CLM-based audit and logging capabilities.

The sections that follow discuss the major components provided by the CLM APIs,
and how they work to enable the audit logging capabilities provided by CSM.

NOTE: CSM is capable of performing both event and object state audit logging only for the
operations and data pertaining to CSM. In order to use CLM features without using
CSM, the client application can be downloaded and install CLM separately. In this
case CLM can be used (without CSM) to provide event logging and automated
object state logging capabilities using the special appender and schema. The log
locator tool can also be used for the purpose of viewing the logs.

Event Logging
Both the Authentication and Authorization services have been modified to enable
the logging of every event that the user performs.

For the authentication service, the CSM APIs log the login and logout events of the
user. In addition, when a user lockout event occurs, a log is generated that records
the username that was locked out.

For the authorization service, the CSM APIs track all create, update, and delete
operations invoked by the client application. Read operations are not logged
because they cause no changes to the data.

The UPT can perform all of the audit and logging services because it uses the CSM
APIs (which use CLM APIs) to perform operations on the database.

Since the CLM APIs are based on log4j, the following logger names are used in
the CSM APIs to perform the event logging:

Authentication Event Logger Name: CSM.Audit.Logging.Event.Authentication

Authorization Event Logger Name: CSM.Audit.Logging.Event.Authorization

The log4j log level used for all event logs is INFO.

In order to enable event logging, these loggers should be configured in the
log4j.xml config file of Jboss as shown in the JDBC Appender section below.

Object State Logging
The Authorization Service of the CSM is enabled to log the object state changes
using the automated object state logger available through the CLM APIs. This
logger tracks all object state changes made using the CSM APIs. It also uses the
log4j-based CLM APIs and the following logger name:

Authorization Object State Logger Name:
 CSM.Audit.Logging.ObjectState.Authorization

The log4j log level used for all object state logs is INFO.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

26

In order to enable object state logging, this logger should be configured in the
log4j.xml config file of JBoss as shown in the JDBC Appender section below.

User Information
For the purpose of audit logging, in order to track which user is performing the
specific operation being logged, CSM needs to obtain user information like user id
and session id, and also the organization to which the user belongs. Since these
values are only available with the client application, the client application needs to
pass this information to the CSM APIs. To accomplish this, the client application
must use the utility class UserInfoHelper provided by the underlying CLM APIs. This
information must be set before calling any of the create, update or delete functions
of the CSM APIs.

Common Logging Database
The Common Logging Database is the persistence storage used by the JDBC
Appender to store the audit logs. The Log Locator application of CLM connects to
this database to allow a user to browse the logs.

JDBC Appender
The CLM provides an asynchronous JDBC Appender to persist the audit logs. Thus,
an application that wants to enable audit logging for the CSM APIs should also
configure this Appender.

A sample log4j file entry is shown below:
<?xml version="1.0" encoding="UTF-8" ?><!DOCTYPE log4j:configuration SYSTEM
".\log4j.dtd">

<log4j:configuration xmlns:log4j='http://jakarta.apache.org/log4j/'>

<appender name="CLM_APPENDER"
class="gov.nih.nci.logging.api.appender.jdbc.JDBCAppender">
 <param name="application" value="csm" />
 <param name="maxBufferSize" value="1" />
 <param name="dbDriverClass" value="org.gjt.mm.mysql.Driver" /> <param
name="dbUrl"
value="jdbc:mysql://<<SERVER_NAME>>:<<PORT>>/<<CLM_SCHEMA_NAME>>
" /> <param name="dbUser" value="<<DB_USER>>" />
 <param name="dbPwd" value="<<PASSWORD>>" />
 <param name="useFilter" value="true" />
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value=":: [%d{ISO8601}] %-5p
%c{1}.%M() %x - %m%n" />
 </layout>

</appender>

<category name="CSM.Audit.Logging.Event.Authentication">
 <level value="info" /> <appender-ref
ref="CLM_APPENDER" /> </category>

<category name="CSM.Audit.Logging.Event.Authorization">
 <level value="info" />
 <appender-ref ref="CLM_APPENDER" />
 </category>

Chapter 2–1BUsing the CSM API

27

<category name="CSM.Audit.Logging.ObjectState.Authorization">
 <level value="info" />
 <appender-ref ref="CLM_APPENDER" />

</category>

</log4j:configuration>

Deployment Steps
The sections below provide the basic instructions necessary for enabling the audit
logging capabilities provided by CSM (via CLM).

Step 1: Create and Prime the MySQL Logging Database
A database must be created that will persist the audit logs generated as a function
of using of the CSM APIs. Refer to the CLM Application Developer’s Guide for
information on creating and priming the database for storing audit logs.

Step 2: Configure the log4j.xml file for JBoss
Use the sample log4j file provided in the CSM release to configure the
log4j.xml file for JBoss. See the sample log4j file entry shown above.

8. Open the log4j.xml file and do the following:

d. Replace the <<SERVER_NAME>>, <<PORT>> and
<<CLM_SCHEMA_NAME>> entries with the appropriate values. These are
the server name, port, and schema name for the database created and
primed in the step noted above.

e. Replace the <<DB_USER>> and <<PASSWORD>> entries with the
corresponding values for the user that has access to the schema.

9. Configure the appropriate loggers based on whether the application wants to
enable event audit logging for authentication and authorization, or object
state audit logging for authorization. See Event Logging or Object State
Logging on page 25 as needed.

NOTE: The names of the loggers must not differ from the sample.

In the case of UPT the same log4j config file can be used.

Step 3: View the Logs
CLM provides a web-based locator tool that can be used to browse audit logs. The
configuration steps for setting up the browser are defined in more detail in the CLM
Log Locater Tool (LLT) User Guide located on GForge at:
https://gforge.nci.nih.gov/docman/index.php?group_id=49&selected_doc_group_id=
2523&language_id=1.

https://gforge.nci.nih.gov/docman/index.php?group_id=49&selected_doc_group_id=2523&language_id=1�
https://gforge.nci.nih.gov/docman/index.php?group_id=49&selected_doc_group_id=2523&language_id=1�

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

28

29

Chapter 3 User Provisioning Tool
(UPT)

The CSM User Provisioning Tool (UPT) is a web-based application used to
provision an application’s authorization data. The UPT provides the ability to create,
edit, and delete authorization data elements such as roles, protection elements,
users, groups, etc. Once the necessary elements have been created, the UPT also
provides the ability to associate those elements with each other as needed. The
runtime API can then use this authorization data to authorize user actions.

The intended audience for this section includes all users of the UPT including Super
Administrators who may add applications and assign administrators for those
applications, and Administrators who will perform provisioning for a particular
application. This chapter provides an overview of the UPT, outlines a suggested
workflow, and explains how to perform all UPT operations.

This chapter also explains how to deploy the UPT from start to finish – from
uploading the Web application Archive (WAR) file, to editing configuration files, to
synching the UPT with the application.

Workflow
The UPT includes two modes: Super Admin and Admin. The Super Admin
operations are typically performed first, as they register the application and
application administrators. After that, the primary mode operations, including
authorization user provisioning, can occur.

Super Admin – To Register Applications and Admins
When first deploying the UPT for a particular application, the developer registers the
application in Super Admin mode. Once the application is registered, the Super
Admin can add the users who will serve as application administrators. The Super
Admin can also register additional applications as they become available.

For details, see Super Admin Mode beginning on page 40.

Admin – To Administer a Registered Application
The primary or Admin mode of the UPT is used to perform user provisioning for a
particular application. The Admin mode follows a simple workflow of creating
elements, assigning them, and then associating them.

For details, see Admin Mode beginning on page 48.

Login
The Login page of the UPT includes summary text, What’s New, Did You Know, and
most importantly the Login section itself. Logging into the UPT requires a Login ID,
Password, and Application Name.

For a majority of UPT implementations, the NCICB LDAP serves as the
authentication mechanism. This means that the user’s Login ID is the same as the

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

30

user’s NCICB username. In the figures below, the demonstration user is Eric Copen,
whose NCICB username is “copene”. Similarly, the password is the same as the
NCICB password. The rules from the authentication system are applied to the
username and password.

If logging on as a Super Admin, enter the application Name csmupt as shown in
Figure 3-1 below.

Figure 3-1 Login as Super Admin

If logging in as an Admin, enter the appropriate application name as shown in Figure
3-2 below, where the application name is security.

Figure 3-2 Login as Admin

Since UPT uses CSM’s Authentication Manager, it can be configured to lock a user
out if they try to make an unauthorized entry into the UPT. If configured
appropriately, the UPT will the user out after a pre-configured number of
unsuccessful attempts have been reached within the allowed login time frame. Once
locked out, the user can log in only after the configured amount of lockout time has
elapsed. This provides security from hacking attempts to break into the UPT.

Login and Forwarding
The CSM UPT v4.2 version is backwards-compatible with earlier versions of CSM,
meaning that the CSM UPT v4.2 is capable of working with existing older versions
of CSM Schema with little or minor changes to the schema. The v4.2 UPT is able to
distinguish between different versions of CSM and provide a user experience that is
consistent with the CSM version the user is currently using. This new feature is
useful if you want your application to use the latest UPT while continuing to use an
older version of CSM.

Chapter 3–2BUser Provisioning Tool (UPT)

31

The CSM UPT 4.2 provides seamless integration of different versions of the UPT. It
does this by allowing the user/admin to login using a common UPT login screen,
and by using automatic version-detection forwarding logic to determine the CSM
version of the application context the admin is attempting to log into.

Once an admin is authenticated, the CSM UPT login and forwarding logic obtains
AuthorizationManager for each supported CSM version one by one and checks if
the CSM Application context exists in that (CSM Version) AuthorizationManager.

For example, a user is working with a CSM UPT installation that supports CSM
versions 4.2, 4.1, 4.0, and 3.2. The user tries to log into an application csmupt32.
After the user authentication, the UPT login and forwarding logic sequentially
invokes AuthorizationManager for each supported version. If the version of the
csmupt32 application doesn’t match v4.2, the UPT proceeds to invoke
AuthorizationManager of the next available version, v4.1. It repeats this process
until it finds a version match.

When an AuthorizationManager is successfully obtained, it means the application is
of that particular version. In our example, the csmupt32 application matches with
version 3.2. Once the version matches, the forwarding logic checks for user
permissions for the particular application. If the user has access permissions for the
csmupt32 application, the forwarding logic determines the version of the CSM UPT.
The forwarding logic then forwards the user to the UPT32 context, allowing the user
to utilize UPT v3.2 functionality seamlessly.

If the UPT does not find a matching CSM (AuthorizationManager) version for the
CSM Application context, the login and forwarding logic determines that the
application does not exist in any version or schema and returns a login failure on the
login screen.

Common Basic Functions
Within the UPT, there are several common operations that are repeated for most
elements. These operations include Create New, Search, Update, Delete, and
Assign/Associate. The sections that follow describe in more detail how these
operations are performed.

Create New
The same basic steps can be followed to create any element. Use the procedure
provided below as a guide for creating a new element. These particular instructions
create a new User element.

To create a new element:
1. On the element Home page, select the Create A New {element} link. Figure

3-3 below shows the create new and select existing user links.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

32

Figure 3-3 User Links section of the Home Page

2. Enter the details for the element you are creating. Figure 3-4 below shows
the details for entering new user information.

Figure 3-4 Enter New User Details form

3. Select Add to save the new element to the database. This save occurs
immediately.

The Back button returns you to the previous page (in this instance, the
Home page). The Reset button clears the data from the form.

NOTE: No data is saved until the Add button is selected.

Upon a successful save, the system displays Add Successful just below the menu
and above the text.

After you have created the necessary element(s) in Super Admin mode, when you
log into Admin mode, you will see an additional set of buttons below the details
table. These buttons are used to administer the application and are discussed in
more detail in the Admin Mode section on page 48.

Example Error Messages
When creating new elements, the UPT performs basic data validation, including field
lengths and formats. If this validation fails, you will receive an error message
explaining the problem.

Figure 3-5 shows the message that appears when a user enters an improperly
formatted email address.

Figure 3-5 Error message for invalid e-mail address

Chapter 3–2BUser Provisioning Tool (UPT)

33

Figure 3-6 shows the message that appears if you attempt to create a new user
using a username already present in the system.

Figure 3-6 Error message for duplicate user entry

Search for and Select Existing Elements
In order to make changes to an existing element, you must find and select the
element. Choosing to Select and Existing {element} opens a search page, allowing
you to enter search criteria.

The same basic steps can be followed to find and select any element. Use the
procedure provided below as a guide. These particular instructions search for and
select an existing Role element.

To find and select an existing element:
1. On the element Home page, select the Select an Existing {element} link.

Figure 3-7 below shows the create new and select existing role links.

Figure 3-7 Role Links section of the Home page

2. In the Search Criteria box that appears, enter the necessary search criteria.
Use the asterisk (*) as a wildcard character. Searches are not case-
sensitive.

Figure 3-8 Search for Role text box

For example, searching for Role* returns Role_name_1, Role_name_2, or
any other role beginning with “Role”. A search of *1 returns anything ending
with “1” such as Role_name_1, Role_name_101, Role_name_51, etc.

3. Click Search to search for matching results.

The Back button returns you to the previous page (in this instance, the
Home page). The Reset button clears the data from the search form.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

34

When the search has completed, the system returns a list of elements
matching the criteria you entered. The results are sorted alphabetically.

Figure 3-9 Search Results for Role element search

4. If the element you want appears in the list, select the radio button of that
element and then click View Details (located below the search results table).
You can select only one element at a time to view.

Figure 3-10 Element with radio button selected

If the element you want does NOT appear, click Back to return to the Search
Criteria page and alter your search. If you cannot find the element you are
looking for, it may not reside in the system.

Once the Details page of the selected element appears, you can use the fields to
update that information, or select to delete the element entirely if appropriate. See
the next section on updating elements or the following section on deleting elements
for more information as needed.

If the search results in no matches, the system displays an error message indicating
there are no matches. Modify the search criteria, and repeat until the intended
results appear.

Update Elements
After you have searched for and selected to view the details of an element, if
necessary you can make changes to the details and update the element’s
information in the database.

The same basic steps can be followed to update the details of any element. Use the
procedure provided below as a guide. These particular instructions update an
existing Protection element.

Chapter 3–2BUser Provisioning Tool (UPT)

35

To update an existing element:
1. Using the search and select procedure provided above, open the details

page for the element.

Figure 3-11 Protection element details form

2. Where necessary, replace the existing text in the details form and select
Update.

Figure 3-12 Details form with new description text

Upon a successful update, the system displays Update Successful just below the
menu and above the text.

Whenever updates are made, the UPT performs basic data validation, including
checks for field lengths and formats. The systems also checks for duplicates,
preventing you from changing the element name to one that already exists. If any of
the validation checks fail, you will receive an error message explaining the problem.
See Example Error Messages above for examples of these messages.

Deleting an Existing Element
After you have searched for and selected to view the details of an element, if
necessary you can select to delete the element from the database.

The same basic steps can be followed to delete any element. Use the procedure
provided below as a guide. These particular instructions delete an existing Group
element.

To delete an existing element:
1. Using the search and select procedure provided above, open the details

page for the element.

2. Click the Delete button located on the element details screen.

3. A confirmation dialog box appears asking if you are sure you want to delete
the record. Click OK to confirm. Clicking Cancel negates the operation and
returns you to the Details screen.

Upon confirming the deletion, the system returns you to the element home page and
displays Delete Successful in blue text.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

36

Assignments and Associations
The elements Role, Protection Group, and Group are simply collections of other
elements – Privileges, Protection Elements, and Users respectively. Provisioning is
the process of assigning elements to these “grouping” elements and deassigning
(removing) elements from a grouping element.

For example, assigning Users to Groups greatly improves the ease with which an
admin can provision access rights. An Admin can instantly assign a role and
protection group to an entire group of users instead of repeating the same
assignment for each individual user.

The process of assigning and deassigning elements differs, depending on whether
you are working from the group element perspective or from the individual element
perspective. Each of these processes are outlined briefly in the sections that follow.
Specific instructions for assigning each type of element appears in the detail section
for administering that element.

NOTE: The buttons that allow for provisioning of elements only appear in Admin Mode;
Super Admins cannot do element provisioning. For more details on the available
functionality for each mode, see Super Admin Mode on page 40, and Admin Mode on
page 48.

Assigning or Deassigning Elements - Individual to Group
If you logged into Admin Mode and are working with an individual element (user,
protection element, or privilege), you will notice a series of buttons on the Details
page for the element that looks something like Figure 3-13 below:

Figure 3-13 User Element Details option buttons in Admin Mode

Depending on the type of element you have open, the button labels will vary but
each functions in essentially the same way. They allow you to assign or associate
other elements (group or individual) to the currently open element.

The left-most button contains the label Associated {group element} and is used to
associate the open individual element to one or more group elements. For example,
if the currently open element is a Protection Element, the leftmost button reads
Associated PG, because a Protection Group is a grouping of Protection Elements.
If the open element is a user element, the button reads Associated Groups as
shown above, because a Group is a collection of Users.

Clicking the Associated {element} button opens a screen that typically contains two
lists: an Available {group element} list and an Assigned {group element} list, as
shown in . These lists, as the labels indicate, show you which groups are available
for assignment, and to which groups the element is already assigned.

Chapter 3–2BUser Provisioning Tool (UPT)

37

Figure 3-14 Groups lists for selected User element

In the figure above, the selected user (the one whose details page was open and
from which the Associated Groups button was clicked) is a member of
Group_Northeast, Group_ProjectLead, and Groups_Research_A.

In order to assign this user to another group, select the group from the top list box
(Available Groups) and click Assign. This moves that group from the top to the
bottom box, indicating assignment of the user to that group.

In order to remove the user from a group, select the group from the bottom list box
(Assigned Groups) and click Deassign. This moves that group from the bottom list
box to the top list box, indicating that the user is no longer a member of that group.

NOTE: You may select multiple items from each list using the standard CTRL+SELECT (non-
sequential selection) or SHIFT+SELECT (sequential selection) methods.

When the groups to which you want to assign the element appear in the correct lists
(Available or Assigned), you must click Update. This saves your changes and
returns you to the element Details screen.

While the example shown here is specific to User and Group elements, the same
principal applies, regardless of the type of individual element you are working with.

Assigning or Deassigning Elements - Group to Individual
If you logged into Admin Mode and are working with a group element (group,
protection group, or role), you will notice a series of buttons on the Details page for
the element that looks something like Figure 3-15 below:

Figure 3-15 Group Element Details option buttons in Admin Mode

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

38

Depending on the type of element you have open, the button labels will vary but
each functions in essentially the same way. They allow you to assign or associate
other elements (group or individual) to the currently open element.

The left-most button contains the label Associated {individual element} and is
used to associate the open group element with one or more individual elements. For
example, if the currently open element is a Protection Group, the leftmost button
reads Associated PE, because a Protection Group is a grouping of Protection
Elements. If the open element is a User element, the button reads Associated
Users as shown above, because a Group is a collection of Users.

Clicking the Associated {element} button opens a window that lists all of the
individual elements currently associated with that group.

Figure 3-16 List of Protection Elements assigned to a Protection Group

In the figure above, the Associated PE button was clicked from the details page of a
protection group. The resulting window lists the two protection elements currently
assigned to that protection group: test1001 and PE1.

To remove an assigned individual element from the list, select that element and click
Deassign.

NOTE: You may select multiple items from the list using the standard CTRL+SELECT (non-
sequential selection) or SHIFT+SELECT (sequential selection) methods.

To add an individual element to this group, click Assign {element}. The label of this
button will vary depending on the type of element appropriate for the group type. In
the example shown, you would click Assign PE to add protection elements to this
protection group.

A search screen appears, allowing you search for the collection of elements you
want to add to this group.

Chapter 3–2BUser Provisioning Tool (UPT)

39

Figure 3-17 Search form for adding a Protection Element to a Protection Group

Use the search form to find the elements you want to add to the group. Since the
result set allows you to select multiple elements to assign, we highly recommend
performing a wildcard search using an asterisk (*) so that your result set can contain
as many of the necessary elements as possible. This reduces the number of times
you will need to perform these steps to complete the element assignments.

When finished, click Search. The result set appears, with check boxes located to
the left of each item, allowing you to select multiple elements to add to the group.

Figure 3-18 Result Set from Search for elements to add to group

Notice in the figure above that the PE1 element is already selected. This is because
that element is already assigned to the group from which we are working. The
element PE2 has also been selected by the user.

When the Assign PE button is clicked, the checked elements are assigned to the
group, and the list box of Assigned PEs re-appears, showing again all of the
currently assigned elements for that group.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

40

Figure 3-19 Updated Assigned PEs list with added PE elements

When the list of Assigned {elements} is complete (showing only those elements that
are to be part of the group), you must click Update Association. This saves your
changes and returns you to the group element Details screen.

While the example shown here is specific to Protection Elements and Protection
Groups, the same principal applies, regardless of the type of group element you are
working with.

Super Admin Mode
Super Admin Mode differs from Admin mode in some of the functionality provided to
the logged in administrator. In some applications, Super Admin is the same as
Admin except with additional capabilities. In the UPT however, the Super Admin
responsibility is different than the Admin and the capabilities provided reflect that
(although there is some overlap).

The job of the Super Admin is to add Applications to the UPT, add Users to the UPT
and assign them as administrators for the created applications, and to create
custom Privileges for the assigned administrators to provision later in Admin Mode.

The Super Admin is not able to provision any of the elements in UPT and is
furthermore not able to create the grouping elements that allow for provisioning.

Finally, the Super Admin logs into the UPT directly whereas an Admin will log into a
specific application. This is because the Super Admin’s responsibilities are to set up
the application and it’s framework for the Admin to use, and an Admin’s
responsibilities are to administer that specific application.

The capability overlap for Super Admin to Admin occurs with respect to users, in
that both an Admin and a Super Admin can create, modify, delete, and unlock
users.

Workflow for Super Admin
The CSM team designed the UPT as a flexible tool with a flexible workflow. Any
operation can be completed quickly, however it may be difficult at first to know
where to start.

The main menu, located at the top of the page, contains navigation to the locations
necessary for performing all Super Admin actions.

Chapter 3–2BUser Provisioning Tool (UPT)

41

Figure 3-20 Super Admin main menu options (on Home page)

The menu option with a blue background identifies your current location. Roll over
the other choices until they turn blue, and then click to navigate to that section. The
Log Out selection logs the Super Admin out and returns the user to the Login page.

The following is a suggested workflow for getting started in Super Admin Mode.
Each step identifies the location in which the actions are performed:

1. Application – Register the Application. When first deploying the UPT for a
particular application, you must register or “create” the application in the
Application section.

