

Common Security Module (CSM) and User Provisioning Tool (UPT) 5.0

	

	Common Security Module and
User Provisioning Tool 5.0

	Programmer’s Guide Update

	

	

	11/05/2012

	[Type the abstract of the document here. The abstract is typically a short summary of the contents of the document. Type the abstract of the document here. The abstract is typically a short summary of the contents of the document.]

Contents

3Document Change History

31.
Purpose

32.
Configurable User Provisioning Operations

53.
Instance Level Security

5Add filters when using instance level security for user

5Add filters when using instance level security for groups

6Initialize filters when using instance level security for user

6Initialize filters when using instance level security for groups

6Convert Filter Clauses into Hibernate Detached Criteria for user

6Convert Filter Clauses into Hibernate Detached Criteria for groups

7Invoke Hibernate Detached Criteria of target class for user

7Invoke Hibernate Detached Criteria of target class for groups

74.
NIH Password Policy

7Change Password

8Deactivate User

9Password Validation

9Encrypt PII

 Document Change History

	Version
	Date
	Changed by
	Description

	1.0
	11/05/2012
	Eugene Wang
	 Initial draft

	1.1
	11/29/2012
	Mahidhar Narra
	NIH Password Policy

1. Purpose

This document provides modification of Programmer’s Guide for Common Security Module (CSM) and User Provisioning Tool (UPT) 5.0 version. It explains programming API for user to perform CSM/UPT functionalities implemented by this version. Currently, this document only covers two features:
· Configurable user provisioning operations
· Instance Level Security
2. Configurable User Provisioning Operations
The CSM AuthorizationManager interface provides all the authorization methods and services offered by the Common Security Module. It defines the operations which are required to authorize a user against the configured authorization data. It is the contract between any implementation classes and the Common Security Framework.
Configurable UPT Operation features manage user’s permissions to perform User Provisioning Operations. The AuthorizationManager interface implements checkPermissionForProvisioningOperation method to authorize user’s permissions of performing Configurable UPT operations. The following JavaDoc describes this method:

boolean checkPermissionForProvisioningOperation (java.lang.String operationName, java.lang.String userLoginName,

java.lang.String csmPrivilege, java.lang.String applicationContext) throws CSTransactionException
This method checks if a user is permissible to perform a User Provisioning Operation for a given application context. Names of the User Provisioning Operation are constants defined with gov.nih.nci.security.constants.Constants.

Parameters:

operationName – Name of User Provisioning Operation, which must be one of the following seven UPT operations:

CSM_USER_OPERATION

CSM_GROUP_OPERATION

CSM_PROTECTION_ELEMENT_OPERATION

CSM_ PROTECTION _GROUP_OPERATION

CSM_ROLE_OPERATION

CSM_PRIVILEGE_OPERATION

CSM_INSTANCE_LEVEL_OPERATION

csmPrivilege – name of CSM privilege, which must be one of the following values

CSM_ACCESS

CSM_CREATE

CSM_UPDATE

CSM_DELETE
userLoginName – CSM login name of user to seek permission for User Provisioning Operation

applicationContext - Name of the registered application

Returns:

true if the user is allowed to perform the desired User Provisioning Operation ; false if the user is denied

Throws:

CSTransactionException

See Also:

Constants

3. Instance Level Security
Instance Level Security allows filtering of object instances directly at the database level. The following sections revise CSM/UPT 4.2 Programmer’s .
CSM provides a helper class to assist client application to invoke capabilities of Instance Level Security: inject filtering queries with business queries, or retrieve independent Detached Hibernate criteria. This helper class implements all methods required to performance CSM Instance Level functionalities, which include:
· Add filters to the Hibernate Configuration at the time of loading of the system for particular user

· Add filters to the Hibernate Configuration at the time of loading of the system for particular groups

· Initialize and parameterize these filters at runtime for particular user

· Initialize and parameterize these filters at runtime for particular group(s)

· Convert Filter Clauses into Hibernate Detached Criteria at runtime for particular user

· Convert Filter Clauses into Hibernate Detached Criteria at runtime for particular group(s)

· Invoke Hibernate Detached Criteria of target class for particular user

· Invoke Hibernate Detached Criteria of target class for particular group(s)

Add filters when using instance level security for user
· public static void addFilters(AuthorizationManager authorizationManager, Configuration configuration)

· public static void addFilters(AuthorizationManager authorizationManager,Configuration configuration, List<String> definedFilterNamesList)

Add filters when using instance level security for groups
· public static void addFiltersForGroups(AuthorizationManager authorizationManager, Configuration configuration)

· public static void addFiltersForGroups(AuthorizationManager authorizationManager,Configuration configuration, List<String> definedFilterNamesList)

One of these methods should be called only once for an application just after the Hibernate Configuration object is created (by reading the configuration file) and before the Session Factory Method is created. The methods retrieve all filters that have been defined for the application from the CSM database, and inject the security filters that have been created for this application. For each CSM Filter Clause object, these methods create FilterDefinition (Hibernate) object and add it into Configuration object. CSM then retrieves the persistent class from the Configuration Object using the class name. CSM then adds the filter to the persistent class by setting the filtering query
Since the non-CSM custom filters defined in HBM or via @Filter annotations are supported, if the definedFilterNamesList parameter is passed while adding filters, then the named filters will be added as well to the persistent classes.