2. Application – Add and Update Application details.

3. User – Add and Update users who will serve as application Administrators.

4. Application – Assign users to the registered and configured Applications.

5. Privilege – If necessary, add or edit CSM Standard Privileges.

The sections that follow provide Information about the available functionality for
each location in the Super Admin Interface.

Application Administration – Super Admin Mode
In the Application section of the Super Admin Mode, a Super Admin can add
(register) an application to the UPT and add or modify the details of an application.

Create a New Application
Creating or adding an application in UPT registers that application and makes it
available for the other administrative tasks that must be performed.

To add/create a new application:
1. Click Application from the main menu to open the Application home page.

2. Select Create a New Application. The Application Details form appears.

3. Enter data into the Application Details form. The form fields are defined as
follows:

Application Name – Uniquely identifies the application; is a required field.

Application Description – A brief summary describing the application.

Declarative Flag – Indicates whether application uses Declarative security.

Application Active Flag – Indicates whether or not the application is
currently active.

Database URL – The JDBC Database URL for the given application.

Database User Name – The Username for the application database.

Database Password – The Password for the application database.

Database Dialect – The Dialect for the application database.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

42

Database Driver –The Driver for the application database.

CSM Version – The Version number used by the Application.

4. Click Add to register the application in UPT.

NOTE: The Database fields must either be all completed together or left blank completely.
They are all required fields if at least one of them is populated.

Select and View/Update an Existing Application
Once an application has been created, you can edit the details entered for the
application any time necessary. In order to edit the application details, you must
search for and identify the application to update and select to view the details.

To find and view/update an application:
1. Click Application from the main menu to open the Application home page.

2. Click on Select an Existing Application.

3. Enter search criteria into the Application Search Criteria form. You may use
an asterisk (*) as a wildcard character if necessary.

4. From the results list, select the radio button next to the Application Name of
the application you want to view and/or edit, and then click View Details.

5. Review, and if necessary edit the data appearing on the Application Details
form. The form fields are defined as follows:

Application Name – Uniquely identifies the application; is a required field.

Application Description – A brief summary describing the application.

Declarative Flag – Indicates whether application uses Declarative security.

Application Active Flag – Indicates whether or not the application is
currently active.

Database URL – The JDBC Database URL for the given application.

Database User Name – The Username for the application database.

Database Password – The Password for the application database.

Database Dialect – The Dialect for the application database.

Database Driver –The Driver for the application database.

6. Click Update to save your changes.

NOTE: The Database fields must either be all completed together or left blank completely.
They are all required fields if at least one of them is populated.

Delete an Existing Application
If necessary, you can delete an application from UPT. In order to delete the
application, you must search for and select to view the details page of the
application you want to delete.

Chapter 3–2BUser Provisioning Tool (UPT)

43

To delete an application:
1. Click Application from the main menu to open the Application home page.

2. Click on Select an Existing Application.

3. Enter search criteria into the Application Search Criteria form. You may use
an asterisk (*) as a wildcard character if necessary.

4. From the results list, select the radio button next to the Application Name of
the application you want to delete, and then click View Details.

5. From the details page, click Delete. A confirmation window appears.

6. Click OK to confirm the deletion.

Associating/Assigning an Administrator for an Application
Once the application is registered, you must assign one or more users as
Administrators for the application so that they can perform the Admin Mode tasks.
You may need to create new users before you can perform these procedures. See
the User Administration– Super Admin Mode below for those instructions.

As an Administrator, the assigned users will have the rights to create and modify
application elements such as Users, Roles, and Groups. Administrators are also
able to unlock any users who are locked out of the application because of exceeding
the maximum allowed invalid login attempts.

To assign a user as an application Administrator:
1. Click Application from the main menu to open the Application home page.

2. Click on Select an Existing Application.

3. Enter search criteria into the Application Search Criteria form. You may use
an asterisk (*) as a wildcard character if necessary.

4. From the results list, select the radio button next to the Application Name of
the application you want to view and/or edit, and then click View Details.

5. From the details page, click Delete. A confirmation window appears.

6. Select Associate Admins.

7. Find and associate the appropriate users as administrators for the
application. Click on the Assign and Deassign buttons until the proper
associations appear. For more information, see Assignments and
Associations on page 36.

8. Click Update Association to save your changes. No associations or
changes are saved until this button is selected.

User Administration– Super Admin Mode
In the User section of the Super Admin Mode, a Super Admin can create, edit, and
delete UPT users. Super Admins are also able to unlock any users who are locked
out of the application because of exceeding the maximum allowed invalid login
attempts.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

44

Create a New User
The User section allows you to create a new user for the UPT. Keep in mind that the
user must be assigned to an application before they can log into UPT.

To create a new user:
1. Click User from the main menu to open the User home page.

2. Click on Create a New User.
3. Enter data into the User Details form. The form fields are defined as follows:

Name – The Name acts like a username to uniquely identify the User; it is a
required field and must be unique.

First Name and Last Name – These details identify the User.

Organization – The organization for which the User works. For example,
The National Cancer Institute (NCI).

Department – The department for which the User works. For example,
caArray.

Title – The job title or other functional identifier for the User.

Phone Number – Provides telephone contact information for the user,
typically the direct business phone number. The Phone Number field accepts
the following formats: 0123456789, 012-345-6789, (012)3456789, (012)345-
6789, (012)-345-6789.

Email ID – Provides email contact information details for the User. An email
ID must contain an ‘@’ sign or you will receive an invalid email format error.

Password – This is an optional field, used only if the schema for
Authorization will also be used for Authentication. The only characters visible
within this field are asterisks (*), meaning that even when entering the
information, the password is not visible on the screen.

Confirm Password – A field to verify the password entered in the Password
field, ensuring the intended password was entered correctly. This field must
match the password field exactly.

User Start Date and User End Date – For informational purposes only.

4. When the desired fields are completed, click Add. The user is added to UPT.

Select and View/Update an Existing User
Once a user has been created for UPT, you can view or edit the user details any
time necessary. In order to edit the user details, you must search for and identify the
user to update and select to view the details.

To find and view/update a user:
1. Click User from the main menu to open the User home page.

2. Click on Select an Existing User.
3. Enter search criteria into the User Search Criteria form. You may use an

asterisk (*) as a wildcard character if necessary.

Chapter 3–2BUser Provisioning Tool (UPT)

45

4. From the results list, select the radio button next to the User Name of the
user you want to view and/or edit, and then click View Details.

5. Review, and if necessary edit the data appearing on the User Details form.
The form fields are defined as follows:

User Login Name – The User Login Name acts like a username to uniquely
identify the User; it is a required field and must be unique.

First Name and Last Name – These details identify the User.

Organization – The organization for which the User works. For example,
The National Cancer Institute (NCI).

Department – The department for which the User works. For example,
caArray.

Title – The job title or other functional identifier for the User.

Phone Number – Provides telephone contact information for the user,
typically the direct business phone number. The Phone Number field accepts
the following formats: 0123456789, 012-345-6789, (012)3456789, (012)345-
6789, (012)-345-6789.

Email ID – Provides email contact information details for the User. An email
ID must contain an ‘@’ sign or you will receive an invalid email format error.

Password – This is an optional field, used only if the schema for
Authorization will also be used for Authentication. The only characters visible
within this field are asterisks (*), meaning that even when entering the
information, the password is not visible on the screen.

Confirm Password – A field to verify the password entered in the Password
field, ensuring the intended password was entered correctly. This field must
match the password field exactly.

User Start Date and User End Date – For informational purpose only.

6. When finished, click Update.

Delete an Existing User
If necessary, you can delete a user from UPT. In order to delete the user, you must
search for and select to view the details page of the user you want to delete.

To delete a user:
1. Click User from the main menu to open the User home page.

2. Click on Select an Existing User.
3. Enter search criteria into the User Search Criteria form. You may use an

asterisk (*) as a wildcard character if necessary.

4. From the results list, select the radio button next to the User Name of the
user you want to delete, and then click View Details.

5. From the details page, click Delete. A confirmation window appears.

6. Click OK to confirm the deletion.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

46

Unlock a User
This feature allows a Super Admin to unlock a locked-out user. A user can is locked
out of the system if multiple login attempts are made using an invalid
username/password combination, and those unsuccessful login attempts exceed
the configured number of allowed attempts. The default is three invalid attempts.

NOTE: The application configuration includes a setting that identifies an amount of time,
after which a locked-out user is automatically unlocked. This means that a user
could wait the specified period of time rather than requiring manual unlock of their
account.

To unlock a locked-out user:
1. Click User from the main menu to open the User home page.

2. Click on Select an Existing User.
3. Enter search criteria into the User Search Criteria form. You may use an

asterisk (*) as a wildcard character if necessary.

4. From the results list, select the radio button next to the User Name of the
user you want to delete, and then click View Details.

5. From the details page, click Delete. A confirmation window appears.

6. Click Unlock to unlock the user.

Privileges and Standard Privileges
A Privilege refers to any operation that can be performed upon data. Creating
Privileges allows you to configure the granularity of the operations that can be
performed on your data.

Assigning Privileges to users helps control access to important components of an
application (Protection Elements). Within CSM, users may possess one or more of
privileges for a particular protection element.

By default, the UPT installs with CSM Standard Privileges. These Privileges were
agreed upon by the Security Working Group. The CSM Standard Privileges are
listed and defined in the following table:

Privilege
Name Privilege Definition Applying the

Privilege (Example)

CREATE

This privilege grants permission to a user to
create an entity. This entity can be an object,
a database entry, or a resource such as a
network connection.

A user can create a
database entry.

ACCESS

This privilege allows a user to access a
particular resource. Examples of resources
include a network connection, database
connection, socket, module of the
application, or even the application itself.

A user can gain access
to a particular module in
an application.

Chapter 3–2BUser Provisioning Tool (UPT)

47

Privilege
Name Privilege Definition Applying the

Privilege (Example)

READ

This privilege permits the user to read data
from a file, URL, socket, database, or an
object. This can be used at an entity level
signifying that the user is allowed to read
data about a particular entry (which can be
object or database row, etc.)

A user can view personal
information such as a
Social Security Number.

WRITE

This privilege allows a user to write data to a
file, URL, socket, database, or object. This
can also be used at an entity level signifying
that the user is allowed to write data about a
particular entity (which may include an
object, database row, etc.)

A user can add text to a
database entry.

UPDATE

This privilege grants permission at an entity
level and signifies that the user is allowed to
update and modify data for a particular entity.
Entities may include an object, an attribute of
the object, a database row, etc.

A user can modify an
object’s attribute data.

DELETE

This privilege permits a user to delete a
logical entity. This entity can be an object, a
database entry, a resource such as a
network connection, etc.

A user can delete record.

EXECUTE

This privilege allows a user to execute a
particular resource. The resource can be a
method, function, behavior of the application,
URL, button etc.

A user can click on a
button to perform a
method.

Table 3-1 CSM Standard Privileges

The sections that follow provide information on the functionality available for
Privileges.

Create a New Privilege
If the CSM Standard Privileges are not sufficient, a Super Admin can create
privileges to meet application needs.

To create a new privilege:
1. Click Privilege from the main menu to open the Privilege home page.

2. Click on Create a New Privilege.

3. Enter data into the Privilege Details form. The form fields are defined as
follows:

Name – Use to uniquely identify the Privilege; it is a required field.

Description – A brief summary describing the Privilege.

4. Select Add.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

48

Select and View/Update an Existing Privilege
Once a privilege has been created for UPT, you can view or edit the details any time
necessary. In order to edit the privilege details, you must search for and identify the
privilege to update and select to view the details.

To find and view/update a privilege:
1. Click Privilege from the main menu to open the Privilege home page.

2. Click on Select an Existing Privilege.

3. Enter search criteria into the Privilege Search Criteria form. You may use an
asterisk (*) as a wildcard character if necessary.

4. From the results list, select the radio button next to the Name of the privilege
you want to view and/or edit, and then click View Details.

5. Review, and if necessary edit the data appearing on the Privilege Details
form. The form fields are defined as follows:

Name – Use to uniquely identify the Privilege; it is a required field.

Description – A brief summary describing the Privilege.

6. Click Update.

Delete an Existing Privilege
If necessary, you can delete a privilege from UPT. In order to delete the privilege,
you must search for and select to view the details page of the privilege you want to
delete.

To delete a privilege:
1. Click Privilege from the main menu to open the Privilege home page.

2. Click on Select an Existing Privilege.

3. Enter search criteria into the Privilege Search Criteria form. You may use an
asterisk (*) as a wildcard character if necessary.

4. From the results list, select the radio button next to the Name of the privilege
you want to view and/or edit, and then click View Details.

5. From the details page, click Delete. A confirmation window appears.

6. Click OK to confirm the deletion.

Admin Mode
The difference between the functionality in the Super Admin Mode and Admin Mode
is that the Super Admin can create and edit all of the objects necessary for use with
an application, including creation of the application itself in UPT. The Admin mode
provides the ability to associate those created objects in a logical manner, and to
modify or remove those associations as needed.

Furthermore, a Super Admin logs into the UPT, whereas an Admin login requires
the identification of a specific application. This means that all items created or
modified in Admin Mode are done so for the specific application identified at login.

Chapter 3–2BUser Provisioning Tool (UPT)

49

The Admin Mode of the UPT is divided into six major “locations” or Home pages:
Group, Privilege, Protection Group, Role, and User. In these locations, an Admin
can perform functions such as create, modify, or delete the elements, and manage
or delete the associations between the objects. For example, you may create users
and groups, or assign Privileges to a Role or Users to a Group.

Figure 3-21 below helps to illustrate how all elements (also sometimes referred to as
objects) are related in the Authorization Schema.

Figure 3-21 Authorization Schema element relationships

Table 3-2 below provides definitions for each Authorization Schema element shown
in the above diagram. The elements are listed by how they are associated, with the
individual element defined and then the related group element defined.

Schema
Element

Definitions for Authorization Status

User
A User is someone who requires access to your application. Users can
become part of a Group, and can have an associated Protection Group and
Roles.

Group
A Group is a collection of application users. By combining users into a
Group, it becomes easier to manage their collective roles and access rights
in your application.

Protection
Element

A Protection Element is any entity (typically data) that has controlled
access. Examples include Social Security Number, City, and Salary.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

50

Schema
Element

Definitions for Authorization Status

Protection
Group

A Protection Group is a collection of application Protection Elements. By
combining Protection Elements into a Protection Group, it becomes easier
to associate Users and Groups with rights to a particular data set. Examples
include Address and Personal Information.

Privilege

A Privilege refers to any operation performed upon data. CSM makes use of
a standard set of privileges. This will help standardize authorization to
comply with JAAS and Authorization Policy and allow for adoption of
technology such as SAML in the future.

Role A Role is a collection of application Privileges. Examples include Record
Admin and EmployeeModify.

Final
Association

The final association is the correlation between a User or Group, and their
assigned Roles for a particular Protection Group.

Table 3-2 Authorization Status element definitions

Each User (and Group) assumes Roles (rights) for a Protection Group (protected
entities like data fields). For example, User John has a Role EmployeeModify for all
elements in the Address Protection Group.

Assigning Protection Groups and Roles is done from the User or Group sections of
the Admin Mode, depending on how they are being assigned.

Workflow for Admin
The CSM team designed the UPT as a flexible tool with a flexible workflow. The
general concept of the workflow is to create the base elements first and then create
the groupings and associations.

Any operation can be completed quickly. However it may be difficult at first to know
where to start. The main menu, located at the top of the page, contains navigation to
the locations necessary for performing all Admin Mode actions.

Figure 3-22 Admin Mode main menu options (on Home page)

The menu option with a blue background identifies your current location. Roll over
the other choices until they turn blue, and then click to navigate to that section. The
Log Out selection logs the Admin out and returns the user to the Login page.

The following is a suggested workflow for getting started in Admin Mode:

1. Create base objects: Users and Protection Elements. CSM Standard
Privileges are already provided, along with any custom Privileges created by
the Super Admin.

2. Create collection objects and assign base objects to the collections. These
can be performed in any order.

Groups:

 Create Groups

Chapter 3–2BUser Provisioning Tool (UPT)

51

 Assign Users to Groups.

Protection Groups:

 Create Protection Groups

 Assign Protection Elements to Protection Groups.

Roles:

 Create Roles.

 Assign Privileges to Roles.

3. Associate rights with Users and Groups (in any order).

o Assign a Protection Group and Roles to Users.

o Assign a Protection Group and Roles to Groups.

The sections that follow provide instructions for performing these tasks in Admin
Mode.

User Administration – Admin Mode
A User is simply someone that requires access to an application. The User location
of the Admin Mode allows you to create users, update user details, and delete
users. The instructions for performing these basic functions are the same in Admin
Mode as they are in Super Admin mode. See User Administration– Super Admin
Mode on page 43 for the procedures to create users, view or update user details,
and delete users.

Because the functionality is specific to Admin Mode, this section provides
procedures on how to associate or disassociate Users with a Group, Protection
Group, and Roles. These tasks are performed from the User Details page, which is
accessed as follows:

1. Click User from the main menu to open the User home page.

2. Click on Select an Existing User.
3. Enter search criteria into the User Search Criteria form. You may use an

asterisk (*) as a wildcard character if necessary.

4. From the results list, select the radio button next to the User Name of the
user you want to associate/disassociate, and then click View Details.

NOTE: You can also perform these functions from the details page while creating a new
user. However the workflow listed above suggests creating the base objects first and
then assigning them appropriately. Therefore the instructions in this section assume
you have selected an existing user to administer, though the steps apply either way.

The User Details page in Admin Mode only displays four buttons as shown in Figure
3-23 below.

Figure 3-23 User Details page option buttons

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

52

The functionality of each of these buttons is detailed in the sections that follow.

Assign a User to a Group or Groups (Associated Groups button)
While users do not have to be assigned to a group, it is easier to manage user rights
if groups of users are provided with specific types of access rather than having to
manage these privileges for each individual user. Users can be assigned to one or
more groups as appropriate.

To assign a user to a group/groups:
1. Search for and select to View Details for the user you want to assign.

2. From the User Details screen, select Associated Groups. A window
containing a list of Available Groups and Assigned Groups appears.

Figure 3-24 Available and Assigned Groups lists

The bottom list, Assigned Groups, shows the groups in which the current
user is already a member. The Available Groups list shows the groups to
which the user is not assigned.

3. Determine to which Groups the User should be assigned. Select these
Groups in each list and clicking Assign or Deassign as appropriate.

4. Save your changes by clicking on Update Association. Note that
association changes are not saved the update button is selected.

Assign a Protection Group and Roles to a User (Assign PG & Roles button)
1. Search for and select to View Details for the user you want to assign.

2. From the User Details screen, select Assign PG & Roles. A window
containing a list of Protection Groups and Roles appears.

3. Determine to which Protection Groups and Roles you want to assign to the
selected user and highlight them in each list. Use the CTRL+SELECT or
SHIFT+SELECT method to make multiple selections from the lists.

Chapter 3–2BUser Provisioning Tool (UPT)

53

4. Click Assign or Deassign as appropriate until the proper associations
appear.

5. Click Update Association to save your changes. Note that changes are not
saved the update button is selected.

Update Roles Associated with Assigned Protection Groups (Associated PG &
Roles button)

1. Search for and select to View Details for the user you want to update.

2. From the User Details screen, select Associated PG & Roles. A window
containing a list of all associated Protection Groups and Roles appears.

3. Select the radio button that corresponds with the intended Protection Group.

4. Determine which Roles you would like to assign to the User and select the
Role name(s). Use the CTRL+SELECT or SHIFT+SELECT method to make
multiple selections from the list.

5. Click Assign and Deassign buttons until the proper associations appear.

6. Click Update Association to save your changes. Note that changes are not
saved the update button is selected.

View User Report (Associated PE & Privileges button)
The user reporting functionality available through the Associated PE & Privileges
button shows a user’s privileges for all of their assigned protection elements.

1. Search for and select to View Details for the user you want to view.

2. From the User Details screen, select Associated PE & Privileges. A report
window appears containing a list of the selected user’s privileges for each
protection element.

Protection Element Administration – Admin Mode
A Protection Element is any entity (typically data) that is subject to controlled
access. CSM allows for a broad definition of Protection Element. Nearly everything
in an application can be protected – data, table, buttons, menu items, etc. Identifying
individual Protection Elements makes it easier to control access to important data.

The sections that follow provide information for creating, updating, deleting, and
assigning Protection Elements to Protection Groups.

Create a New Protection Element
1. Click Protection Element from the main menu to open the Protection

Element home page.

2. Click on Create a New Protection Element.
3. Enter data into the Protection Element Details form. The form fields are

defined as follows:

Name – Use to uniquely identify the Protection Element; it is a required field.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

54

Object ID – A string that the application team assigns to the Protection
Element.

Attribute Name – Helps to further identify the Protection Element

Description – A brief summary describing the Protection Element.

Update Date – Indicates the date when the Protection Element's details
were last updated

Type – A string that the application team can assign that indicates what type
of Protection Element this is.

4. When finished, click Add to add the new Protection Element.

Select and View/Update an Existing Protection Element
Once a Protection Element has been created, you can view or edit the details any
time necessary. In order to edit the Protection Element details, you must search for
and identify the Protection Element to update and select to view the details.

To find and view/update a Protection Element:
1. Click Protection Element from the main menu to open the Protection

Element home page.

2. Click on Select an Existing Protection Element.
3. Enter search criteria into the Protection Element Search Criteria form. The

fields available include Name, Object ID, and Attribute name (these fields
are defined below). You may use an asterisk (*) as a wildcard character if
necessary.

4. From the results list, select the radio button next to the Name of the
Protection Element you want to view and/or edit, and then click View
Details.

5. Review, and if necessary edit the data appearing on the Protection Element
Details form. The form fields are defined as follows:

Name – Use to uniquely identify the Protection Element; it is a required field.

Object ID – A string that the application team assigns to the Protection
Element.

Attribute Name – Helps to further identify the Protection Element

Description – A brief summary describing the Protection Element.

Update Date – Indicates the date when the Protection Element's details
were last updated

Type – A string that the application team can assign that indicates what type
of Protection Element this is.

6. When finished, click Update.

Chapter 3–2BUser Provisioning Tool (UPT)

55

Delete an Existing Protection Element
If necessary, you can delete a Protection Element. In order to delete the Protection
Element, you must search for and select to view the details page of the Protection
Element you want to delete.

To delete a Protection Element:
1. Click Protection Element from the main menu to open the Protection

Element home page.

2. Click on Select an Existing Protection Element.
3. Enter search criteria into the Protection Element Search Criteria form. The

fields available include Name, Object ID, and Attribute name (these fields
are defined above). You may use an asterisk (*) as a wildcard character if
necessary.

4. From the results list, select the radio button next to the Name of the
Protection Element you want to delete, and then click View Details.

5. From the details page, click Delete. A confirmation window appears.

6. Click OK to confirm the deletion.

Assign a Protection Element to Protection Group(s)
1. Click Protection Element from the main menu to open the Protection

Element home page.

2. Click on Select an Existing Protection Element.
3. Enter search criteria into the Protection Element Search Criteria form. The

fields available include Name, Object ID, and Attribute name (these fields
are defined above). You may use an asterisk (*) as a wildcard character if
necessary.

4. From the results list, select the radio button next to the Name of the
Protection Element you want to delete, and then click View Details.

5. From the details page, click Associated PGs.

6. Determine to which of the available Protection Group(s) the Protection
Element should be assigned and select them from the list. Use the
CTRL+SELECT or SHIFT+SELECT method to make multiple selections if
necessary.

7. Click Assign or Deassign as appropriate until the group assignments
appear in the proper lists.

8. Click Update Association to save your changes. No associations are saved
until the update button is selected.

Privilege Administration – Admin Mode
A Privilege refers to any operation performed upon data. Assigning privileges helps
control access to important components of an application (Protection Elements).
CSM provides a standard set of privileges that populate automatically when creating

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

56

the authorization schema. See Privileges and Standard Privileges on page 46 for
more details.

Because Standard Privileges are already provided, and because only a Super
Admin can create custom Privileges, the Privilege location in Admin Mode only
allows for viewing the details of existing privileges. The Role location allows Admins
to assign privileges to roles.

To find and view a privilege:
1. Click Privilege from the main menu to open the Privilege home page.

2. Click on Select an Existing Privilege.

3. Enter search criteria into the Privilege Search Criteria form. You may use an
asterisk (*) as a wildcard character if necessary.

4. From the results list, select the radio button next to the Name of the privilege
you want to view and/or edit, and then click View Details.

5. Review the data appearing on the Privilege Details form. The form fields are
defined as follows:

Name – Use to uniquely identify the Privilege; it is a required field.

Description – A brief summary describing the Privilege.

6. Click Back when finished.

Protection Group Administration – Admin Mode
A Protection Group is a collection of application’s Protection Elements. By
combining Protection Elements into a Protection Group, it becomes easier to
associate Users and Groups with rights to a particular data set.

The Protection Group is the only element that can have a Parent. Using Parents is a
way to group Protection Groups within Protection Groups. This makes organizing
users and their authorization rights easier.

The sections that follow provide instructions for creating new Protection Groups,
modifying existing Protection Group details, assigning Protection Elements to
Protection Groups, and assigning a parent for a Protection Group.

Create a New Protection Group
1. Click Protection Group from the main menu to open the Protection Group

home page.

2. Click on Create a New Protection Group.

3. Enter data into the Protection Group Details form. The form fields are
defined as follows:

Name – Used to uniquely identify the Protection Group; it is a required field.

Description – A brief summary describing the Protection Group.

Large Count Flag – Used to indicate if the Protection Group has a large
number of associated Protection Elements.

Chapter 3–2BUser Provisioning Tool (UPT)

57

Update Date – Indicates the date when this Protection Group’s Details were
last updated.

4. Click Add.

Select and View/Update an Existing Protection Group
Once a Protection Group has been created, you can view or edit the details any
time necessary. In order to edit the Protection Group details, you must search for
and identify the Protection Group to update and select to view the details.

To find and view/update a Protection Group:
1. Click Protection Group from the main menu to open the Protection Group

home page.

2. Click on Select an Existing Protection Group.

3. Enter search criteria into the Protection Group Search Criteria form. Search
by Protection Group Name. You may use an asterisk (*) as a wildcard
character if necessary.

4. From the results list, select the radio button next to the Name of the
Protection Group you want to view and/or edit, and then click View Details.

5. Review, and if necessary edit the data appearing on the Protection Group
Details form. The form fields are defined as follows:

Name – Used to uniquely identify the Protection Group; it is a required field.

Description – A brief summary describing the Protection Group.

Large Count Flag – Used to indicate if the Protection Group has a large
number of associated Protection Elements.

Update Date – Indicates the date when this Protection Group’s Details were
last updated.

6. Click Update.

Delete an Existing Protection Group
If necessary, you can delete a Protection Group. In order to delete the Protection
Group, you must search for and select to view the details page of the Protection
Group you want to delete.

To delete a Protection Group:
1. Click Protection Group from the main menu to open the Protection Group

home page.

2. Click on Select an Existing Protection Group.

3. Enter search criteria into the Protection Group Search Criteria form. Search
by Protection Group name. You may use an asterisk (*) as a wildcard
character if necessary.

4. From the results list, select the radio button next to the Name of the
Protection Group you want to delete, and then click View Details.

5. From the details page, click Delete. A confirmation window appears.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

58

6. Click OK to confirm the deletion.

Assign Protection Elements to the Protection Group
Once a Protection Group has been created, you can assign Protection Elements to
it, allowing you to group those elements and more easily manage access to those
elements.

1. Click Protection Group from the main menu to open the Protection Group
home page.

2. Click on Select an Existing Protection Group.

3. Enter search criteria into the Protection Group Search Criteria form. Search
by Protection Group name. You may use an asterisk (*) as a wildcard
character if necessary.

4. From the results list, select the radio button next to the Name of the
Protection Group you want to modify, and then click View Details.

5. From the details page, select Associated PE’s.

6. An Assigned PE’s list appears. You have the following options:

To remove a PE from the group, select the PE and click Deassign.

To add a PE to this group, click Assign PE.

f. In the Search form that appears, enter search criteria in the fields (using
an asterisk as a wildcard if necessary) and click Search.

g. Use the checkboxes in the results list to select which PEs you want to
assign to the Protection Group, and then click Assign PE.

7. The Assigned PE’s list re-appears. Repeat the above steps as necessary
until only the PEs you want to have assigned to this Protection Group
appear.

8. When finished, click Update Association to save your changes. No
associations are saved until the update button is selected.

Assign a Parent for the Protection Group
Assigning a Parent for a Protection Group is a way of adding another layer of
grouping for your Protection Groups, to assist you in managing access to the
Protection Elements contained within the groups.

NOTE: You must create the Parent group before you can assign Protection Groups to it.

1. Click Protection Group from the main menu to open the Protection Group
home page.

2. Click on Select an Existing Protection Group.

3. Enter search criteria into the Protection Group Search Criteria form. Search
by Protection Group name. You may use an asterisk (*) as a wildcard
character if necessary.

4. From the results list, select the radio button next to the Name of the
Protection Group you want to assign, and then click View Details.

Chapter 3–2BUser Provisioning Tool (UPT)

59

5. From the details page, click Associated Parent PG.

6. From the list that appears, determine to which Parent Group the Protection
Group should be assigned. Protection Groups can be assigned to only one
Parent.

7. Select the appropriate Parent group and click Assign.

8. If necessary, you may need to remove the Protection Group from an existing
Parent assignment. In this case, select the existing Parent and click
Deassign.

9. Click Update Association to save your changes. No association is saved until
this button is selected.

Role Administration – Admin Mode
A Role is a collection of Privileges. By combining Privileges into a Role, it becomes
easier to associate Users and Groups with rights to a particular data set.

The sections that follow provide instructions for creating new Roles, modifying
existing roles, deleting Roles, and assigning or deassigning Privileges to a given
Role.

Create a New Role
1. Click Role from the main menu to open the Role home page.

2. Click on Create a New Role.

3. Enter data into the Role Details form. The form fields are defined as follows:

Name – Use to uniquely identify the Role; it is a required field.

Description – A brief summary describing the Role.

Active Flag – Indicates whether or not the Role is currently active.

4. Select Add.

Select and View/Update an Existing Role
Once a Role has been created, you can view or edit the details any time necessary.
In order to edit the Role details, you must search for and identify the Role to update
and select to view the details.

To find and view/update a Role:
1. Click Role from the main menu to open the Role home page.

2. Click on Select an Existing Role.

3. Enter search criteria into the Role Search Criteria form. Search by Role
Name. You may use an asterisk (*) as a wildcard character if necessary.

4. From the results list, select the radio button next to the Name of the Role you
want to view and/or edit, and then click View Details.

5. Review, and if necessary edit the data appearing on the Role Details form.
The form fields are defined as follows:

Name – Use to uniquely identify the Role; it is a required field.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

60

Description – A brief summary describing the Role.

Active Flag – Indicates whether or not the Role is currently active.

6. Click Update.

Delete an Existing Role
If necessary, you can delete a Role. In order to delete the Role, you must search for
and select to view the details page of the Role you want to delete.

To delete a Role:
1. Click Role from the main menu to open the Role home page.

2. Click on Select an Existing Role.

3. Enter search criteria into the Role Search Criteria form. Search by Role
Name You may use an asterisk (*) as a wildcard character if necessary.

4. From the results list, select the radio button next to the Name of the Role you
want to view and/or edit, and then click View Details.

5. From the details page, click Delete. A confirmation window appears.

6. Click OK to confirm the deletion.

Assign Privileges to the Role
1. Click Role from the main menu to open the Role home page.

2. Click on Select an Existing Role.

3. Enter search criteria into the Role Search Criteria form. Search by Role
Name You may use an asterisk (*) as a wildcard character if necessary.

4. From the results list, select the radio button next to the Name of the Role you
want to view and/or edit, and then click View Details.

5. From the details page, click Associated Privileges.

6. An Associated Privileges list appears. You have the following options:

To remove a privilege from the Role, select the privilege and click Deassign.

To add a privilege to this Role, click Assign Privilege.

h. In the Search form that appears, enter search criteria in the fields (using
an asterisk as a wildcard if necessary) and click Search.

i. Use the checkboxes in the results list to select which privileges you want
to assign to the Role, and then click Assign Privilege.

7. The Assigned Privilege list re-appears. Repeat the above steps as
necessary until only the privileges you want to have assigned to this Role
appear.

8. When finished, click Update Association. No associations are saved until
this button is selected.

Chapter 3–2BUser Provisioning Tool (UPT)

61

Group Administration – Admin Mode
A Group is a collection of application users. By combining users into a Group, it
becomes easier to manage their collective roles and access rights in your
application. When you select an existing group and associate a new Protection
Group and Roles with that group, all users in that particular Group have the same
rights.

Like the User Details page, the Group Details page also contains buttons that are
only available in Admin Mode.

Figure 3-25 Group Details page option buttons

The sections that follow provide information on how to create, modify, and delete
Groups as well as instructions for using each of the Group option buttons to
associate or disassociate Groups' Protection Elements, Privileges, and Roles.

NOTE: The association/assignment instructions in the below sections assume you have
selected an existing group to administer, however you can also perform these
functions from the details page while creating a new group.

Create a New Group
1. Click Group from the main menu to open the Group home page.

2. Click on Create a New Group.

3. Enter data into the Group Details form. The form fields are defined as
follows:

Name – Use to uniquely identify the Group; it is a required field.

Description – A brief summary describing the Group.

4. Select Add.

Select and View/Update an Existing Group
Once a Group has been created, you can view or edit the details any time
necessary. In order to edit the Group details, you must search for and identify the
Group to update and select to view the details.

To find and view/update a Group:
1. Click Group from the main menu to open the Group home page.

2. Click on Select an Existing Group.

3. Enter search criteria into the Group Search Criteria form. Search by Group
Name. You may use an asterisk (*) as a wildcard character if necessary.

4. From the results list, select the radio button next to the Name of the Group
you want to view and/or edit, and then click View Details.

5. Review, and if necessary edit the data appearing on the Group Details form.
The form fields are defined as follows:

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

62

Name – Use to uniquely identify the Group; it is a required field.

Description – A brief summary describing the Group.

6. Click Update.

Delete an Existing Group
If necessary, you can delete a Group. In order to delete the Group, you must search
for and select to view the details page of the Group you want to delete.

To delete a Group:
1. Click Group from the main menu to open the Group home page.

2. Click on Select an Existing Group.

3. Enter search criteria into the Group Search Criteria form. Search by Group
Name. You may use an asterisk (*) as a wildcard character if necessary.

4. From the results list, select the radio button next to the Name of the Group
you want to delete, and then click View Details.

5. From the details page, click Delete. A confirmation window appears.

6. Click OK to confirm the deletion.

Add Users to the Group (Associated Users)
1. Click Group from the main menu to open the Group home page.

2. Click on Select an Existing Group.

3. Enter search criteria into the Group Search Criteria form. Search by Group
Name. You may use an asterisk (*) as a wildcard character if necessary.

4. From the results list, select the radio button next to the Name of the Group
you want to modify, and then click View Details.

5. Click Associated Users.

6. A Group and User Association screen appears. You have the following
options:

To remove a user from the Group, select the user and click Deassign.

To add a user to this Group, click Assign User.
j. In the Search form that appears, enter user search criteria (using an

asterisk as a wildcard if necessary) and click Search.

k. Use the checkboxes in the results list to select which users you want to
assign to the Group, and then click Assign User.

7. The Group and User Association list re-appears. Repeat the above steps as
necessary until only the users you want to have assigned to this Group
appear.

8. When finished, click Update Association to save your changes.

Click Back to return to the Group details screen.

Chapter 3–2BUser Provisioning Tool (UPT)

63

Users can also be assigned to Groups in the User location of the Admin Mode. See
Assign a User to a Group or Groups (Associated Groups button) on page 52 for
more information.

Assign a Protection Group and Roles to a Group (Assign PG & Roles)
1. Search for and select to View Details for the Group you want to assign.

2. From the User Details screen, select Assign PG & Roles. A window
containing a list of Protection Groups and Roles.

3. Determine which Protection Groups and Roles you want to assign to the
selected Group and select them in each list. Use the CTRL+SELECT or
SHIFT+SELECT method to make multiple selections from the lists.

4. Click Assign or Deassign as appropriate until the proper associations
appear.

5. Click Update Association to save your changes. Note that changes are not
saved the update button is selected.

Update Roles Associated with Assigned Protection Groups (Associated PG &
Roles button)

1. Search for and select to View Details for the Group you want to update.

2. From the Group Details screen, select Associated PG & Roles. A window
appears containing a list of all associated Protection Groups and their Roles.

3. Select the radio button that corresponds with the intended Protection Group.

4. Determine which Roles you would like to assign to the Group and select the
Role name(s). Use the CTRL+SELECT or SHIFT+SELECT method to make
multiple selections from the list.

5. Click Assign and Deassign buttons until the proper associations appear.

6. Click Update Association to save your changes. Note that changes are not
saved the update button is selected.

View Group Report (Associated PE & Privileges button)
The Group reporting functionality available through the Associated PE &
Privileges button shows a group’s privileges for all of its assigned protection
elements.

1. Search for and select to View Details for the Group for which you want
information.

2. From the Group Details screen, select Associated PE & Privileges. A
report window appears containing a list of the selected Group’s privileges for
each protection element.

Instance Level Security Administration – Admin Mode
Instance Level Security is a feature provided by CSM to allow filtering of the
instances of data directly at the database level by creating filter criteria and linking
those criteria with allowed values from CSM tables.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

64

The sections that follow provide instructions for uploading the .jar file containing the
Hibernate file and Domain Objects, creating a new filter clause, and searching for
existing filter clauses.

To access the Instance Level functionality, click Instance Level from the Admin
Mode main menu.

Figure 3-26 Admin Mode main menu options

Each of the available features is accessed by clicking the appropriate link located in
the Instance Level Links section of the Instance Level Home page.

Figure 3-27 Instance Level Links on Admin Mode Home page

Uploading a File
1. From the Instance Level home page, click the Upload the Jar File link. The

upload form appears.

Figure 3-28 Jar File Upload Form

2. Provide the following information for upload:

Application Jar File – The path of the application jar file that contains the
Hibernate configuration and mapping files, and domain objects.

Application Jar File – If the application is an SDK generated system, there
are two jar files generated. Use this field to identify the location of the second
jar file.

Hibernate Configuration File Name – The fully qualified name of the
Hibernate configuration file located in the selected jar file.

3. Click Upload button.

Chapter 3–2BUser Provisioning Tool (UPT)

65

Add New Security Filter
1. From the Instance Level home page, click the Add New Security Filter link.

The New Filter Clause Details form appears.

Figure 3-29 New Filter Clause Details form

2. Enter the following information into the form:

Class Name - This the class for which you want to create a filter clause.

Filter Chain – This is a chain of the associated objects on which the security
of the class depends. You have the following options:

o In the case of the inherited security, you can follow the trail to the target
class by selecting the associated class from the drop-down list and
clicking the Add button in this section of the form.

o You can remove the last associated class by clicking Remove.

o If the security of the Class is dependent on itself, select the same Class
(with the suffix “self”) from the Filter Chain drop-down list.

Once the proper filter chain appears, click Done in this section of the form.

Target Class Attribute Name – This field is populated with all of the
attributes of the Final Target Class.

Target Class Alias – If you want to provide an alias for the Target Class
Name, you can do so by providing a value in the Target Class Alias field.

Target Class Attribute Alias –You can provide an alias for the Target Class
Attribute Name by providing a value in the Target Class Attribute Alias field.

3. When finished, click Add button at the bottom of the form to add the filter.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

66

Select and View/Update an Existing Security Filter
1. From the Instance Level home page, click the Select an Existing Security

Filter link. The Search form appears.

Figure 3-30 Filter Clause Search form

2. Enter search criteria into the Filter Clause Search Criteria form. Search by
Class Name. You may use an asterisk (*) as a wildcard character if
necessary.

3. Click Search.

4. From the results list, select the radio button next to the Class Name of the
filter clause you want to view and/or edit, and then click View Details.

Figure 3-31 Filter Clause Details form

5. The Filter Clause Details form contains only the following editable fields:

o Generated SQL for Group – This is the SQL filter generated by
Hibernate based on the filter criteria selected for Group level security.

o Generated SQL for User – This is the SQL filter generated by Hibernate
based on the filter criteria selected for User level security.

NOTE: Once you edit the SQL there is no way it can be regenerated without
deleting and creating the filter clause again. Also, make sure you

Chapter 3–2BUser Provisioning Tool (UPT)

67

follow the Hibernate Filter SQL specifications and have a valid
working filtering SQL.

6. If you made changes, click Upload to update the record. You may also use
the Delete button to delete the record

UPT Installation and Deployment
The CSM UPT distribution can be downloaded and installed in a variety of ways.
This section provides details on the distribution package, and the installation and
deployment options for the CSM UPT.

UPT Release Contents
The UPT Release contents can be found in the file found on the NCICB download
site: http://ncicb.nci.nih.gov/download/index.jsp. The UPT Release contents include
the files listed in the table below.

Filename Description
Csm_gui_distribution_4_2.jar The GUI Installer JAR file.
Csm_install4.2 The CSM UPT new install Installer ZIP file. .zip

Csm_upgrade4.2 The CSM UPT upgrade installer ZIP file. .zip

Table 3-3 UPT Release Contents

Deployment Artifacts
A successful CSM UPT v4.2 deployment includes addition or modification of the
files listed and described in the following table.

File Description
uptEAR.ear Location: JBOSS_HOME/server/<server.name> /deploy folder.

login-config.xml
Location: JBOSS_HOME/server/<server.name> /conf.
Modified and an Application-Policy for ‘csmupt’ is added.

Properties-
service.xml

Location: JBOSS_HOME/server/<server.name> /deploy
Is modified and added a property for ‘gov.nih.nci.security.configFile’
pointing to the ApplicationSecurityConfig.xml file.

ApplicationSecurity
Config.xml

Location: Path reachable from within Web Applications.
The CSM UPT configuration file required for CSM UPT 4.2 release.
See this section for more details.

upt-ds.xml
Location: JBOSS_HOME/server/<server.name> /deploy The Data
Source configuration required for the different installation Modes
described below. See details below.

Csmupt31.hibernate.
cfg.xml

If support for CSM UPT 3.1 is desired, then configuration for CSM
UPT 3.1 is made

Table 3-4 UPT Deployment Artifacts

http://ncicb.nci.nih.gov/download/index.jsp�

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

68

Installation Modes
UPT was developed as a flexible application that can be deployed in multiple ways,
depending on the need or scenario. The three primary modes to install the UPT
include the following and are described in more detail in sections that follow:

• Single Installation, Single Schema

• Single Installation, Multiple Schemas

• Local installation, Local schema

Single Installation/Single Schema Deployment
In the single installation/single schema deployment depicted in Figure 3-32, there is
only one instance of the UPT, hosted on a common JBoss server.

Figure 3-32 Single Installation/Single Schema deployment

In this deployment, a common UPT installation is used to administer the
authorization data for all applications, and this authorization data is stored in a
common database. Therefore an application using UPT does not have to install its
own authorization schema. Also, all applications can use the same hibernate-config
file since they point to the same database.

UPT

Common
Authorization
Database

App 1

Ap p 2

Chapter 3–2BUser Provisioning Tool (UPT)

69

Single Installation/Multiple Schema Deployment
As in the single schema deployment described above, the single installation/multiple
schema deployment calls for the UPT to be hosted on a single JBoss Common
Server as shown in Figure 3-33 below.

Figure 3-33 Single Installation/Multiple Schema deployment

In this deployment, like with the single schema deployment, a common UPT
installation is used to administer the authorization data for all applications. The
difference is that each application can use its own authorization schema on a
separate database if preferred. The authorization data can sit on individual
databases, while at the same time some applications can still opt to use the
Common Authorization Schema.

In the above figure, the three colors of arrows correspond to the three different
applications shown. Notice that App 1 and App 2 have their own authorization
databases, where as App 3 uses the Common Authorization Database.

Deploying UPT in this way requires each application to maintain its own hibernate-
config file pointing to the database where its Authorization Schema is located. This
is so that when an application uses the UPT, the UPT communicates to the
authorization schema for that application only.

UPT

App 1

Authorization
database for App
1

Authorization
database for App
2 App 3

Common
Authorization

Database

App 2

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

70

Local Installation/Local Schema Deployment
The local installation/local schema deployment is the same as single
installation/single schema deployment, except that the UPT is hosted locally by the
application as shown in Figure 3-34 below.

Figure 3-34 Local Installation/Local Schema deployment

This installation of UPT is not shared with other applications. This local installation is
used to administer the authorization data for that particular application (or set of
related applications) only. The authorization data for the application sits on its own
database. In this scenario, the application requires its own hibernate-config file
pointing to the database where its Authorization Schema is located.

UPT Deployment Checklist
Before deploying the UPT, you must verify that the environment and configuration
requirements listed below are met.

Environment

• Apache Ant 1.7.0 (must be pre-installed)

• JDK 1.5.0 (must be pre-installed)

• JBoss 4.0.5 Application Server information (If installing UPT, JBoss will be
installed for you; however the port information must be provided at
installation time).

• MySQL 5.0.27 or higher.0 Database Server (with an account that can create
databases and a user account)

UPT

Authorization
Database

App 1

Chapter 3–2BUser Provisioning Tool (UPT)

71

The CSM UPT 4.2 installation and deployment can be done using the CSM UPT
GUI Installer or by using the command line installation process. As listed below, the
CSM UPT 4.2 release includes the install and upgrade installer ZIP files along with
the GUI installer JAR file.

UPT Release Components

• Csm_gui_distribution_4.2.jar

• Csm_install4.2.zip

• Csm_upgrade4.2.zip

 To access the most up-to-date installation checklist, refer to the CSM Wiki page
located at: https://wiki.nci.nih.gov/x/CYk1AQ. For troubleshooting and Frequently
Asked Questions, refer to the CSM FAQ wiki page located at:
https://wiki.nci.nih.gov/x/ygGy.

GUI installer - Automated UPT Deployment
The CSM 4.2 release provides a Graphical User Interface (GUI) installer for added
convenience in deploying CSM UPT 4.2. The GUI Installer is simply an interface
that uses the existing CSM command line build installer.

NOTE: The CSM UPT GUI Installer currently supports only Single Installation/Single
Schema install or upgrade (also referred to as “typical” deployments). For Single
Installation/Multiple Schema install or upgrade, use the command line build
installation process described in Command Line installer - Automated UPT Deployment
on page 85.

Launching the GUI Installer
The procedures below provide the steps needed to start the GUI installer, and
display the initial required screens.

1. Open the UPT release ZIP file and extract the files contained therein into a
designated folder (for example, c:\csm_install). Be sure to note the
folder name and location.

2. Open a command prompt and navigate to the folder into which you extracted
the UPT release files.

3. Execute the following command at command prompt:
java –jar csm_gui_distributation.4.2

The UPT Installer GUI appears, beginning with the Welcome screen.

.jar

https://wiki.nci.nih.gov/x/CYk1AQ�
https://wiki.nci.nih.gov/x/ygGy�

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

72

Figure 3-35 UPT Installer - Welcome screen

4. Click Next to continue. The release notes page appears, showing the
release notes for CSM 4.2.

Figure 3-36 UPT Installer - Release Notes screen

5. Review the release notes, and click Next to continue. The Licensing
Agreement page appears, showing licensing information for using CSM.

Chapter 3–2BUser Provisioning Tool (UPT)

73

Figure 3-37 UPT Installer - Licensing Agreements page

6. Review the licensing agreement. If acceptable, enable the I Accept the
terms of the license agreement radio button and click Next to continue.

If you do not agree to the licensing agreement, click Quit to exit the Installer.
For more information on the screen click Help.

Once you accept the Licensing Agreement, you are requested to select whether you
are installing or upgrading CSM UPT. Instructions for performing an initial
installation are provided in the next section.

If you are upgrading your CSM UPT installation, see Upgrading CSM UPT Using the
GUI Installer beginning on page 83.

Installing CSM/UPT Using the GUI Installer
The GUI installer walks you through the process of installing the CSM UPT. The
installation process involves installing a new JBoss Application Server, deploying
and configuring the new UPT instance in the container, and also creating the new
UPT schema.

As noted earlier, the GUI installer can only be used for Single Installation/Single
Schema or “typical” UPT deployments.

NOTE: The steps below describe the installer process beginning with the Installation
Options screen (step 4). For information on launching the installer and the initial
steps of the GUI install process, see Launching the GUI Installer above.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

74

To Install CSM UPT:
1. After accepting the Licensing Agreement, the installer asks you to select

whether you are installing or upgrading the UPT. Select Install and click
Next.

Figure 3-38 UPT Installer - Select installation option

2. For Installation Type, the Installer GUI currently provides only a Typical
deployment option (Single Installation/Single Schema).

Figure 3-39 UPT Installer - Select installation type

3. Select the installation folder where you want to install the CSM UPT. The
JBoss Application Server will be installed in this folder.

Chapter 3–2BUser Provisioning Tool (UPT)

75

Figure 3-40 UPT Installer – Select installation folder and warning message

If the directory you identify already exists, it will be overwritten. A message
appears confirming that it is okay to overwrite the folder. You must click Yes
on this message to continue. Clicking No returns you to the installer page
where you can select a different installation location.

If you do not want to lose the contents of the existing folder, create a copy or
backup of the folder before proceeding.

4. Click Next to continue.

5. Choose the server components to install. Currently the only option available
is to install JBoss and the Database Schema.

Figure 3-41 UPT Installer - Select server components to install

6. Click Next to continue.

7. The Installer now requests the values needed to configure the JBoss
application server.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

76

Figure 3-42 UPT Installer - Configure JBoss application server options

Table 3-5 below provides a list of the configuration properties and sample
values for each of those properties to use as an example.

Property Sample Value
Hostname of this server VIJAY

JBoss Server Name Default

JBoss Web Console User Admin

JBoss Web Console
Password Password

JBoss Server JAVA_OPTS

-server -Xms256m -Xmx512m -
XX:ThreadStackSize=128 -
XX:SurvivorRatio=10 -XX:PermSize=128m -
XX:MaxPermSize=128m -
Dsun.rmi.dgc.client.gcInterval=3600000 -
Dsun.rmi.dgc.server.gcInterval=3600000 -
Djava.awt.headless=true

JBoss HTTP Port 46210

JBoss JNDI Port 46200

JBoss RMI Port 46230

JBoss EJBInvoker Port 46150

JBoss CORBAORG port 46350
JBoss hajndi port 46160

JBoss hajrmi port 46260

JBoss JMS port 46170

Table 3-5 JBoss Application Server properties and sample values

Chapter 3–2BUser Provisioning Tool (UPT)

77

7. When you have finished entering the application server configuration values,
click Next to continue.

8. The Installer now requests the JBoss application server port information.

Figure 3-43 UPT Installer - Configure JBoss server port information

Table 3-6 below provides a list of the port configuration properties and
sample values for each of those properties to use as an example.

Property Sample Value
JBoss jmx-rmi port 46290

JBoss messagin port 46330

JBoss pooledha port 46370

JBoss remoting port 46320

JBoss bind port 0

JBoss redirect Port 46298

JBoss rmiobject port 46240

JBoss snmp-trapd port 46300

JBoss SNMP port 46310

JBoss web service port 46250

Table 3-6 JBoss Application Server port properties and sample values

9. When you have finished entering the port values, click Next to continue.

10. The installer now requests the appropriate values for configuring your
database connection.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

78

Figure 3-44 UPT Installer - Configure database connection

Table 3-7 below provides a list of the database connection properties and
sample values for each of those properties to use as an example.

Property Sample value
Database Host Name Localhost

Database Port 3306

Database Name Uptdb

Database Application System
User Root

Database Application System
User Password Admin

Database Application User Application user name

Database Application User
Password Application user password

Recreate the CSM UPT
Database Schema? Yes

Table 3-7 Database connection properties and sample values

11. When you have finished entering the database connection values, click Next
to continue.

12. Select Authentication type. The Authentication type options are Database,
LDAP, or LDAPS. Choose the type preferred.

Chapter 3–2BUser Provisioning Tool (UPT)

79

Figure 3-45 UPT Installer - Select authentication type

13. Click Next to continue.

Because the configuration details for each are different, the type of
Authentication you chose determines which screen of the installer appears
next. Review the next steps to determine which applies to your installation,
and apply the actions accordingly

14. If you selected LDAPS as your authentication type, configure the LDAPS
properties for authentication. Otherwise move to the next step.

Figure 3-46 UPT Installer - Configure LDAPS authentication properties

Table 3-8 below provides a list of the LDAPS authentication properties and
sample values for each.

Property Sample value
LDAPS URL ldaps://<<your_institute_server>>:<<port_number>>

LDAPS Search Base DN Ou=dept, o=institute

LDAPS User ID Label Cn

Table 3-8 LDAPS authentication configuration properties and sample values

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

80

15. If you selected LDAP as your authentication type, configure the LDAP
properties for authentication. Otherwise move to the next step.

Figure 3-47 UPT Installer - Configure LDAP authentication properties

Table 3-9 below provides a list of the LDAP authentication properties and
sample values for each.

Property Sample value
LDAP URL ldap://<<your_institute_server>>:<<port_number>>

LDAP Search Base DN Ou=abc,dc=def,dc=ghi,dc=jkl,dc=mn

LDAP User ID Label Uid

LDAP Admin User Name Uid=abcAdmin,ou=abc,dc=def,dc=ghi,dc=jkl,dc=mn

LDAP Admin Password Password

Table 3-9 LDAP authentication configuration properties and sample values

16. If you selected Database as your authentication type, configure the MySQL
database connection information for Authentication.

Figure 3-48 UPT Installer - Configure Database authentication properties

Chapter 3–2BUser Provisioning Tool (UPT)

81

Table 3-10 below provides a list of the Database authentication properties
and sample values for each.

Property Sample value
Database Host Name Localhost

Database port 3306

Database Name Uptdb

Database Application User Upt

Database Application
Password Upt

Recreate the CSM UPT
Database Schema? Yes

Table 3-10 Database authentication configuration properties and sample values

17. Click Next to continue.

18. The Installation Summary appears. Verify the details of your installation
before proceeding.

Figure 3-49 UPT Installer - Installation summary page

19. If the details of your installation appear to be correct, click Next to continue.

20. The Installation Group summary appears. Currently only one item of
software is installed: csmupt.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

82

Figure 3-50 UPT Installer – Group installation summary

21. Click Next to proceed with installation of the software.

Figure 3-51 UPT Installer - Installation and configuration progress page

NOTE: Installation may take several minutes, depending on the speed of your network
connection.

If the installation is successful, the GUI installer will show the final page of the
installation wizard, indicating success.

Chapter 3–2BUser Provisioning Tool (UPT)

83

Figure 3-52 UPT Installer - Installation successful

If the installation fails, refer the troubleshooting section on the CSM Wiki, located at:
https://wiki.nci.nih.gov/x/4wBB. There you should find a debugging and
troubleshooting procedure to help diagnose and solve the issues.

Upgrading CSM UPT Using the GUI Installer
The GUI installer process for upgrading your CSM UPT installation is nearly
identical to the process for a new installation.

The procedures in this section specifically identify the procedural differences in
upgrading versus installing. Refer back to the installation instructions provided in the
section above for details on changing or confirming specific configurations.

As noted earlier in this chapter, the CSM UPT GUI Installer currently supports only
“typical” or Single Installation/Single Schema install or upgrade. To upgrade a Single
Installation/Multiple Schema configuration, use the command line build installation
process described in Command Line installer - Automated UPT Deployment on
page 85.

NOTE: The steps below describe the upgrade process beginning with the Installation Type
screen (step 4). For information on launching the installer and the initial steps of the
GUI install process, see Launching the GUI Installer on page 71.

To upgrade CSM UPT via GUI Installer:
1. After accepting the Licensing Agreement, the installer asks you to select

whether you are installing or upgrading the UPT. Select Upgrade and click
Next.

https://wiki.nci.nih.gov/x/4wBB�

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

84

Figure 3-53 UPT Installer – Installation Options (Upgrade selected)

2. On the Upgrade Configuration page, provide the values requested for the
upgrade configuration. If the fields are already populated, review and confirm
the accuracy of the information in these fields.

Figure 3-54 UPT Installer - Upgrade configuration page

Table 3-11 below provides information about each of the upgrade
configuration properties requested on this screen.

Property Description Sample Value
Application Root
Directory

Existing location where
UPT is installed. C:\apps\upt

JBOSS Folder Name Name of the existing
JBoss folder. jboss-4.0.5.GA

Chapter 3–2BUser Provisioning Tool (UPT)

85

Property Description Sample Value

JBoss Server Name

Name of the JBoss server.
Note the value must be
‘default’ when performing
upgrade.

default

Original CSM Schema
Version

Current version of the
existing CSM Schema
(which will be migrated to
the latest version)

3.1

Table 3-11 Configuration information required for upgrade

3. When finished entering the configuration information, click Next to continue.
To complete the upgrade process, use the instructions and information
provided in the Installing CSM/UPT Using the GUI Installer section,
beginning on page 73 as needed.

If the upgrade is successful, the GUI installer will show the final page of the
installation wizard, indicating success.

If the upgrade fails, refer the troubleshooting section on the CSM Wiki, located at:
https://wiki.nci.nih.gov/x/4wBB. There you should find a debugging and
troubleshooting procedure to help diagnose and solve the issues.

Command Line installer - Automated UPT Deployment
Since the GUI Installer can only be used for Single Installation/Single Schema
configurations, CSM 4.2 provides a command line installer that allows for installation
and upgrade of the other possible CSM configurations.

As always, you may also use the command line installer for Single
Installation/Single Schema deployments as well.

The sections that follow provide instructions for installation and upgrade of the
various CSM deployment configurations.

Single Installation, Single Schema (Typical) Install
1. Open the CSM UPT 4.2 installation ZIP file named

‘CSM_UPT_42_Release.zip’ and extract the compressed files into a
designated folder (for example, c:\csm_42). Create a new folder if
necessary.

2. Extract the contents of ‘csm_install4.2.zip’ into a designated folder (for
example, c:\csm_42\csm_install4.2).

3. In the designated folder, find and modify the install.properties file.
The tables below identify the properties located in the file and provide a
description and/or sample value for each.

The properties listed in Table 3-12 are required and must be configured for a
typical (single installation/single schema) deployment installation.

https://wiki.nci.nih.gov/x/4wBB�

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

86

Property/Sample Value Description

Upt.central.config=true

To indicate this is a Typical installation, this
property value should be set ‘true’. If this property
is set to true, then all upt.??. * properties are
ignored and only upt.central.* properties will
be considered.

upt.31.installed=true/false

upt.32.installed=true/false

upt.40.installed=true/false

upt.41.installed=true/false

upt.42.installed=true/false

To include or exclude support for a particular CSM
version, set the particular property value as either
true or false. A property value of true indicates this
UPT installation will support the identified CSM
Version. The default value for these properties is
‘true’.

All upt.central.database.*
properties Specifies Database connection properties

All JBoss.* properties Specifies JBoss configuration properties

Application.base.path.linux

Application.base.path.windows
Specifies the path where you want to install the
JBoss/CSM UPT.

Table 3-12 Required properties for install.properties file for typical installation

The properties listed in Figure 3-55 are optional or conditional depending on the
Authentication type you want to specify.

Property Description
Upt.central.authentication.
type=ldap/ldaps/db

Set authentication type. The possible values are db,
ldap, and ldaps.

Upt.central.ldap.* Only required If
Upt.central.authentication.type=ldap

Upt.central.ldaps.* Only required if
Upt.central.authentication.type=ldaps

Figure 3-55 Optional properties for install.properties file for typical installation

4. Run the Ant Build ‘install’ target by opening a command line prompt and
navigating to the folder where you extracted the CSM installation files. Then
type the following command and hit Enter:

Ant install

On successful completion of the install script, the installer will install a new JBoss
Application server at the location specified in the application.base.path
property. A new UPT is deployed as an .EAR file and configured appropriately. The
database is created as specified in the Database properties.

Single Installation, Multiple Schema (Non-Typical) Install
1. Open the CSM UPT 4.2 installation ZIP file named

‘CSM_UPT_42_Release.zip’ and extract the compressed files into a
designated folder (for example, c:\csm_42). Create a new folder if
necessary.

Chapter 3–2BUser Provisioning Tool (UPT)

87

2. Extract the contents of ‘csm_install4.2.zip’ into a designated folder (for
example, c:\csm_42\csm_install4.2).

3. In the designated folder, find and modify the install.properties file.
The tables below identify the properties located in the file and provide a
description and/or sample value for each.

The properties listed in Table 3-13 are required and must be configured for a
non-typical (single installation/multiple schema) deployment installation.

Property Description/Sample Value

Upt.central.config=false

To indicate Non-Typical installation this property
value should be set ‘false’. If this property is set to
true, then all upt.central.* properties are
ignored and only upt.??.* properties will be
considered.

upt.31.installed=true/false

upt.32.installed=true/false

upt.40.installed=true/false

upt.41.installed=true/false

upt.42.installed=true/false

To include support for a particular CSM version,
set the particular property value as true. A property
value false indicates this installation will not
support particular CSM Version.
NOTE: If property is true, then corresponding
upt.??.* properties must be configured
appropriately.

For example: if upt.32.installed=true, then
the rest of the upt.32.* properties must be set
correctly.

All upt.??.database.*
properties

Specify Database connection properties for
supported CSM UPT version.
NOTE: The ?? can be any of the following: 31, 32,
40, 41, and 42.

All JBoss.* properties Specify JBoss configuration properties.

Application.base.path.linux

Application.base.path.windows
Specify the path where you want to install the
JBoss/CSM UPT.

Table 3-13 Required properties for install.properties file for non-typical installation

The properties listed in Table 3-14 are optional or conditional depending on the
Authentication type you want to specify.

.Property Description

Upt.??.authentication.type=
ldap/ldaps/db

Set authentication type. The possible values are db,
ldap, and ldaps.
NOTE: The ?? can be any of the following: 31, 32,
40, 41, and 42.

Upt.??.ldap.*
Only required If
Upt.??.authentication.type=ldap. Specify
LDAP properties for supported CSM UPT version.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

88

.Property Description

Upt.??.ldaps.*

Only required if
Upt.central.authentication.type=ldaps.
Specify LDAPS properties for supported CSM UPT
version

Table 3-14 Optional properties for install.properties file for non-typical installation

4. Run the Ant Build ‘install’ target by opening a command line prompt and
navigating to the folder where you extracted the CSM installation files. Then
type the following command and hit Enter:

Ant install

On successful completion of the install script, the installer will install a new JBoss
Application server at the location specified in the application.base.path
property. A new UPT is deployed as an .EAR file and configured appropriately. The
database is created as specified in the Database properties.

Single Installation, Single Schema (Typical) Upgrade
1. Open the CSM UPT 4.2 Release ZIP file named

‘CSM_UPT_42_Release.zip’ and extract the compressed files into a
designated folder (for example, c:\csm_42). Create a new folder if
necessary.

2. Extract the contents of ‘csm_upgrade4.2.zip’ into a designated folder (for
example, c:\csm_42\csm_upgrade4.2). Create a new folder if necessary.

3. In the designated folder, find and modify the upgrade.properties file.
The tables below identify the properties located in the file and provide a
description and/or sample value for each.

The properties listed in Table 3-15 are required and must be configured for a
typical (single installation/single schema) deployment upgrade.

Property Description/Sample Value

Upt.central.config=true

To indicate Typical installation this property
value should be set ‘true’. If this property is set
to true, then all upt.??.* properties will be
ignored and only upt.central.* properties will be
considered.

upgrade.upt.central.db.previou
s.version

Specify the original existing version of the CSM
UPT schema that needs to be upgraded to latest
CSM 4.2 schema. Example: If current version of
UPT is v3.2 and then value of this property
should be 3.2

upt.31.installed=true/false

upt.32.installed=true/false

upt.40.installed=true/false

upt.41.installed=true/false

upt.42.installed=true

To include or exclude support for a particular
CSM version, set the particular property value
as true/false. A property value true indicates this
installation will support this CSM Version. For
Upgrade upt.42.installed=true.

Chapter 3–2BUser Provisioning Tool (UPT)

89

Property Description/Sample Value
All upt.central.database.*
properties Specify Database connection properties

All JBoss.* properties Specify JBoss configuration properties

jboss.server.name=default Specify JBoss server name as ‘default’

jboss.server.host Specify Jboss Server host name as the machine
name hosting the jboss.

application.base.path Specify the path where you want to install the
JBoss/CSM UPT.

Table 3-15 Required properties for upgrade.properties file for typical installation

The properties listed in Table 3-16 are optional or conditional depending on
the Authentication type you want to specify.

Property Description
Upt.central.authentication.
type=ldap/ldaps/db

Set authentication type. The possible values are
db, ldap, and ldaps.

Upt.central.ldap.* Only required If
Upt.central.authentication.type=ldap

Upt.central.ldaps.* Only required if
Upt.central.authentication.type=ldaps

Table 3-16 Optional properties for upgrade.properties file for typical installation

Property Description

Jboss.binaries.relative.dir

Only if required, set the jboss folder name. The
default value is jboss-4.0.5.GA. If the jboss version
is different than the default, then specify the
version/folder name in this property.
NOTE: The jboss folder name must have a prefix
of jboss-x.x.x where x is a digit.

Table 3-17 Optional properties for project.properties file for typical installation

4. Ensure the JBoss application server is shut down before proceeding to the
next step.

5. Run the Ant Build ‘upgrade’ target by opening a command line prompt and
navigating to the folder where you extracted the CSM installation files. Then
type the following command and hit Enter:

Ant –Dproperties.file=upgrade.properties upgrade

On successful completion of the upgrade script, the installer will update the existing
JBoss Application server at the location specified in the application.base.path
property. A new UPT is deployed as an .EAR file and configured appropriately. The
previous version of the database schema identified in the properties is migrated to
the CSM 4.2 version.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

90

Single Installation, Multiple Schema Deployment (Non-Typical) Upgrade
1. Open the CSM UPT 4.2 Release ZIP file named

‘CSM_UPT_42_Release.zip’ and extract the compressed files into a
designated folder (for example, c:\csm_42). Create a new folder if necessary

2. Extract the contents of ‘csm_upgrade4.2.zip’ into a designated folder (for
example, c:\csm_42\csm_upgrade4.2). Create a new folder if necessary.

3. In the designated folder, find and modify the upgrade.properties file.
The tables below identify the properties located in the file and provide a
description and/or sample value for each.

The properties listed in Table 3-18 are required and must be configured for a
non-typical (single installation/multiple schema) deployment upgrade.

Property Description/Sample Value

Upt.central.config=false

To indicate Non-Typical installation this property
value should be set ‘false’. If this property is set to
true, then all upt.central.* properties will be
ignored and only upt.??.* properties will be
considered.

upt.31.installed=true/false

upt.32.installed=true/false

upt.40.installed=true/false

upt.41.installed=true/false

upt.42.installed=true

To include support for a particular CSM version,
set the particular property value as true. A property
value false indicates this installation will not
support particular CSM Version.
NOTE: If property is true, then corresponding
upt.??.* properties must be configured
appropriately. For Upgrade upt.42.installed=true.

For example: If upt.32.installed=true, then
rest of the upt.32.* properties must be set
correctly.

All upt.??.database.*
properties

Specify Database connection properties for
supported CSM UPT version.
NOTE: The ?? could be any of the following: 31,
32, 40, 41, and 42.

All JBoss.* properties Specify JBoss configuration properties

jboss.server.name=default Specify JBoss server name as ‘default’

jboss.server.host Specify Jboss Server host name as the machine
name hosting the jboss.

Table 3-18 Required properties for upgrade.properties file for non-typical installation

Chapter 3–2BUser Provisioning Tool (UPT)

91

The properties listed in Table 3-19 are optional or conditional depending on
the Authentication type you want to specify.

Property Description

Upt.??.authentication.type
=ldap/ldaps/db

Set authentication type. The possible values are db,
ldap, and ldaps.
NOTE: The ?? can be any of the following: 31, 32, 40,
41, and 42.

Upt.??.ldap.*
Only required if
Upt.??.authentication.type=ldap. Specify
LDAP properties for supported CSM UPT version.

Upt.??.ldaps.*
Only required if
Upt.??.authentication.type=ldaps. Specify
LDAPS properties for supported CSM UPT version

Table 3-19 Optional properties for upgrade.properties file for non-typical installation

Property Description

Jboss.binaries.relative.dir

Only if required, set the jboss folder name. The
default value is jboss-4.0.5.GA. If the jboss version
is different than the default, then specify the
version/folder name in this property.

Table 3-20 Optional properties for project.properties file for non-typical installation

4. Ensure the JBoss application server is shut down before proceeding to the
next step.

5. Run the Ant Build ‘upgrade’ target by opening a command line prompt and
navigating to the folder where you extracted the CSM installation files. Then
type the following command and hit Enter:

Ant -Dproperties.file=upgrade.properties upgrade

On successful completion of the upgrade script, the installer updates the existing
JBoss Application server at the location specified in the application.base.path
property. A new UPT is deployed as an .EAR file and configured appropriately. The
configured database schema for UPTxx versions are updated with minor data
modifications while still maintaining their CSM Version. The schema for UPTxx is
NOT migrated to latest CSM version 4.2.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

92

93

Chapter 4 CSM Security Web Services
The CSM Security Web Services are introduced to expose the CSM authentication
and authorization service features. The Security Web Services currently provide
only two operations: Login and CheckPermission. The operations are exposed
versions available in CSM API’s.

Security Web Service WSDL
The CSM Security Web Service WSDL is diagramed in Figure 4-1 below.

Figure 4-1 Security Web Service WSDL

The name of the exposed web service is ‘SecurityService’ and provides two
operations, which are discussed in more detail in the next section.

Security Web Service Operations
The CSM Security Web Service provides two operations: Login and Check
Permission. They are detailed in the sections below.

Login Operation
The Login web service operation is a request/response operation. This operation
receives a LoginRequestMessage, performs authentication and responds with
LoginResponseMessage to the web service consumer. If there are any problems
with the processing the LoginRequestMessage and/or performing authentication on
the user credentials then the web service operation will return a SOAP Fault
response error message indicating an error code and the error details.

The below example shows the Schema (XSD) for Authentication:
<xs:schema targetNamespace="http://security.nci.nih.gov/ws/authentication"

 xmlns:authentication="http://security.nci.nih.gov/ws/authentication"

 elementFormDefault="qualified"

 attributeFormDefault="qualified"

 version=".1">

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

94

<xs:element name="LoginRequest" type="authentication:LoginRequest"/>

 <xs:complexType name="LoginRequest">

 <xs:sequence>

 <xs:element name="UserName" type="xs:string"/>

 <xs:element name="Password" type="xs:string"/>

 <xs:element name="ApplicationContext" type="xs:string"/>

As displayed in the example above, the LoginRequest message consists of three
parameters: UserName, Password, and ApplicationContext. The Apache AXIS
framework validates all request and response messages against the Schema
specified in the Security Web Services WSDL.

When the LoginRequest message is received by the web service operation, the
User credentials from the LoginRequest message are used by the CSM API to
authenticate the user against privileges for the ‘ApplicationContext’. If the User is
authenticated and has privilege to access the ApplicationContext then a
LoginResponse is returned with result value of ‘true’. If the user is not authenticated
and does not have access privilege for the ‘ApplicationContext’ then a
LoginResponse is returned with the result value of ‘false’.

CheckPermission Operation
The CheckPermission web service operation is a request/response operation. This
operation receives a CheckPermissionRequestMessage, performs a permission
check, and responds with CheckPermissionResponseMessage. If there are any
problems, the web service operation will return a SOAP Fault response error
message indicating an error code and the error details.

The example below shows the Schema for Authorization.
<xs:schema targetNamespace="http://security.nci.nih.gov/ws/authorization"

 xmlns:authorization="http://security.nci.nih.gov/ws/authorization"

 elementFormDefault="qualified"

 attributeFormDefault="qualified" version=".1">

<xs:element name="CheckPermissionRequest"
type="authorization:CheckPermissionRequest"/>

<xs:complexType name="CheckPermissionRequest">

 <xs:sequence>

 <xs:choice>

 <xs:element name="UserName" type="xs:string"/>

 <xs:element name="GroupName" type="xs:string"/>

 </xs:choice>

 <xs:element name="ObjectId" type="xs:string"/>

 <xs:element name="Attribute" type="xs:string" nillable="true"/>

Chapter 4–3BCSM Security Web Services

95

As displayed in the example above, the CheckPermission request message consists
of UserName or GroupName, ObjectId, Attribute, Privilege and ApplicationContext.
The Apache AXIS framework validates all request and response messages against
the Schema specified in the Security WS WSDL.

When the CheckPermission request message is received by the web service
operation, the CSM API’s checkpermission method is invoked to check permission.
If the User or Group has permission then a CheckPermissionResponse is returned
with result value ‘true’ otherwise result value is ‘false’.

Workflow for CSM Security Web Service
This workflow section outlines the basic steps, both strategic and technical, for
successful CSM Security Web Services integration.

1. Read the deployment steps from this chapter as well as the rest of this
guide. It provides an overview, workflow, and specific deployment and
integration steps.

2. Determine the security requirements and provision security with CSM’s UPT.

3. After the Security Web Service is deployed and user security provisioned
with UPT, the Security Web Service is ready for operation and consumption.

4. Using the CSM Web Services Interface use the authentication and
authorization operation exposed.

5. Using the LoginRequestMessage invoke and consume the Login Web
Service Operation.

6. Using the CheckPermissionRequestMessage invoke and consume the
CheckPermission Web Service operation.

Installation of CSM Security Web Service
The sections below provide the basic steps for installing the CSM Security Web
Service as well as instructions for completing each step. As you follow the
deployment steps, use the files containing the name corresponding with your
database.

Create and Prime Database
Before beginning, you must log into the database using an account that has
permission to create new databases. Make sure that the database you are about to
create does not already exist. If it does, drop it to create the new one.

1. In the AuthSchemaMySQL.sql file replace the <<database_name>> tag
with the target application scheme: csmupt.

2. Save and then run this script from the database prompt. This should create a
database with the given name.

3. In the DataPrimingMySQL.sql file, perform the following:

o Replace the <<super_admin_login_id>> with the login id of the user
who is going to act as the Super Admin for that particular installation. For
example “doej” for John Doe admin.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

96

o Provide the first name and last name of the Super Admin user by
replacing <<super_admin_first_name>> and
<<super_admin_last_name >> with the appropriate values.

o Replace the <<application_context_name>> with a test application
entry such as abc_app. For example: the application name is ‘abc_app’
and application schema name is ‘abc_app’. For the sake of this
document we will use schema ‘abc_app’ and the application as
‘abc_app’.

4. Save and then run the edited script from the database prompt. This should
populate the database with the initial data.

5. Verify the population of the data by querying the application, user,
protection_element, and user_protection_element tables. They should have
one record each.

The database will also include CSM Standard Privileges and the privilege table
should have seven entries.

Configure Datasource
Once the database has been created and primed, you must modify the mysql-
ds.xml file, which contains information for creating a datasource, and then copy it
to the appropriate location.

1. Edit the mysql-ds.xml file as follows:

o Replace the <<database_user_id>> and
<<database_user_password>> with the user id and password of the
user account.

o Replace the <<database_url>> with the URL needed to access the
Authorization Schema residing on the database server:
jdbc:mysql://<<stage_database_server_name>>:<<port>>/<<data
base_name>>

Shown below is an example mysql-ds.xml file.
<?xml version="1.0" encoding="UTF-8"?>

<datasources>

 <local-tx-datasource>

 <jndi-name>abc_app_ds</jndi-name>

 <connection-url>
jdbc:mysql://<<database_server_name>>:<<port>>/<<database_name>></connecti
on-url>

 <driver-class>org.gjt.mm.mysql.Driver</driver-class>

 <user-name>name</user-name>

 <password>password</password>

 </local-tx-datasource>

</datasources>

Chapter 4–3BCSM Security Web Services

97

2. Place the mysql-ds.xml file in the JBoss deployment directory located at:
{jboss-home}/server/default/deploy/

Configure JBoss JAAS Login Parameters
In order to configure the CSM Web Service to verify against the LDAP, create an
entry in the login-config.xml of JBoss as shown in the sample below. This
entry configures a login-module against the application context. The location of this
file is {jboss-home}/server/default/conf/login-config.xml.

Shown below is an example login-config.xml entry for “abc_app”.
<application-policy name = "abc_app">

 <authentication>

 <login-module code =
"gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule" flag =
"required" >

<module-option name="ldapHost">ldaps://ncids4a.nci.nih.gov:636</module-option>

<module-option name="ldapSearchableBase">ou=nci,o=nih</module-option>

 <module-option name="ldapUserIdLabel">cn</module-option>

 </login-module>

 </authentication>

</application-policy>

As shown in the example above:

• The application-policy name is the name of the application for
defining the authentication policy. In this case, abc_app.

• The login-module code is the LoginModule class that is used to perform
the authentication task. In this case it is:
gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule.

• The flag provided is required.

• The module-options list the parameters that are passed to the
LoginModule to perform the authentication task. In this case, they point to
the NCICB LDAP Server:

<module-option name="ldapHost">ldaps://ncids4a.nci.nih.gov:636</module-
option>

<module-option name="ldapSearchableBase">ou=nci,o=nih</module-
option>

<module-option name="ldapUserIdLabel">cn</module-option>

You can also point to a RDBMS database using the username and password.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

98

Deploy the Security WS .war File
Copy the securityws.war into the deployment directory of JBoss located at:
{jboss-home}/server/default/deploy/.

99

Chapter 5 CSM Instance Level and
Attribute Level Security

Previously CSM APIs provided instance level and attribute level security. However
this security is provided in the java tier.

The typical flow of events in the case of instance level security would be something
like this:

• The user fires a business query on the database to obtain a result set.

• The entire result set is iterated through in Java, and for each and every
record in it, a call is made to the CSM APIs to check whether or not the user
or groups have access to that particular instance.

In the case of attribute filtering, for each of the accessible objects in the result set
you would need to invoke the CSM APIs to check which attributes the user or
groups can see.

In the both the situations mentioned above, there are several issues:

1. The entire result set is to be returned from the database to the application
resulting in network traffic and latency.

2. Once the result set is obtained, it needs to be iterated through in Java,
adding to processing time.

3. For each record there is a database call to CSM to determine if the user or
groups has access or not.

The design of CSM v4.0 and higher address all the performance issues mentioned
above. Details on how CSM provides Instance Level and Attribute Level security are
discussed in the sections that follow.

Instance Level Security
Instance Level Security is a feature provided by CSM to allow filtering of the
instances of data directly at the database level by creating filter criteria and linking
those criteria with allowed values from CSM tables. The User Provision Tool (UPT)
allows administrators to provision security filters for instances of domain classes and
the API filters the results of the queries based on the access policy.

This section provides details regarding the features and functionality provided by
CSM for instance level security.

Requirements Addressed
The following functional requirements are addressed and provided as part of CSM’s
instance level security solution.

Direct Instance Level Security
Direct Instance Level Security can be defined as where security for a particular
instance is dependent on itself. A user or group(s) has access to a particular object

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

100

based on the value of one of its attributes. There is no relation or association with
another object. This type of instance level security is ad hoc and dependant on the
associations established between the instance and the user or group(s) by security
administrators.

For example, out of 456 patients in the patient table, user ABC has access to a
specifically assigned 28 patients, based on the patient id.

Here out of the total patients in that database, the security administrator has
assigned 28 patient ids to user ABC. Based on this, the solution should filter any
query fired on the patient table such that for user ABC only those 28 records are
accessible. This example also applies for group(s) where groups G1, G2, and G3
have access to 28 patients based on patient id. The results would be the same for
those groups as they are for the example user.

Cross Dependant Instance Level Security
Cross Dependant Instance Level Security can be defined as where security for a
particular instance is dependent on some other object. In other words, a user or
group(s) has access to a particular object based on its association to some other
higher level object to which the user/group has been granted access. There is an
association with another object, which is generally higher up in the data graph. This
type of instance level security is based on the relationship between the queried
tables and the table to which the security is assigned. This type of security is used
generally where it is much easier to assign and manage security at a the higher
level of data

For example, a user or group(s) has access to only those lab results that are
associated to a particular study, to which the user or groups(s) have access.

Here in this example there can be thousands of lab results whereas the number of
studies could be less than 100. Also as per the business rule, if user or group(s) is
assigned access to the study then the user or group(s) can access everything
associated to with that study. In this case it is presumed that the assignment and
management of security is much easier for the studies as they are less in number.

Instance Level Security at User or Group Level
In CSM v4.0 the Instance Level Security was supported at User level only. As of
v4.1, CSM supports Instance Level Security at group level, which allows groups to
be considered when performing instance level security. An administrator can
provision groups using UPT and associate roles with those groups. This way,
administrators can design the application’s instance level security at the group level
out of the box. This simplifies and reduces the effort involved for respective
applications.

Another goal of this requirement is to ensure caGrid compatibility for instance level
security. Instance level security within CSM should work with groups as defined in
the Grid Grouper application.

Support Non-CSM Custom Domain Object Filters
CSM v4.1 provided the initial support for non-CSM custom filters defined for
respective domain objects. The non-CSM custom filters can be defined using HBM
or via @Filter annotations.

Chapter 5–4BCSM Instance Level and Attribute Level Security

101

Integration of Instance Level Security for an SDK Generated System
CSM’s instance level solution is integrated with the caCORE SDK so that it can be
provided as an out of the box solution for SDK generated systems.

Instance Level Security Support for Non-SDK Systems
CSM is adaptable for non-SDK systems with minor modifications if required. The
general principle should be the same as for an SDK-generated system. It can be
assumed that users will need to configure the solution and adapt it for their
application.

Overall Design
In order to provide instance level security, CSM utilizes the filter capability provided
by Hibernate. These filters contain filtering queries that are injected to the actual
business queries, which are fired by the user. These filters are applied at the class
level. So that whenever the class is queried, the attached filter is appended to the
actual business query directly by Hibernate.

CSM provides capabilities for creating these filters through its UPT tool. It allows
you to configure these filters for either the Direct or Cross Dependant type of
instance level security. These filters contain queries which join with the CSM tables
to obtain the instances of data on which the user or group has access. These filters
are stored in the CSM database.

The custom (non-CSM) filters defined via HBM files or by using @filter annotations
are also considered. At runtime, the client application calls CSM’s helper methods,
which retrieve these filters from the CSM Database. They also inject these filters
into hibernate configuration for the appropriate classes.

Now since these filters are to be applied for a particular user or groups, the user
name or group names are passed as parameters to these filters. So at runtime, filter
queries are injected into the actual user or group queries. This combined query is
fired at the database and the resulting data is filtered based on the instances on
which the user or group has access.

Provisioning Instance Level Security
A new menu tab has been added to UPT for the purpose of provisioning Instance
Level Security. This tab lets you configure the filter clauses for various classes in
your application. Once the filtering clauses are configured, an Admin can create
Protection Elements for the Instances of Objects on which the users have access,
and assign them access. Figure 5-1 below is an activity diagram showing how the
filter clause functionality under the new Instance Level menu tab works

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

102

Figure 5-1 Instance Level Activity Flow

The details for performing these operations are provided in the UPT chapter of this
document, in Instance Level Security Administration – Admin Mode beginning on
page 63.

In addition, the Protection Element has been enhanced to now include a new value
field, which administrators can use to provide values for the instances on which
users have access.

The sections that follow provide a workflow for provisioning instance level security.

Chapter 5–4BCSM Instance Level and Attribute Level Security

103

Uploading an Application File
The first step is to upload a file which contains the Hibernate files along with the
domain objects. This file should be a valid java archive and contain the following.

• Hibernate Configuration File – with database connection information.

• Hibernate Mapping files if not using annotations.

• Domain Objects Or Domain Objects with Hibernate Annotations.

NOTE: Since CSM v.4.1, the Hibernate annotations and @Filter annotations are supported
with the Instance Level Security feature.

In the case of an SDK generated system, there are two jar files generated
containing the Hibernate and Domain Objects separately. In this case, both of these
files have to be uploaded.

In addition, a fully qualify hibernate configuration file name should be provided along
with the files. Once the file is successfully uploaded a success message is given to
the user.

Creating a Filter Clause
Once the file containing the Hibernate information is uploaded, we can use it to
create filter clauses for different objects.

On the filter clause screen, the user first has to select the class for which they want
to add the filter. Once the class is selected, the Filter Chain drop-down list is
automatically populated with the associated classes.

NOTE: There is an entry for the master class itself in the list. This is to allow for direct
instance level security.

If you want to provision a Direct Instance Level Security, select the class itself from
the Filter Chain drop-down list and click Done.

In case of Cross Dependant Security, select the associated class from the Filter
Chain drop-down list. Note that you can drill down the class hierarchy by clicking the
Add button located in the Filter Chain section of the Filter Clause Details form. This
brings the associated child classes. Once you have reached the final class on which
the security for the class is dependant, you can click Done.

On pressing Done, the attribute list is populated with the attributes from the last
class in the filter chain. Select the attribute on whose value the user will be granted
access.

Once selected you can also provide an alias for the target class name and attribute.
This is in cases where the attribute selected holds value for some other class. For
example you have a Patient Object which has an attribute Security Key on whose
value you want to filter the instances. However from a business perspective, the
actual value in the Security Key is the value of the Study Id to which the patient
belongs. In this case even though the security filter is set for the Patient based on
the security key attribute, in business sense the filtering is happening at the Study Id
Level. Hence you can provide an alias that will be used to determine to which
protection elements the user has been granted access.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

104

Once everything is selected, click Add at the bottom of the filter form to create the
filter.

Once the ‘Add’ button is clicked, depending on whether the Instance Level Query
Performance Enhancement feature is enabled for the secured object and attribute,
the filtering SQL statements are generated differently and displayed back to the
user.

If the instance level security query performance enhancement feature is enabled for
the secured object and attribute and an ‘active’ entry is available in the
CSM_MAPPING table, then the filter generation process also involves creating
temporary Instance tables and views. See the section Using Instance Level Query
Performance Enhancements for more information.

Once the filter is created, the filtering SQL statements are generated and displayed
back to the user.

The generated SQL statements are for User and Group level filtering. Note that
these fields are kept editable to allow users to modify the SQL in case if they want to
optimize it further. The User SQL generated will be used if instance level security is
being done at the user level. The SQL generated for Group will be used when
instance level security is being doing for group level. Both SQL statements are
different and special attention must be paid while editing any of the SQL filter query.

Creating Protection Elements
Once the security filters have been created, you need to provision the actual
instances on which the user has access. This is done by creating protection
elements for these instances and providing access to the users.

Table 5-1 below provides descriptions of the Protection Element fields that an
Admin must populate when creating a Protection Element.

Field Name Description

Protection Element Name Distinct name that uniquely identifies the Protection
Element

Protection Element Description Description of the Protection Element

Protection Element Type Can be left blank

Protection Element Object Id
The target class name on which the security of the
master class depends. If an alias class name is used,
then the alias should be entered here.

Protection Element Attribute

The name of the attribute of the target class on which
the security of the master class depends. If an alias
attribute name is used then the alias should be entered
here

Protection Element Value The actual value of the attribute on which user has
access.

Update Date Date when the protection element was last updated

Table 5-1 Protection Element Fields

Chapter 5–4BCSM Instance Level and Attribute Level Security

105

Using Instance Level Security
In order for the client application to inject Instance Level Security, CSM provides a
helper class which assists them. This class contains methods which allow the user
to add these filters to the Hibernate Configuration at the time of loading of the
system, and also initialize and parameterize these filters at runtime for the particular
user or group(s) firing the query.

To add filters when using instance level security for user:
public static void addFilters(AuthorizationManager authorizationManager,
Configuration configuration)

public static void addFilters(AuthorizationManager
authorizationManager,Configuration configuration, List<String>
definedFilterNamesList)

To add filters when using instance level security for groups:
public static void addFiltersForGroups(AuthorizationManager authorizationManager,
Configuration configuration)

public static void addFiltersForGroups(AuthorizationManager
authorizationManager,Configuration configuration, List<String>
definedFilterNamesList)

One of these methods should be called only once for an application just after the
Hibernate Configuration object is created (by reading the configuration file) and
before the Session Factory Method is created. The methods inject the security filters
that have been created for this application. CSM retrieves a list of all the filters that
have been defined for the application from the CSM Database.

Since the non-CSM custom filters defined in HBM or via @Filter annotations are
supported, if the definedFilterNamesList parameter is passed while adding filters,
then the named filters will be added as well to the persistent classes.

After that, for each filter in the list, CSM creates a new FilterDefinition (Hibernate)
object. CSM then retrieves the persistent class from the passed Configuration
Object using the class name for which the filter is defined. CSM then adds the filter
to the persistent class by setting the filtering query.

To initialize filters when instance level security for user:
public static void initializeFilters (String userName, Session session,
AuthorizationManager authorizationManager)

public static void initializeFilters(String groupNames, Session session,
AuthorizationManager authorizationManager, Map<String,String>
definedFilterNamesMap)

To initialize filters when instance level security for groups:
public static void initializeFiltersForGroups(String[] groupNames, Session session,
AuthorizationManager authorizationManager)

public static void initializeFiltersForGroups(String[] groupNames, Session session,
AuthorizationManager authorizationManager, Map<String,String>
definedFilterNamesMap)

One of these methods should be invoked after obtaining the Session from the
SessionFactory and just before executing the user query. This method initializes the
filters that are already added to the SessionFactory. This method first obtains the list

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

106

of all the defined filters from the SessionFactory in the passed Session object. It
then iterates through the filter list and sets the user name or group names and the
application name parameters. It retrieves the application name from the passed
Authorization Manager.

It is important to note that the instance level security filters can be added or
initialized for a user or groups exclusively. Meaning that if the addFilter method is
invoked for groups, then the Group(s) based instance level security filter queries are
added. As mentioned above, the decision to utilize user or group based instance
level security must be made before adding the filters to the Hibernate session and
should not be used interchangeably.

Instance Level Security Performance Enhancements
For advanced users of the Instance Level Security feature, the ability to generate
filters based on domain objects is generally considered the most basic functionality
of the feature. Advanced users frequently and sometimes extensively modify the
Instance Level Security Filters, to include adding custom and complex business
logic. As these types of enhancements are implemented, the complexity of the filters
causes the resulting SQL queries to test the limits of MySQL database performance.

The solution to this problem is to provide these advanced users with a new query
performance enhancement feature.

The query performance enhancement feature introduces new temporary tables and
views that provide the ability to predetermine an application users’ access privileges
on individual instances of an object. These tables store the information in a non-
normalized form. Using these views/tables, CSM filters can directly retrieve all of the
instance ID’s to which the User/Group has access. This method removes the
runtime multiple joins between CSM tables. This results in faster performance
because the query is referencing only one table instead of multiple tables via joins.

Instance Level Mapping Element
The Mapping table is used to indicate the objects secured via instance level
security, and the corresponding tables and views created to increase performance
on the instance level security. The Mapping Table stores
InstanceLevelMappingElement objects.
Table 5-2 below provides descriptions of the CSM_MAPPING table fields.

Field Name Description
ACTIVE_FLAG Flag to indicate that the object and corresponding tables shall be

refreshed/updated when the PE table is updated. If the flag is not
set, the CSM API will not refresh the three (3) tables mentioned in
this mapping table. The CSM API
AuthorizationManager.maintainInstanceTables () and
refreshInstanceTables() methods verify this flag to determine
whether a maintain/refresh is necessary or not.

MAINTAINED_FLAG Flag to indicate if the tables/views have already been created by
the CSM API Maintain Logic. If the flag is set, the UPT does not
maintain the tables/views identified in this record.

Chapter 5–4BCSM Instance Level and Attribute Level Security

107

Field Name Description
OBJECT_PACKAGE_NAME The Package Name of Object Class. This column is utilized by the

UPT at the time of Filter creation for an object, to uniquely identify
the object from the domain models.

OBJECT_NAME Object Name or Initial for column name. This column indicates the
Object name secured via the instance level security feature.

ATTRIBUTE_NAME Attribute Name or Initial for column name. This column indicates
the Attribute Name on which the object’s security is based. For
example, the object ‘PROJECT’ has attribute name ‘ID’. The
Attribute ‘ID’ and its value are used to indicate an instance in a
Protection Element.

TABLE_NAME The purpose of this table is to store the Protection Element ID,
Application ID, and Attribute Value from the Protection Element
table for all Protection Elements representing an instance of the
concerned object.
Nomenclature is: CSM_PEI_<<OBJECT NAME OR
INITIALS>>_<<ATTRIBUTE NAME OR INITIALS>>

VIEW_NAME_USER Example: CSM_VW_<<OBJECT NAME OR
INITIALS>>_<<ATRRIBUTE NAME OR INITIALS>>_USER

VIEW_NAME_GROUP Example: CSM_VW_<<OBJECT NAME OR
INITIALS>>_<<ATRRIBUTE NAME OR INITIALS>>_GROUP

TABLE_NAME_USER This table stores User-Instance-Privilege information (user id,
privilege name, attribute value , application id) for the
OBJECT_NAME and ATTRIBUTE_NAME.
Nomenclature: CSM_<<OBJECT NAME OR
INITIALS>>_<<ATRRIBUTE NAME OR INITIALS>>_USER

TABLE_NAME_GROUP This table stores User-Instance-Privilege information (group id,
privilege name, attribute value , application id) for the
OBJECT_NAME and ATTRIBUTE_NAME.
Nomenclature: CSM_<<OBJECT NAME OR
INITIALS>>_<<ATRRIBUTE NAME OR INITIALS>>_GROUP

Table 5-2 Descriptions of the CSM_Mapping table fields

New Functionality - API
The Mapping table, described above, stores the InstanceLevelMappingElement
objects. The CSM API AuthorizationManager has following new methods to support
this feature:

To provision InstanceLevelMappingElement Object:
public void createInstanceLevelMappingElement(InstanceLevelMappingElement
instanceLevelMappingElement) throws CSTransactionException;

public InstanceLevelMappingElement getInstanceLevelMappingElementById(String
instanceLevelMappingElementId) throws CSObjectNotFoundException;

public void modifyInstanceLevelMappingElement(InstanceLevelMappingElement
instanceLevelMappingElement) throws CSTransactionException;

public void removeInstanceLevelMappingElement(String
instanceLevelMappingElementId) throws CSTransactionException;

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

108

To Maintain Instance Temp Tables:
public void maintainInstanceTables(String instanceLevelMappingElementId) throws
CSObjectNotFoundException, CSDataAccessException;

To Refresh Instance Temp Tables:
public void refreshInstanceTables(boolean instanceLevelSecurityForUser) throws
CSObjectNotFoundException, CSDataAccessException;

New Functionality – UPT
See Provisioning Instance Level Security on page 101 above for information on the
changes made to the filter creation logic.

Using Instance Level Security Performance Enhancement
The workflow for using the instance level security query performance enhancement
feature is as follows:

1. Provision User/Groups and Protection Elements to indicate Object instances.

2. Provision User/Groups access to Protection Elements/Protection Groups
with at least ‘READ’ privilege.

3. Determine the domain objects that will be provisioned for instance level
security.

4. Create one Instance Level Mapping Element for each distinct Object-
AttributeName pair.

Example: If object test.gov.nih.nci.security.instancelevel.domainobjects.Card is to
be secured using Direct Instance Level Security, then determine the Attribute Name
the security is based on. In this case id is the AttributeName:

InstanceLevelMappingElement instanceLevelMappingElement = new
InstanceLevelMappingElement();

instanceLevelMappingElement.setActiveFlag((byte) 1);

instanceLevelMappingElement.setObjectName("Card");

instanceLevelMappingElement.setApplication(application);

instanceLevelMappingElement.setAttributeName("id");

instanceLevelMappingElement.setObjectPackageName("test.gov.nih.nci.security.ins
tancelevel.domainobjects");

instanceLevelMappingElement.setTableName("CSM_PEI_CARD_ID");

instanceLevelMappingElement.setTableNameForGroup("CSM_ CARD
_ID_GROUP");

instanceLevelMappingElement.setTableNameForUser("CSM_ CARD _ID_USER");

instanceLevelMappingElement.setUpdateDate(new Date());

instanceLevelMappingElement.setViewNameForGroup("CSM_VW_CARD_ID_GRO
UP");

instanceLevelMappingElement.setViewNameForUser("CSM_VW_CARD_ID_USER"
);

Chapter 5–4BCSM Instance Level and Attribute Level Security

109

authorizationManager.createInstanceLevelMappingElement(instanceLevelMappingE
lement);

5. Maintain Instance Tables

Use the following method to create the temporary instance tables and views,
where 1 is the mappingID of InstanceLevelMappingElement to be
maintained.
authorizationManager.maintainInstanceTables("1")

6. Refresh Instance Tables

Once the Instance tables are maintained and user/groups are provisioned to
have access to Protection Elements representing object instances, the
refresh can be performed on the temporary instance tables.
// For User based instance level security

authorizationManager.refreshInstanceTables(true);

// For Groups based instance level security

authorizationManager.refreshInstanceTables(false);

7. Using the InstanceLevelSecurityHelper class, addFilters and initializeFilters
before querying the domain objects that are filtered via the instance level
security features. See Provisioning Instance Level Security on page 101 for
more details.

Known Issues
Below is a list of known issues related to instance level security.

In case of eager loading, filtering of the child object doesn’t work.
Hibernate, by default, injects only the filter for the parent object. In the case where
you have the eager loading mode set to “true”, the child objects (the associated
objects which are being eagerly loaded) filter is not injected. SDK by default comes
with eager loading set to “false”, leaving up to the users to explicitly turn it on.

Multiple filters on a single object will be always AND-ed
If you have multiple filters defined for a single domain object, Hibernate will inject all
of them with “AND” conditions between them. This is the default behavior of
Hibernate and would require programmatic enhancements to handle the OR-ing of
filters.

Filtering in the case of inheritance needs to be further investigated
Hibernate DTD has a limitation of not allowing a user to add a filter for the inherited
classes. The DTD allows filters only to be added to the super class. However
Hibernate API allows the addition of these filters. This issue will be investigated in
detail during implementation, and the results will be posted accordingly.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

110

Attribute Level Security
CSM provides Attribute level security at object level. Attribute level security can be
defined as security where you can control access to the attributes of an object. A
user can be granted and revoked access to these attributes. Based on the user’s
access level, those attributes should be visible to the user or not.

For example, a Patient object has the following five attributes: Name, Address,
Social Security Number, Phone Number, and Disease. A researcher who has
access to all of the attributes except Social Security Number should be able to see
the Patient object with all attributes filled with data except the Social Security
Number attribute.

Requirements Addressed
The following functional requirements have been addressed and are provided as
part of CSM’s attribute level security solution.

Both Single or Many Object Retrieval
CSM provides Attribute level security both for queries that result in a single object
being returned from the database as well as a list of objects being returned from the
database. In case of the list, each object in the list should be filtered based on the
attributes to which the user has access.

Runtime Decision of Strict or Lenient Behavior
By default, the CSM Instance and Attribute level security denies access to all
attributes of an object instance unless the user/group is provisioned to gain access
on particular attributes. This is the default strict behavior of the attribute level
security feature of CSM. This new feature allows applications to configure attribute
level security to enforce either strict behavior or lenient behavior. Lenient behavior
allows access to all associations within Parent and Child objects while securing
access to the rest of the attributes of an object based on the user/group security
provisioning done via UPT.

Automatically Provide Attribute Level Security for SDK Generated Systems
Attribute Level Security is integrated with the caCORE SDK so that it can be
provided as an out of the box solution for SDK generated systems.

Provide Attribute Level Security Support for Non-SDK Generated Systems
CSM is adaptable for non SDK generated systems with minor modifications if
required. The general principle is the same as for an SDK generated system. It can
be assumed that users will need to configure the solution and adapt it for their
application.

Overall Design
CSM utilizes the SessionInterceptor feature provided by Hibernate to inject attribute
level security. It traps a user session during the loading of an object from the
underlying database. During the load process it intercepts the incoming stream of
result data and checks to see which attributes the user has access to. If the user

Chapter 5–4BCSM Instance Level and Attribute Level Security

111

does not have access to an attribute, it nullifies the attribute value such that the
resulting data contains values for only those attributes to which the user has access.

Since it would need to access the CSM table to check if user has access to an
attribute every time an object is loaded, the solution implements a cache that holds
the users attribute access map. The interceptor looks up against this cache to inject
attribute level security, speeding up the overall filtering process.

Strict Or Lenient Behavior
The ability to choose between strict or lenient behavior was a new feature added in
the CSM v4.1 version. This feature for attribute level security was requested and
provided for caCORE SDK, though it can also be used by non-SDK generated
systems. The default behavior is the strict behavior that was introduced in CSM
v4.0. In the strict behavior, the attribute level security feature restricts access to all
attributes of an object to which a user/groups does not have access.

The lenient behavior allows access to those attributes of an object that are of an
association type. This feature is, as mentioned above, implemented by the caCORE
SDK to support the new Writeable API feature of SDK. The lenient behavior ignores
attributes of association type and hence leaves intact any associations between
parent and child objects.

Provisioning Attribute Level Security
There are special changes in the UPT for provisioning of Attribute Level Security. If
attribute level security is turned on, by default all object attributes are secured. If you
want to grant a user access to an attribute, you must create a protection element for
that attribute and then grant the user access to it like any other protection element.

The following table provides descriptions of the Protection Element fields that an
Admin must complete when creating a new Protection Element.

Field Name Description
Protection Element Name Distinct name which can identify the Protection Element

Protection Element Description Description for the Protection Element

Protection Element Type Can be left blank

Protection Element Object Id The class name on whose attribute the user is to be
granted access

Protection Element Attribute The attribute name on which the user is to be granted
access

Protection Element Value Can be left blank

Update Date Date when the protection element was last updated

Table 5-3 Protection Element Fields

Using Attribute Level Security
In order to use Attribute Level Security, the client application must attach the
attribute level Session interceptor to its session. This can be done when obtaining
the Hibernate Session from the SessionFactory object, as shown in the examples

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

112

below. Once the session interceptor is in place, it will inject Attribute level security
every time an object is loaded from the database for a query.

The default strict behavior is implemented as follows:
 // default strict behavior

Session session = sessionFactory.openSession(new
AttributeSecuritySessionInterceptor());

Session session = sessionFactory.openSession(new
AttributeSecuritySessionInterceptor(false));

The lenient behavior is implemented as follows:
 // lenient behavior

Session session = sessionFactory.openSession(new
AttributeSecuritySessionInterceptor(true));

To inject custom interceptors along with CSM’s attribute level security
interceptor:

// inject custom Interceptors

List<Interceptor> interceptors = new ArrayList<Interceptor>();

Interceptors.add(new AttributeSecurityInterceptor(true));

Interceptors.add(new ObjectStateInterceptor());

Session session = sessionFactory.openSession(new new
GenericSecurityInterceptor(interceptors));

Known Issues

In the case of eager loading, attribute filtering happens only for the parent
object.
The onLoad method is invoked for each record returned from the database.
However this works only for the parent object. If you have eager loading set to
“true”, the child object’s attributes (the associated objects which are eagerly loaded)
aren’t filtered. SDK, by default, comes with eager loading set to “false”, leaving up to
the users to explicitly turn it on.

Primitive attribute type filtering is not possible.
Since a primitive data type cannot be set to null, the current attribute solution does
not work if the domain objects contain primitive data types as attributes. The default
values for primitive data types (0 for int, false for a boolean) can be valid values,
meaning that setting primitive attributes to their default values is also not an option.

Filtering on queries with projection on certain attributes will not work.
For queries where the user has set a project on certain attributes of the object rather
than returning the whole object back, the CSM attribute level security will not work.
This is because in the case of projections, Hibernate returns the attribute values
directly from the database as Java data types. As a result, the onLoad method of
the session interceptor is not invoked, thereby not injecting the attribute level
security.

Chapter 5–4BCSM Instance Level and Attribute Level Security

113

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

114

115

Chapter 6 Acegi Adapter
The Acegi Framework is quickly becoming the preferred framework for many Spring
framework powered applications to implement security. Acegi Security is the de-
facto standard for security in Spring Framework. Existing applications and new
applications wanting to leverage CSM can now do so using the CSM Acegi Adapter.

The CSM Acegi Adapter allows applications to use CSM’s Authentication and
Authorization under the Acegi Security Framework. CSM Acegi Adapter
implementation provides Authentication, Authorization - Method Level Security and
Object Parameter level security.

Implementation
Acegi Security is widely used within the Spring community for comprehensive
security services to Spring-powered applications. It comprises a set of interfaces
and classes that are configured through a Spring IoC container. The design of Acegi
Security allows many applications to implement the common enterprise application
security requirements via declarative configuration settings in the IoC container.
Acegi Security is heavily interface-driven, providing significant room for
customization and extension. Important Acegi Security, like Spring, emphasizes
pluggability.

Figure 6-1 Authentication and Authorization in Acegi framework

Figure 6-1 above demonstrates the control flow by Acegi for authentication and
authorization. The CSM Acegi Adapter uses this approach to provide CSM security.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

116

Authentication is implemented by extending this design. Acegi provides interceptors
which can be configured through Acegi Security Configurations in Spring. For a
detailed understanding of the Acegi Frameworks Authentication and Authorization
implementation by CSM, see the sections that follow.

NOTE: Detailed explanations of Acegi interfaces implemented by CSM Acegi Adapter are
beyond the scope of this guide. Refer the Acegi Security CSM Adapter Design
document for details, and check out Acegi security reference documentation,
available at: http://www.acegisecurity.org/guide/springsecurity.html.

Currently the CSM Acegi Adapter implementation provides Method Level and
Method Parameter Level security.

Method Level Security
The current out of box implementation of the CSM Acegi Adapter provides method
level security. The Adapter implements Acegi’s MethodInterceptor. The
CSMMethodSecurityInterceptor, CSM’s custom implementation of the
MethodInterceptor, enables security at method level by intercepting method calls on
the secured bean specified in the MethodDefinitionSource. All the methods are
intercepted for each secured bean. Please see the Workflow and Integrating and
Configuring sections below for more details.

Method Parameter Level Security
In this implementation, the CSM Acegi Adapter provides method parameter level
security. Applications that need method parameter level security have to implement
CSM’s SecurityHelper. The SecurityHelper interface provided by CSM, allows the
application to control authorization. Refer the CSM API source for more details.

Workflow
Below is a basic list of steps needed to implement the CSM Acegi Adapter.

1. Determine the level of security required for your application: Method Level,
Object Parameter Level, etc.

2. Define the beans that need to be protected.

3. Define appropriate Security Interceptors.

4. Define Security Interceptors for various beans that need protection.

5. Configure the Acegi security configuration file: csm-acegi-
security.xml.

6. Configure a JAAS LoginModule for the Application Context.

7. Configure database properties.

8. Configure user provisioning using CSM UPT.

http://www.acegisecurity.org/guide/springsecurity.html�

Chapter 6–5BAcegi Adapter

117

Integrating and Configuring
This section serves as a guide to help developers integrate applications with CSM
Acegi Adapter. It outlines a step by step process that addresses what developers
need to know in order to successfully integrate CSM’s Acegi Adapter into their
applications. This includes:

• Configure Acegi Security in csm-acegi-security.xml.

• Database properties and configuration.

o Configure Datasource OR

o Configure Hibernate configuration file.

• LDAP properties and configuration.

• Provision user access authorization policy.

Configure Acegi Security
This section provides instructions for configuring Acegi Security. The examples used
in this section are taken from a sample configuration file, which has been provided
in full in Appendix A, CSM/ACEGI Sample Configuration File on page 129.

1) Define the beans that need to be protected.
Example from Appendix A:

<bean id='applicationService'
class='test.gov.nih.nci.security.acegi.sdk.ApplicationServiceImpl' /> .

This configuration secures the ApplicationServiceImpl class and intercepts all of its
method calls.

2) Define the SecurityHelper Impl Class.
This class needs to be implemented by the developers that want to integrate CSM
Adapter into their new or existing application with Acegi Security Framework. In this
implementation it is a custom CSMMethodSecurityInterceptor that intercepts any
method calls on the ‘applicationService’ bean.

Example:

<bean id='securityHelper'
class='test.gov.nih.nci.security.acegi.sdk.SecurityHelperImpl' />

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

118

3) List the beans that need to be protected by the ‘securityInterceptor’ for the
‘autoProxyCreator’.
Example:

<bean id='autoProxyCreator'
class='org.springframework.aop.framework.autoproxy.BeanNameAutoProxyCreator
'>
<property name='interceptorNames'>
 <list>
 <value>securityInterceptor</value>
 </list>
 </property>
 <property name='beanNames'>
 <list>
 <value>applicationService</value>
 </list>
 </property>
</bean>

4) Specify the Application Context that will be used for CSM’s Authentication
and Authorization service.
Example:

<bean id="userDetailsService"
 class="gov.nih.nci.security.acegi.authentication.CSMUserDetailsServic
e">
<!-- Specify the Application Context required by CSM -->
 <property name="csmApplicationContext">
 <value>acegitest</value>
 </property>
</bean>

Database Properties and Configuration
You can use either MySQL or Oracle as your database of choice to host the
authorization data. Since the instructions in this section provide steps for both
database types, be sure you follow the appropriate instructions based on your
database selection.

When deploying Authorization, application developers may want to make use of a
previously-installed common Authorization Schema. In this case, a database
already exists so you do not need to create one (skip the procedures immediately
below).

NOTE: The Authorization Schema used by the run-time API and the UPT must be the
same. The sections that follow provide the instructions needed.

Create and Prime Database
Use the following steps (if necessary) to create a new database and prime it for
authorization deployment. These procedures also install a new Authorization
Schema. If you are using a previously-installed common Authorization Schema, skip
these instructions as your database and schema already exist.

Chapter 6–5BAcegi Adapter

119

1. Log into the database using an account id that has permission to create new
databases.

2. In the AuthSchemaMySQL.sql or AuthSchemaOracle.sql script,
replace the <<database_name>> tag with the name of the authorization
schema (e.g., acegitest).

3. Save and then run this script from the database prompt. This should create a
database with the given name. The database will include CSM Standard
Privileges.

4. In the DataPrimingMySQL.sql or DataPrimingOracle.sql file,
perform the following:

o Replace the <<application_context_name>> with the name of
application. This is the key to derive security for the application. This will
be called application context name.

o Replace the <<super_admin_login_id>>” with the login id of the
Super Admin.

o Replace the <<super_admin_login_id>>, the
<<super_admin_first_name>> and
<<super_admin_last_name>> entries with the super admin user’s
login id, first name, and last name.

NOTE: The default password is always “changeme” and should used for
logging into the application’s UPT for the first time. After initial
login, change this password immediately.

5. Save and then run this script from the database prompt. This should
populate the database with the initial data.

6. Verify this by querying the application table. It should include one record
only.

Configure Datasource
Use the steps below to modify the database file that contains information for
creating a datasource.

NOTE: One entry is required for each database connection.

1. Modify the provided mysql-ds.xml or oracle-ds.xml file as follows:

a. Replace the <<application_context_name>> tag with the name of
the authorization schema (for example, acegitest).

b. Replace the <<database_user_id>> and
<<database_user_password>> with the user id and with the
password of the user account that will be used to access the
Authorization Schema created in the section above.

c. Replace the <<database_url>> with the URL needed to access the
Authorization Schema residing on the database server.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

120

2. Place the edited mysql-ds.xml or oracle-ds.xml file in the JBoss deployment
directory located at:

 {jboss-home}/server/default/deploy/.

Shown below is an example of the mysql-ds.xml file.
<datasources>

 <local-tx-datasource>

 <jndi-name>csmupt</jndi-name>

 <connection-url>jdbc:mysql://mysql_db:3306/csmupt</connection-url>

 <driver-class>org.gjt.mm.mysql.Driver</driver-class>

 <user-name>name</user-name>

 <password>password</password>

 </local-tx-datasource>

 <local-tx-datasource>

 <jndi-name>acegitest</jndi-name>

 <connection-url>jdbc:mysql://mysql_db:3306/csd</connection-url>

 <driver-class>org.gjt.mm.mysql.Driver</driver-class>

 <user-name>name</user-name>

 <password>password</password>

 </local-tx-datasource>

</datasources>

Configure Hibernate Configuration File
If the integrating application does not want to use datasources, the Hibernate
configuration file can be used. Use the steps below to modify the Hibernate
configuration file that contains information for creating a datasource.

NOTE: One entry is required for each database connection.

Modify the provided acegitest.csm.new.hibhernate.xml as follows:

1. Replace the connection.url property name with URL needed to access
the Authorization Schema residing on the database server, followed by the
name of the authorization schema.

2. Replace the connection.username and connection.password
property names with the user id and password of the user account that will
be used to access the Authorization Schema created in the section above.

Below is an example of an acegitest.csm.new.hibhernate.xml file
configured for application context name acegitest:
<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate Configuration DTD
2.0//EN" "http://hibernate.sourceforge.net/hibernate-configuration-2.0.dtd">

<hibernate-configuration>

Chapter 6–5BAcegi Adapter

121

 <session-factory>

 <property
name="connection.url">jdbc:mysql://<<server>>:<<port>>/acegitest</property>

 <property name="dialect">org.hibernate.dialect.MySQLDialect</property>

 <property name="connection.username">USERNAME</property>

 <property name="connection.password">PASSWORD</property>

 <property name="connection.driver_class">org.gjt.mm.mysql.Driver</property>

 <property name="hibernate.show_sql">false</property>

 <property name="connection.zeroDateTimeBehavior">convertToNull</property>

 <property name="hibernate.cache.use_query_cache">false</property>

 <property name="hibernate.cache.use_second_level_cache">false</property>

 <mapping
resource="gov/nih/nci/security/authorization/domainobjects/Privilege.hbm.xml"/>

 <mapping
resource="gov/nih/nci/security/authorization/domainobjects/Application.hbm.xml"/>

 <mapping resource="gov/nih/nci/security/authorization/domainobjects/Role.hbm.xml"/>

 <mapping resource="gov/nih/nci/security/dao/hibernate/RolePrivilege.hbm.xml"/>

 <mapping resource="gov/nih/nci/security/dao/hibernate/UserGroup.hbm.xml"/>

 <mapping
resource="gov/nih/nci/security/dao/hibernate/ProtectionGroupProtectionElement.hbm.xml"/>

 <mapping
resource="gov/nih/nci/security/authorization/domainobjects/Group.hbm.xml"/>

 <mapping resource="gov/nih/nci/security/authorization/domainobjects/User.hbm.xml"/>

 <mapping
resource="gov/nih/nci/security/authorization/domainobjects/ProtectionGroup.hbm.xml"/>

 <mapping
resource="gov/nih/nci/security/authorization/domainobjects/ProtectionElement.hbm.xml"/>

 <mapping
resource="gov/nih/nci/security/authorization/domainobjects/UserGroupRoleProtectionGroup.
hbm.xml"/>

 <mapping
resource="gov/nih/nci/security/authorization/domainobjects/UserProtectionElement.hbm.xml
"/>

 </session-factory>

</hibernate-configuration>

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

122

Configure JAAS LoginModule
Developers can configure a login module for each application by making an entry in
the JAAS configuration file for that application name or context.

The general format for making an entry into the configuration files is shown in the
following example:

Application 1 {

 ModuleClass Flag ModuleOptions;

 ModuleClass Flag ModuleOptions;

 ...

 };

Application 2 {

 ModuleClass Flag ModuleOptions;

 ...

 };

For acegitest, which uses RDBMSLoginModule, the JAAS configuration file entry is
as the below example shows:

acegitest
{

gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule
Required
driver=" org.gjt.mm.mysql.Driver"
url=" jdbc:mysql://<<server>>:<<port>>/acegitest "
user="USERNAME"
passwd="PASSWORD"
query="SELECT * FROM users WHERE username=? and password=?"
encryption-enabled="YES";

}

The configuration file entry shown above contains the following information

• The application is acegitest.

• The ModuleClass is
gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule

• The Required flag indicates that authentication using this credential source is
a must for overall authentication to be successful.

• The ModuleOptions are a set of parameters that are passed to the
ModuleClass to perform its actions.

Chapter 6–5BAcegi Adapter

123

In the prototype, the database details as well as the query are passed as
parameters:

o driver=" org.gjt.mm.mysql.Driver "

o url=" jdbc:mysql://<<server>>:<<port>>/acegitest "

o user="USERNAME"

o passwd="PASSWORD"

o query="SELECT * FROM users WHERE username=? and password=?"

o encryption-enabled="YES"

As shown in the example, since the acegitest application has only one credential
provider, only one corresponding entry is made in the configuration file. If the
application uses multiple credential providers, the LoginModules can be stacked. In
addition, a single configuration file can contain entries for multiple applications.

User provisioning via UPT
The following steps need to be completed in order to provide User Provisioning
through UPT:

• Create Protection Elements for objects that need to be secured.

• Create Protection Group for the Protection Elements.

• Create a Role with Privilege assigned to it.

• Create a User.

• Assign Protection Group and Role to the Users that are allowed access.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

124

125

Chapter 7 CSM caGrid Authentication
caGrid is a core infrastructure project of the cancer Bioinformatics Grid. It consists
of architectural components and tools that enable any application to be deployed on
the grid as a node. It also provides tools for discovering existing grid services and
invoking them.

In order to be able to securely invoke grid services, the caGrid architecture needs to
authenticate and authorize the user trying to make the service call. This requires
both an authoring mechanism to provide appropriate permissions to the user, and a
runtime mechanism to verify the granted permissions.

The CSM capabilities for this solution described in this chapter provide information
on how CSM can be leveraged in the caGrid environment.

Authentication for caGrid
CSM is designed to return a subject for a user upon authentication. The returned
subject contains user attributes like Last Name, First Name, and Email Id, which are
required to prepare the SAML which is to be sent to Dorian.

CSM Configuration for IDP/Authentication Service
CSM has been integrated into the caGrid IDP module to facilitate local
authentication. In order to support creation of SAML assertions by the IDP, CSM
needs to retrieve user attributes from the Credential Providers and supply them
back to the caGrid component. In order to be able to retrieve these attributes, CSM
provides configuration settings that can be used to map the attributes to individual
credential providers. These attributes are returned as CSM currently returns
Principles in a JAAS Subject as part of the following new method added to the
AuthenticationManager.

public Subject authenticate(String userName, String password) throws CSException,
CSLoginException, CSInputException, CSConfigurationException,
CSInsufficientAttributesException;

Listed below are the attributes that are returned and their corresponding Principal
Names:

• First Name - gov.nih.nci.security.authentication.principal.FirstNamePrincipal

• Last Name - gov.nih.nci.security.authentication.principal.LastNamePrincipal

• Email Id - gov.nih.nci.security.authentication.principal.EmailIdPrincipal

• First Name - gov.nih.nci.security.authentication.principal.LoginIdPrincipal

Both RDBMSLoginModule and LDAPLoginModule have been updated to return
these attributes. The next two sections talk about how this is done.

Configuring RDBMS Login Module for CSM/caGrid IDP Integration
If an application uses an RDMBS Server from which the user attributes are to be
retrieved, the attribute mapping described above should be added in the JAAS
login-config file.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

126

Below is a sample entry for the attribute mapping in the JAAS login.conf file:
RDBMSGRID{

 gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule Required

 driver="org.gjt.mm.mysql.Driver"

 url="jdbc:mysql://mysql_db_server:3620/CSMAuthSchema"

 user="USER "

 passwd="PASSWORD"

 TABLE_NAME="CSM_USER"

 USER_LOGIN_ID="LOGIN_NAME"

 USER_PASSWORD="PASSWORD"

 USER_FIRST_NAME="FIRST_NAME"

 USER_LAST_NAME="LAST_NAME"

 USER_EMAIL_ID="EMAIL_ID";

};

Where:

• TABLE_NAME is the name of the table where the attributes can be found

• USER_LOGIN_ID is the name of the column in the table storing the user’s
login id

• USER_PASSWORD is the name of the column in the table storing the user’s
password

• USER_FIRST_NAME= is the name of the column in the table storing the
user’s first name

• USER_LAST_NAME= is the name of the column in the table storing the
user’s last name

• USER_EMAIL_ID= is the name of the column in the table storing the user’s
email id

NOTE: In order to activate CLM’s audit logging capabilities for the authentication service,
the user needs to follow the steps to deploy audit logging service as mentioned in
the Audit Logging section on page 24.

Configuring LDAP Login Module for CSM/caGrid IDP Integration
If an application uses an LDAP Server from which the user attributes are to be
retrieved, the attribute mapping described above should be added to the JAAS
login-config file.

Below is a sample entry for the attribute mapping in the JAAS login.conf file:
LDAPGRID{

 gov.nih.nci.security.authentication.loginmodules.LDAPLoginModule Required

 ldapHost="ldap://ncicbds-dev.nci.nih.gov:389"

 ldapSearchableBase="ou=csm,dc=ncicb-dev,dc=nci,dc=nih,dc=gov"

Chapter 7–6BCSM caGrid Authentication

127

 ldapUserIdLabel="uid"

 ldapAdminUserName="uid=csmAdmin,ou=csm,dc=ncicb-
dev,dc=nci,dc=nih,dc=gov"

 ldapAdminPassword="PASSWORD"

 USER_FIRST_NAME="givenName"

 USER_LAST_NAME="sn"

 USER_EMAIL_ID="mail";

};

Where:

• USER_FIRST_NAME is the ldap attribute which stores the first name

• USER_LAST_NAME is the ldap attribute which stores the last name

• USER_EMAIL_ID is the ldap attribute which stores the email id

Authorization for caGrid

Using Grid Group Names for Check Permission
As part of the CSM caGrid Integration, CSM allows users to check permission using
the Grid Grouper Group Name. In earlier versions of CSM, the check permission
method took only the user name and checked permission for that particular user.
However new methods have been introduced which can take in a group name and
check permission against the group name.

Alternatively there are two other methods provided that return the list of all the
groups which have the same noted privilege on a particular resource.

Below are the method definitions. More details are provided in the Javadocs.
public boolean checkPermissionForGroup(String groupName, String objectId, String
attributeName, String privilegeName) throws CSException;

public boolean checkPermissionForGroup(String groupName, String objectId, String
privilegeName) throws CSException;

public List getAccessibleGroups(String objectId, String privilegeName) throws
CSException;

public List getAccessibleGroups(String objectId, String attributeName, String
privilegeName) throws CSException;

NOTE: If you are using Group level security, at the time of provisioning you will need to
make sure that the group name provided to the group (via UPT) is same as the Grid
Grouper group name.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

128

129

Appendix A CSM/ACEGI Sample
Configuration File

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE beans PUBLIC '-//SPRING//DTD BEAN//EN'
'http://www.springframework.org/dtd/spring-beans.dtd'>
<beans>

 <!-- This is the bean that needs to be protected. -->
 <bean id='applicationService'
 ='test.gov.nih.nci.security.acegi.xyzApp.ApplicationServiceImpl' />

<!—The application integrating CSM Acegi adapter needs to provide actual implementation
for SecurityHelper. The class name to reflect the impl of SecurityHelper-->

 <bean id='securityHelper'
 ='test.gov.nih.nci.security.acegi.xyzApp.SecurityHelperImpl' />

 <!-- This bean defines a proxy for the protected bean. Notice that -->
 <!-- the id defined above is specified. When an application asks Spring -->
 <!-- for a applicationService it will get this proxy instead. -->
 <bean id='autoProxyCreator'
 ='org.springframework.aop.framework.autoproxy.BeanNameAutoProxyCreator'>
 <property name='interceptorNames'>
 <list>
 <value>securityInterceptor</value>
 </list>
 </property>
 <property name='beanNames'>
 <list>
 <value>applicationService</value>
 </list>
 </property>
 </bean>

 <!-- This bean specifies which roles are authorized to execute which methods. -->
 <bean id='securityInterceptor'
 ='gov.nih.nci.security.acegi.CSMMethodSecurityInterceptor'>
 <property name='securityHelper' ref='securityHelper' />
 <property name='authenticationManager'
 ='authenticationManager' />
 <property name='accessDecisionManager'
 ='accessDecisionManager' />
 <property name='afterInvocationManager'
 ='afterInvocationManager' />
 <property name='objectDefinitionSource'
 ='csmMethodDefinitionSource' />
 </bean>

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

130

 <bean id='csmMethodDefinitionSource'
 ='gov.nih.nci.security.acegi.authorization.CSMMethodDefinitionSource'>
 <property name='methodMapCache'
 ='ehCacheBasedMethodMapCache' />
 </bean>
 <bean id='ehCacheBasedMethodMapCache'
 ='gov.nih.nci.security.acegi.authorization.EhCacheBasedMethodMapCache'>
 <property name="cache">
 <bean
 ="org.springframework.cache.ehcache.EhCacheFactoryBean">
 <property name="cacheManager">
 <bean

 ="org.springframework.cache.ehcache.EhCacheManagerFactoryBean" />
 </property>
 <property name="cacheName" value="userCache" />
 </bean>
 </property>
 </bean>

 <!-- This bean specifies which roles are assigned to each user. -->
 <bean id="userDetailsService"
 ="gov.nih.nci.security.acegi.authentication.CSMUserDetailsService">
 <!-- -->
 <!-- Specify the Application Context required by CSM -->
 <!-- -->
 <property name="csmApplicationContext">
 <value>acegitest</value>
 </property>
 </bean>

 <!-- This bean specifies that a user can access the protected methods -->
 <!-- if they have any one of the roles specified in the objectDefinitionSource above. -->
 <bean id='accessDecisionManager'
 ='org.acegisecurity.vote.AffirmativeBased'>
 <property name='decisionVoters'>
 <list>
 <ref bean='roleVoter' />
 </list>
 </property>
 </bean>

 <!-- The next three beans are boilerplate. They should be the same for nearly all applications.
-->
 <bean id='authenticationManager'
 ='org.acegisecurity.providers.ProviderManager'>
 <property name='providers'>
 <list>
 <ref bean='authenticationProvider' />
 </list>
 </property>

 Appendix A–CSM/ACEGI Sample Configuration File

131

 </bean>

 <bean id='authenticationProvider'
 ='gov.nih.nci.security.acegi.authentication.CSMAuthenticationProvider'>
 <property name='userDetailsService' ref='userDetailsService' />
 </bean>

 <bean id='roleVoter'
 ='gov.nih.nci.security.acegi.authorization.CSMRoleVoter' />

 <bean id='afterInvocationManager'
 ='gov.nih.nci.security.acegi.CSMAfterInvocationProviderManager'>
 <property name='providers'>
 <list>
 <ref bean='afterInvocationProvider' />
 </list>
 </property>
 </bean>

 <bean id='afterInvocationProvider'
 ='gov.nih.nci.security.acegi.CSMAfterInvocationProvider' />

</beans>

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

132

133

Appendix B Migrating to CSM v4.2
In order to take advantage of the features added to CSM for version 4.2, if you are
using an earlier version of CSM, you must migrate your existing authorization
schema up to the new version.

NOTE: If you are using CSM 3.2, you must first migrate the schema to v4.0, then migrate to
4.1 and then again migrate to 4.2. You cannot migrate an authorization schema for
CSM 3.2 directly to CSM 4.2 using the manual execution method described here. If
you are currently using CSM 4.1, you can migrate directly to CSM 4.2.

The sections in this appendix provide detailed instructions for each migration.

Migrating from CSM v3.2 to CSM 4.0
The sections that follow provide instructions for migrating a MySQL database from
CSM 3.2 to CSM 4.0.

MySQL Migration – CSM 3.2 to CSM 4.0
The following procedure provides the steps needed to update the MySQL database
from an existing CSM 3.2 authorization schema to a CSM 4.0 authorization schema.

1. Obtain the CSM API v4.2 Release from NCICB Download Center:
http://ncicb.nci.nih.gov/download.

2. In the MigrationScript4.0MySQL.sql in the CSM API v4.2 release,
replace the <<database_name>> tag with the name of the database

3. Go to the directory that contains the executables for MySQL and provide the
following command:
mysql --user=[user_name] --password=[password] -h
[hostname] [auth_schema] < MigrationScript4.0MySQL.sql

Where:

o user_name] is the user name used to connect the MySQL database.

o [password] is the password for the user name entered.

o [hostname] is the host URL where the MySQL database is hosted. If
you are running this command from the same machine where MySQL is
hosted, you do not need to provide this parameter.

o [auth_schema] is the name of the database created with the new
authorization schema.

o [MigrationScript4.0MySQL.sql] is the file containing the data
exported from the old schema, which needs to be loaded into the new
schema

4. Verify that there are no errors in the SQL Script executed. Also make sure
that the database has been appropriately updated.

http://ncicb.nci.nih.gov/download�

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

134

Migrating from CSM v4.0 to CSM v4.1
The sections that follow provide instructions for migrating each type of database
from CSM 4.0 to CSM 4.1.

MySQL Migration – CSM 4.0 to CSM 4.1
The following procedure provides the steps needed to update the MySQL database
from an existing CSM 4.0 authorization schema to a CSM 4.1 authorization schema:

1. Obtain the CSM API v4.2 Release from NCICB Download Center:
http://ncicb.nci.nih.gov/download

2. In the MigrationScript4.1MySQL.sql in the CSM API v4.2 release,
replace the <<database_name>> tag with the name of the database.

3. Go to the directory that contains the executables for MySQL and provide the
following command:
mysql --user=[user_name] --password=[password] -h
[hostname] [auth_schema] < MigrationScript4.1MySQL.sql

Where:

o [user_name] is the user name used to connect the MySQL database.

o [password] is the password for the user name entered.

o [hostname] is the host URL where the MySQL database is hosted. If
you are running this command from the same machine where MySQL is
hosted, you do not need to provide this parameter.

o [auth_schema] is the name of the database created with the new
authorization schema.

o [MigrationScript4.1MySQL.sql] is the file containing the data
exported from the old schema, which needs to be loaded into the new
schema

4. Verify that there are no errors in the SQL Script executed. Also make sure
that the database has been appropriately updated.

Migrating from CSM v4.1 to CSM v4.2
The sections that follow provide instructions for migrating each type of database
from CSM 4.1 to CSM 4.2.

MySQL Migration – CSM 4.1 to CSM 4.2
The following procedure provides the steps needed to update the MySQL database
from an existing CSM 4.1 authorization schema to a CSM 4.2 authorization schema:

1. Obtain the CSM API v4.2 Release from NCICB Download Center:
http://ncicb.nci.nih.gov/download

2. In the MigrationScript4.2MySQL.sql in the CSM API v4.2 release,
replace the <<database_name>> tag with the name of the database.

http://ncicb.nci.nih.gov/download�
http://ncicb.nci.nih.gov/download�

 Appendix B–Migrating to CSM v4.2

135

3. Go to the directory that contains the executables for MySQL and provide the
following command:
mysql --user=[user_name] --password=[password] -h
[hostname] [auth_schema] < MigrationScript4.2

Where:

MySQL.sql

o [user_name] is the user name used to connect the MySQL database.

o [password] is the password for the user name entered.

o [hostname] is the host URL where the MySQL database is hosted. If
you are running this command from the same machine where MySQL is
hosted, you do not need to provide this parameter.

o [auth_schema] is the name of the database created with the new
authorization schema.

o [MigrationScript4.2

4. Verify that there are no errors in the SQL Script executed. Also make sure
that the database has been appropriately updated.

MySQL.sql] is the file containing the data
exported from the old schema, which needs to be loaded into the new
schema

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

136

137

Appendix C Sample Local Deployment-
Single Installation/Single
Schema

A sample local deployment of UPT 4.2 with Single installation and Single Schema
configuration is shown in this appendix. This UPT 4.2 deployment supports CSM
v3.1, v3.2, v4.0, v4.1, and v4.2 CSM schemas and applications.

The deployment includes the files and configurations identified below.

1. JBOSS_HOME/server/<jboss.server.name>/conf/Login-config.xml
<?xml version="1.0" encoding="UTF-8"?>
<policy><application-policy name="csmupt"><authentication>
<login-module code="gov.nih.nci.security.authentication.loginmodules.RDBMSLoginModule"
flag="required">
 <module-option name="driver">org.gjt.mm.mysql.Driver</module-option>
 <module-option name="url">jdbc:mysql://localhost:3306/uptdb</module-option>
 <module-option name="user">upt</module-option>
 <module-option name="passwd">upt</module-option>

<module-option name="query">SELECT * FROM CSM_USER WHERE LOGIN_NAME=? and
PASSWORD=?</module-option>

 <module-option name="encryption-enabled">YES</module-option>
</login-module>
</authentication></application-policy></policy>

2. JBOSS_HOME/server/<jboss.server.name>/deploy/Properties-service.xml
<?xml version="1.0" encoding="UTF-8"?>
<server> <mbean code="org.jboss.varia.property.SystemPropertiesService"
name="jboss:type=Service,name=SystemProperties">
 <attribute name="Properties">gov.nih.nci.security.configFile=c:/apps/upt/jboss-
4.0.5.GA/server/default/csmconfig/ApplicationSecurityConfig.xml
 </attribute>
</mbean></server>

3. JBOSS_HOME/server/<jboss.server.name>/deploy/upt-ds.xml
<?xml version="1.0" encoding="UTF-8"?>
<datasources>
<local-tx-datasource>
 <jndi-name>csmupt31</jndi-name>
 <driver-class>org.gjt.mm.mysql.Driver</driver-class>
 <connection-url>jdbc:mysql://localhost:3306/uptdb</connection-url>
 <user-name>upt</user-name>
 <password>upt</password>
</local-tx-datasource>
</datasources>

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

138

4. JBOSS_HOME/server/<jboss.server.name>/csmconfig/ApplicationSecurityCo
nfig.xml

<?xml version="1.0" encoding="UTF-8"?>
<security-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <upt-context-name>csmupt</upt-context-name>
 <application-list>
 <application>
 <context-name>csmupt</context-name>
 <authentication>
 <authentication-provider-class/>
 <lockout-time>6000</lockout-time>
 <allowed-login-time>6000</allowed-login-time>
 <allowed-attempts>3</allowed-attempts>
 </authentication>
 <authorization>
 <authorization-provider-class>
 </authorization-provider-class>
 <hibernate-config-file>c:/apps/upt/jboss-
4.0.5.GA/server/default/csmconfig/csmupt31.hibernate.cfg.xml</hibernate-config-file>
 </authorization>
 </application>
</application-list>
<backwards-compatibility>
<login-application-context-name>uptlogin</login-application-context-name>
 <central-upt-configuration>false</central-upt-configuration>
 <upt-application-list>
 <upt-application>
 <context-name>csmupt42</context-name>
 <url-context-name>upt42</url-context-name>
 <authorization>
 <authorization-provider-class>String</authorization-provider-class>
 <hibernate-config-file>placeholder_string_val</hibernate-config-file>
 </authorization>
 </upt-application>
 <upt-application>
 <context-name>csmupt31</context-name>
 <url-context-name>upt31</url-context-name>
 <authorization>
 <authorization-provider-class>String</authorization-provider-class>
 <hibernate-config-file>csmupt31.hibernate.cfg.xml</hibernate-config-file>
 </authorization>
 </upt-application>
 <upt-application>
 <context-name>csmupt32</context-name>
 <url-context-name>upt32</url-context-name>
 <authorization>
 <authorization-provider-class>String</authorization-provider-class>
 <hibernate-config-file>placeholder_string_val</hibernate-config-file>
 </authorization>
 </upt-application>
 <upt-application>
 <context-name>csmupt40</context-name>
 <url-context-name>upt40</url-context-name>
 <authorization>
 <authorization-provider-class>String</authorization-provider-class>

 Appendix C–Sample Local Deployment- Single Installation/Single Schema

139

 <hibernate-config-file>placeholder_string_val</hibernate-config-file>
 </authorization>
 </upt-application>
 <upt-application>
 <context-name>csmupt41</context-name>
 <url-context-name>upt41</url-context-name>
 <authorization>
 <authorization-provider-class>String</authorization-provider-class>
 <hibernate-config-file>placeholder_string_val</hibernate-config-file>
 </authorization>
 </upt-application>
 <upt-application>
 <context-name>csmupt42</context-name>
 <url-context-name>upt42</url-context-name>
 <authorization>
 <authorization-provider-class>String</authorization-provider-class>
<hibernate-config-file>placeholder_string_val</hibernate-config-file>
 </authorization>
 </upt-application>
 </upt-application-list>
 </backwards-compatibility>
</security-config>

5. JBOSS_HOME/server/<jboss.server.name>/csmconfig/csmupt31.hibernate.cfg.
xml

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE hibernate-configuration PUBLIC

 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"

 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

 <session-factory>

 <!-- properties -->

 <property name="connection.url">jdbc:mysql://localhost:3306/uptdb</property>

 <property name="connection.username">upt</property>

 <property name="connection.password">upt</property>

 <property name="dialect">org.hibernate.dialect.MySQLDialect</property>

 <property name="connection.driver_class">org.gjt.mm.mysql.Driver</property>

 <property name="hibernate.show_sql">false</property>

 <mapping
resource="gov/nih/nci/security/authorization/domainobjects/Privilege.hbm.xml"/>

 <mapping
resource="gov/nih/nci/security/authorization/domainobjects/Application.hbm.xml"/>

 <mapping resource="gov/nih/nci/security/authorization/domainobjects/Role.hbm.xml"/>

 <mapping resource="gov/nih/nci/security/dao/hibernate/RolePrivilege.hbm.xml"/>

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

140

 <mapping resource="gov/nih/nci/security/dao/hibernate/UserGroup.hbm.xml"/>

 <mapping
resource="gov/nih/nci/security/dao/hibernate/ProtectionGroupProtectionElement.hbm.xml"/>

 <mapping
resource="gov/nih/nci/security/authorization/domainobjects/Group.hbm.xml"/>

 <mapping resource="gov/nih/nci/security/authorization/domainobjects/User.hbm.xml"/>

 <mapping
resource="gov/nih/nci/security/authorization/domainobjects/ProtectionGroup.hbm.xml"/>

 <mapping
resource="gov/nih/nci/security/authorization/domainobjects/ProtectionElement.hbm.xml"/>

 <mapping
resource="gov/nih/nci/security/authorization/domainobjects/UserGroupRoleProtectionGroup.
hbm.xml"/>

 <mapping
resource="gov/nih/nci/security/authorization/domainobjects/UserProtectionElement.hbm.xml"
/>

 </session-factory>

</hibernate-configuration>

6. JBOSS_HOME/server/<jboss.server.name>/deploy/uptEAR.ear
The uptEAR.ear file is deployed in the location indicated.

141

Glossary
The following table contains a list of terms used in this document along with their
definitions.

Term Definition

Acegi

Acegi is a security framework that provides a powerful, flexible security
solution for enterprise software, with a particular emphasis on applications
that use the Spring Framework. Acegi Security provides comprehensive
authentication, authorization, instance-based access control, channel
security and human user detection capabilities. See
http://www.acegisecurity.org/ for more information.

Ant
Apache Ant is a Java-based build tool used to perform various build related
tasks. For more information on how Ant is used within the SDK. See
http://ant.apache.org/ for more information on Ant itself.

caGrid

The cancer Biomedical Informatics Grid, or caBIG®, is a voluntary virtual
informatics infrastructure that connects data, research tools, scientists, and
organizations to leverage their combined strengths and expertise in an
open federated environment with widely accepted standards and shared
tools. The underlying service oriented infrastructure that supports caBIG®
is referred to as caGrid. See http://www.cagrid.org

Ehcache

Ehcache is a simple, fast and thread safe cache for Java that provides
memory and disk stores and distributed operation for clusters. CSM uses
ehcache in conjunction with Hibernate. See
http://sourceforge.net/projects/ehcache for more information.

Hibernate

Hibernate is an object-relational mapping (ORM) solution for the Java
language, and provides an easy to use framework for mapping an object-
oriented domain model to a traditional relational database. Its purpose is to
relieve the developer from a significant amount of relational data
persistence-related programming tasks. See http://www.hibernate.org/ for
more information.

JAR
JAR file is a file format based on the popular ZIP file format and is used for
aggregating many files into one. A JAR file is essentially a zip file that
contains an optional META-INF directory.

JAAS

The JAAS 1.0 API consists of a set of Java packages designed for user
authentication and authorization. It implements a Java version of the
standard Pluggable Authentication Module (PAM) framework and
compatibly extends the Java 2 Platform's access control architecture to
support user-based authorization.

SAML

Security Assertion Markup Language (SAML) is an XML standard for
exchanging authentication and authorization data between security
domains, that is, between an identity provider (a producer of assertions)
and a service provider (a consumer of assertions). SAML is a product of
the OASIS Security Services Technical Committee

Spring

Spring Framework is a leading full-stack Java/JEE application framework.
Led and sustained by Interface21, Spring delivers significant benefits for
many projects, increasing development productivity and runtime
performance while improving test coverage and application quality. See
http://www.springframework.org/ for more information.

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

142

Term Definition

WSDD

An acronym for Web Service Deployment Descriptor, which can be used to
specify resources that should be exposed as Web Services. See
http://ws.apache.org/axis/java/user-
guide.html#CustomDeploymentIntroducingWSDD for more information.

WSDL

An acronym for Web Services Definition Language, which is an XML-based
language that provides a model for describing Web services. See
http://www.w3.org/TR/wsdl.html or http://en.wikipedia.org/wiki/WSDL for
more information.

143

Index

A

Acegi configuration file, 129
add security filter, 65
Admin

defined, 5
Admin Mode

group options, 61
workflow, 50

Admin Mode provisioning buttons, 36
administer protection elements, 53
administrative rights, 43
anonymous binds

LDAP login module, 18
Ant, 8
API

authorization JAR placement, 22
integrating with CLM, 25
integration workflow, 9
services, 10
with JBoss, 20

application administration, 41
application Administrator, 43
assign application Admin, 43
assign element to group, 36, 38
assign PG and role to group, 63
assign PG and role to user, 52
assign privileges to a role, 60
assign protection element to protection group,

55, 58
assign protection group to parent group, 58
assign provisioning element, 36
assign user to group, 52, 62
assigning elements, 50
attribute level security

defined, 5
overall design, 111
provisioning, 111

audit logging
CLM & CSM APIs, 25
common logging database, 26
configuration, 24
configure log file, 27
create database, 27
defined, 5
deploying, 27
event logging, 25
JAR file placement, 24
JBoss, 24
JDBC Appender, 26
object state logging, 25
overview, 24
user information, 26

view logs, 27
workflow, 9

authentication
caGrid, 125
defined, 5
LDAP, 9

authentication manager, 10
configure lock-out, 12
import class, 11
using, 11

authentication service
installation, 12
integration, 10
JAR placement, 12
LDAP, 12, 16, 17, 18
RDBMS, 12, 13, 14, 15

authorization
defined, 5
input data, 9
workflow, 9

authorization manager, 10
import class, 20
products and scripts, 21

authorization schema, 6
create, 22
datasource, 23
security, 95
use existing, 22

authorization schema objects, 49
authorization service

database, 22
event logging, 25
installation, 22
integration, 19
JBoss, 19

B

backwards compatibility, 30
browsing logs, 26

C

caGrid authentication, 125
caGrid authorization, 127
check permission operation, 94
CLM, 6
command line installer, 85
Common Logging Module. See CLM
configure authorization datasource, 23
configure authorization schema, 22
configure log file, 27
configure security datasource, 96
create application in UPT, 41

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

144

create authorization database, 22
create element, 31
create filter clause, 103
create group in UPT, 61
create logging database, 27
create privilege in UPT, 47
create protection element, 104
create protection element in UPT, 53
create protection group in UPT, 56
create provisioning element, 31
create role in UPT, 59
create security database, 95
create user in UPT, 44, 51
credential Provider, 7
CRF 21, 5
CSM

architecture, 6

D

database
configuring for Acegi, 118
create authorization schema, 22
create for logging, 27
create security authorization schema, 95

deassign element from group, 36, 38
deassign provisioning element, 36
delete application from UPT, 42
delete element, 35
delete group, 62
delete privilege, 48
delete protection element, 55
delete protection group, 57
delete provisioning element, 35
delete role, 60
delete user from UPT, 45
deploy authorization database, 22
deploy authorization datasource, 23
deploy authorization service, 22
deploy security datasource, 96
deploy securityws.war file, 98
deploying audit logging, 27
deployment modes, 68

E

edit/update application details, 42
edit/update group details, 61
edit/update privilege details, 48
edit/update protection element details, 54
edit/update protection group details, 57
edit/update role details, 59
edit/update user details, 44
encryption in RDBMS, 15
environment requirements for UPT, 70
event logging, 25

F

filter clauses, 64, 65, 66, 103

G

Glossary, 141
Grid Grouper, 127
group level security for caGrid, 127
group PEs and privileges, 63
group PG and role, 63
group reporting, 63
groups

administration, 61, 62, 63
create, 61
delete, 62
overview, 61
view/update, 61

GUI installer, 71
GUI upgrade, 83

H

Hibernate configuration file, 21, 64, 103, 117,
120

I
import authentication manager, 11
import authorization manager, 20
install authorization service, 22
install CSM UPT, 71, 85, 87, 88, 90
install.properties file, 85, 87, 88, 90
installation modes, 68
instance level mapping, 106, 107
instance level security

activity flow, 102
add filter clause, 65
administration, 63
API methods, 107
defined, 5
file upload, 64
modify filter clause, 66
overall design, 101
performance enhancement, 106, 108
provisioning, 101

instance level security in UPT
overview, 63

integrate application, 10
integrate authentication service, 10
integrate authorization service, 19
integrating CSM with CLM, 25

J

JAAS, 6, 8
LDAP login module, 16
login module, 122
RDBMS login module, 13

 Index

145

jar file
instance level security in UPT, 64

JBoss
audit logging, 24
authorization service, 19
configure log file, 27
deploy securityws.war file, 98
event logging, 25
JAAS login, 97
LDAP login module, 17
object state logging, 26
RDBMS login module, 14
UPT common server deployment, 69
UPT deployment modes, 68

JBOSS, 8
JDBC Appender, 26
JDK, 8

L

LDAP, 8, 9
anonymous binds, 18
authentication, 12, 16, 17
configuring for caGrid integration, 126
JBoss login, 97
login module, 16, 17, 18, 126

lenient behavior, 111
lock-out, 12
log locater, 27
log locator, 26
logging user information, 26
login module, 8

JAAS, 122
login operation, 93

M

migrating to CSM 4.0, 133
migrating to CSM 4.1, 134
migrating to CSM 4.2, 134
minimum requirements, 8
modify element, 34
MySQL, 8
MySQL migration, 133, 134

O

object state logging, 25
Oracle, 8
overview

Admin, 5
Admin Mode, 48
assigning/associating elements, 36
attribute level security, 5
audit logging, 5
authentication, 5
authorization, 5
groups, 61
instance level security, 5

instance level security in UPT, 63
integration workflow, 9
privileges, 46, 56
protection group, 56
roles, 59
security, 99
security concepts, 7
Super Admin, 5, 40
UPT, 29
user provisioning, 5

P

privilege administration, 48
privileges

create, 47
deleting, 48
grouping, 60
overview, 46, 56
view/update, 48
viewing, 56

protection element
administration, 53, 55
create, 53, 104
delete, 55
grouping, 55, 58
view/update, 54

protection group, 7
administration, 56, 58
create, 56
delete, 57
overview, 56
parent grouping, 58
parents, 56
view/update, 57

provisioning
Admin Mode, 48
attribute level security, 111
element relationships, 49
find element to assign, 39
Super Admin, 40
Super Admin tasks, 41

provisioning tool, 29

R

RDBMS, 8
configuring for caGrid integration, 125
encryption, 15
login module, 13, 14, 122, 125

RDBMS authentication, 12, 13, 14, 15
register application in UPT, 41
related documents, 2
release schedule, 4
roles

administration, 59, 60
create, 59
delete, 60
overview, 59
view/update, 59

caCORE Common Security Module (CSM) V 4.2.1 Programmer's Guide

146

S

sample error messages, 32
scripts for authorization, 21
search for element, 33
search for provisioning element, 33
security

add filter, 65
attribute level, 5, 99, 110
authorization strategy, 9
check permission operation, 94
concepts defined, 7
create filter clause, 103
datasource, 96
deploy securityws.war file, 98
filter clause, 66
instance level, 5, 63, 99
integrating Acegi, 117
JAAS login parameters, 97
login operation, 93
modify filter, 66
overview, 99
protection element, 104
schema administrator, 9
web services, 93
workflow, 95
WSDL, 93

select provisioning element, 33
single install/single schema install, 85, 87, 88,

90
software for authorization, 21
software requirements, 8
software requirements for UPT, 70
standard privileges

overview, 46, 56
view/update, 48

strict behavior, 111
submit support issue, 4
Super Admin

defined, 5
options, 40
overview, 40
tasks, 41
workflow, 40

support
submitting issue, 4

supported authentication, 12
system requirements, 8

T

test integration, 10
Tomcat, 8
typical install, 85, 87, 88, 90

U

unlock user, 46
update PG and role for group, 63

update PG and role for user, 53
update provisioning element, 34
upgrade CSM UPT, 83
UPT

add security filter, 65
Admin Mode, 48
assign element, 36, 38
backwards compatibility, 30
basic functions, 31
compatibility, 30
create element, 31
deassign element, 36, 38
delete element, 35
deployment, 70
edit/update security filter, 66
event logging, 25
find element to assign, 39
install via command line, 85
install via GUI, 71
installation, 70
instance level security, 63
JBoss common server, 69
JBoss deployment, 68
local install/local schema, 70
login, 29
login and forwarding, 30
modify element, 34
multi-install/multi schema, 69
overview, 29
release components, 70
release contents, 67
requirements, 70
sample error messages, 32
search for element, 33
single install/single schema, 68
standard privileges, 46, 56
Super Admin, 40
typical install, 85, 87, 88, 90
upgrade via GUI, 83
view element details, 33
view security filter, 66
workflow, 29

user administration, 43, 44, 46, 51, 52
user creation, 44, 51
user grouping, 52, 62
user PEs and privileges, 53
user PGs and roles, 52, 53
user provisioning, 5, 123
user reporting, 53
using authentication manager class, 11

V

view application details, 42
view element details, 33
view group details, 61
view logs, 27
view PE and privileges for group, 63
view PE and privileges for user, 53
view privilege details, 48, 56

 Index

147

view protection element details, 54
view protection group details, 57
view role details, 59
view user details, 44

W

workflow
Acegi, 116
Admin Mode, 50
security web service, 95
Super Admin, 40

	Revision History
	Table of Contents
	About This Guide
	Purpose
	Scope
	Typical User
	Topics Covered
	Related Documentation
	Text Conventions Used
	Credits and Resources
	Submitting a Support Issue
	Release Schedule

	Chapter 1 CSM Overview
	Introduction
	Security Concepts
	Minimum System Requirements

	Chapter 2 Using the CSM API
	Workflow
	API Services
	Authentication Manager
	Authorization Manager

	Integrating with the CSM Authentication Service
	Importing the CSM Authentication Manager Class
	Using the CSM Authentication Manager Class
	Installation and Deployment Configurations
	JAR Placement
	Configuring Lock-out In Authentication Manager

	RDBMS Credential Provider Properties and Login Module Configuration
	Configuring an RDBMS Login Module in JAAS
	Configuring an RDBMS Login Module in JBOSS
	Enabling Encryption in the RDBMS Login Module

	LDAP Credential Provider Properties and Login Module Configuration
	Configuring LDAP Login Module in JAAS
	Configuring LDAP Login Module in JBOSS
	Configuring LDAP Login Module Using Anonymous Bind

	Activating CLM Audit Logging

	Integrating With the CSM Authorization Service
	Importing and Using the CSM Authorization Manager Class
	 Software Products and Scripts
	Installation and Deployment Configurations
	JAR Placement
	Database Properties and Configuration

	Audit Logging
	JAR Placement
	Integrating CLM APIs with CSM APIs
	Event Logging
	Object State Logging
	User Information
	Common Logging Database
	JDBC Appender

	Deployment Steps

	Chapter 3 User Provisioning Tool (UPT)
	Workflow
	Super Admin – To Register Applications and Admins
	Admin – To Administer a Registered Application
	Login
	Login and Forwarding

	Common Basic Functions
	Create New
	Example Error Messages

	Search for and Select Existing Elements
	Update Elements
	Deleting an Existing Element

	Assignments and Associations
	Assigning or Deassigning Elements - Individual to Group
	Assigning or Deassigning Elements - Group to Individual

	Super Admin Mode
	Workflow for Super Admin
	Application Administration – Super Admin Mode
	Create a New Application
	Select and View/Update an Existing Application
	Delete an Existing Application
	Associating/Assigning an Administrator for an Application

	User Administration– Super Admin Mode
	Create a New User
	Select and View/Update an Existing User
	Delete an Existing User
	Unlock a User

	Privileges and Standard Privileges
	Create a New Privilege
	Select and View/Update an Existing Privilege
	Delete an Existing Privilege

	Admin Mode
	Workflow for Admin
	User Administration – Admin Mode
	Assign a User to a Group or Groups (Associated Groups button)
	Assign a Protection Group and Roles to a User (Assign PG & Roles button)
	Update Roles Associated with Assigned Protection Groups (Associated PG & Roles button)
	View User Report (Associated PE & Privileges button)

	Protection Element Administration – Admin Mode
	Create a New Protection Element
	Select and View/Update an Existing Protection Element
	Delete an Existing Protection Element
	Assign a Protection Element to Protection Group(s)

	Privilege Administration – Admin Mode
	Protection Group Administration – Admin Mode
	Create a New Protection Group
	Select and View/Update an Existing Protection Group
	Delete an Existing Protection Group
	Assign Protection Elements to the Protection Group
	Assign a Parent for the Protection Group

	Role Administration – Admin Mode
	Create a New Role
	Select and View/Update an Existing Role
	Delete an Existing Role
	Assign Privileges to the Role

	Group Administration – Admin Mode
	Create a New Group
	Select and View/Update an Existing Group
	Delete an Existing Group
	Add Users to the Group (Associated Users)
	Assign a Protection Group and Roles to a Group (Assign PG & Roles)
	Update Roles Associated with Assigned Protection Groups (Associated PG & Roles button)
	View Group Report (Associated PE & Privileges button)

	Instance Level Security Administration – Admin Mode
	Uploading a File
	Add New Security Filter
	Select and View/Update an Existing Security Filter

	UPT Installation and Deployment
	UPT Release Contents
	Deployment Artifacts
	Installation Modes
	Single Installation/Single Schema Deployment
	Single Installation/Multiple Schema Deployment
	Local Installation/Local Schema Deployment

	UPT Deployment Checklist
	GUI installer - Automated UPT Deployment
	Launching the GUI Installer
	Installing CSM/UPT Using the GUI Installer
	Upgrading CSM UPT Using the GUI Installer

	Command Line installer - Automated UPT Deployment
	Single Installation, Single Schema (Typical) Install
	Single Installation, Multiple Schema (Non-Typical) Install
	Single Installation, Single Schema (Typical) Upgrade
	Single Installation, Multiple Schema Deployment (Non-Typical) Upgrade

	Chapter 4 CSM Security Web Services
	Security Web Service WSDL
	Security Web Service Operations
	Login Operation
	CheckPermission Operation

	Workflow for CSM Security Web Service
	Installation of CSM Security Web Service
	Create and Prime Database
	Configure Datasource
	Configure JBoss JAAS Login Parameters
	Deploy the Security WS .war File

	Chapter 5 CSM Instance Level and Attribute Level Security
	Instance Level Security
	Requirements Addressed
	Integration of Instance Level Security for an SDK Generated System

	Overall Design
	Provisioning Instance Level Security
	Uploading an Application File
	Creating a Filter Clause
	Creating Protection Elements

	Using Instance Level Security

	Instance Level Security Performance Enhancements
	Instance Level Mapping Element
	New Functionality - API
	New Functionality – UPT
	Using Instance Level Security Performance Enhancement
	Known Issues

	Attribute Level Security
	Requirements Addressed
	Overall Design
	Strict Or Lenient Behavior
	Provisioning Attribute Level Security
	Using Attribute Level Security
	Known Issues

	Chapter 6 Acegi Adapter
	Implementation
	Method Level Security
	Method Parameter Level Security

	Workflow
	Integrating and Configuring
	Configure Acegi Security
	Database Properties and Configuration
	Create and Prime Database
	Configure Datasource
	Configure Hibernate Configuration File
	Configure JAAS LoginModule

	User provisioning via UPT

	Chapter 7 CSM caGrid Authentication
	Authentication for caGrid
	CSM Configuration for IDP/Authentication Service
	Configuring RDBMS Login Module for CSM/caGrid IDP Integration
	Configuring LDAP Login Module for CSM/caGrid IDP Integration

	Authorization for caGrid
	Using Grid Group Names for Check Permission

	Appendix A CSM/ACEGI Sample Configuration File
	Appendix B Migrating to CSM v4.2
	Migrating from CSM v3.2 to CSM 4.0
	MySQL Migration – CSM 3.2 to CSM 4.0
	Migrating from CSM v4.0 to CSM v4.1
	MySQL Migration – CSM 4.0 to CSM 4.1

	Migrating from CSM v4.1 to CSM v4.2
	MySQL Migration – CSM 4.1 to CSM 4.2

	Appendix C Sample Local Deployment- Single Installation/Single Schema
	Glossary
	Index