Initialize filters when using instance level security for user
· public static void initializeFilters (String userName, Session session, AuthorizationManager authorizationManager)

· public static void initializeFilters(String groupNames, Session session, AuthorizationManager authorizationManager, Map<String,String> definedFilterNamesMap)

Initialize filters when using instance level security for groups
· public static void initializeFiltersForGroups(String[] groupNames, Session session, AuthorizationManager authorizationManager)

· public static void initializeFiltersForGroups(String[] groupNames, Session session, AuthorizationManager authorizationManager, Map<String,String> definedFilterNamesMap)

Before executing any user query, client application should invoke one of these methods from the SessionFactory after obtaining the Session. These methods initialize FilterDefinition that are already added to Configuration object. They obtain all the defined FilterDefinition objects from Configuration object through the SessionFactory in passed Session object. They set user name or group names and application name parameters. The application name is retrieved from passed Authorization Manager.
Convert Filter Clauses into Hibernate Detached Criteria for user

public static void enableFilterCriteriaForUser(AuthorizationManager authorizationManager,Configuration configuration, String applicationName , String userLogin)

This method enables pre-defined instance level security filter for given user. It creates DetachedCriteria instance for each enabled CSM filter

Convert Filter Clauses into Hibernate Detached Criteria for groups
public static void enableFilterCriteriaForGroup(AuthorizationManager authorizationManager, Configuration configuration, String applicationName , String groupName)

This method enables pre-defined instance level security filter for given group. It creates DetachedCriteria instance for each enabled CSM filter
Invoke Hibernate Detached Criteria of target class for user

public static DetachedCriteria findObjectDetachedCriteriaForUser(String keyName, String loginName)

This method retrieve Hibernate DetachedCriteria instance of target class for a given user. The DetachedCriteria includes all CSM filters which are defined for the target class and the given user has privilege to access them.

Invoke Hibernate Detached Criteria of target class for groups
public static DetachedCriteria findObjectDetachedCriteriaForGroup(String keyName, String groupName)

This method retrieve Hibernate DetachedCriteria instance of target class for a given group. The DetachedCriteria includes all CSM filters which are defined for the target class and the given group has privilege to access them.

Instance Level Security filters can be added or initialized for a user or groups exclusively. The decision to utilize user or group based instance level security must be made before adding the filters to the Hibernate session and should not be used interchangeably. If the addFilter method is invoked for a user, then the user based instance level security filter queries are added. If the addFilter method is invoked for groups, then the Group(s) based instance level security filter queries are added.

4.
NIH Password Policy

Change Password

CSM API
The changePassword operation provided the user the ability to change his password. The Authentication manager API will be modified to provide this feature. This method with authenticate the user with the old password before changing the password and also validates the newpassword comply to the NIH password policy. The password expiry date is set the relevant value based on the configuration of the passwordExpiryDays property.

The following is the JavaDoc for the method
boolean changePassword (java.lang.String userName, java.lang.String password, java.lang.String newPassword,

java.lang.String passwordConfirmation) throws CSException, CSLoginException, CSInputException,CSConfigurationException

This method provides an ability for the user to change the password. It validates the user password before changing the password of the user

Parameters:

userName - CSM User Name a User

password - Password the user used to login or the old password

newPassword - New Password the user want to change to

passwordConfirmation - Reconfirmation. Same as the newPassword

Returns:

true if the user changePassword operation is successful ; false if the user is denied

Throws:

CSException, CSLoginException, CSInputException,CSConfigurationException
Deactivate User

CSM API

The user can be deactivated/activated by an Admin user. A flag in the user table will be added and will determine if the user is active. The modifyUser operation can be used to activate/deactivate the user

The following is the JavaDoc for the method.

public void modifyUser(User user) throws CSTransactionException;

This method provides an ability to update the user information along with activating/deactivating the users for the admin user

Parameters:

User - CSM user instance
Returns:

true if the user changePassword operation is successful ; false if the user is denied

Throws:

CSException, CSLoginException, CSInputException,CSConfigurationException

the authenticate method implementation will be modified to check for the user being active after authenticate the credentials. The deactivated users will throw a LoginException.

The signature of the authenticate method will remain the same and would not be modified as below

public Subject authenticate(
String userName,
String password)
throws CSException, CSLoginException,
CSInputException, CSConfigurationException, CSInsufficientAttributesException;
Password Validation

The passwords for the user of CSM should comply with the NIH password policy. The CSM API will be modified to handle the requirement. A validatePassword() method with the provided to validate the unencrypted password has at least 8 character in length, a numeric character, a upper-case letters and a special character. This can be done by a regular expression. The validatePassword() is called from the changePassword() and hence can be private modifier. The login method is updated to check the password not expired.

the signature of the method

private boolean validatePassword(String password)
Parameters:

password - User unencrypted password
Returns:

true if the password is valid; false if the password does not comply
Encrypt PII

CSM API

As some the personal identifiable information like the user first name, last name is stored by the application, the information needs to be encrypted. The Application used the industry standard AES 256 bit encryption provided by the Bounty Castle for encrypting and decrypting this information. A new class AESEncryption with be added to handle the encryption and decryption. Once the class is instantiated, the below are signatures of the methods that are provided

This method can be used to encrypt

public String encrypt(String unencryptedString) throws EncryptionException {

Parameters:

unencryptedString - The unencrypted string
Returns:

AES encrypted string
This method decrypts the encrypted the sting

public String decrypt(String encryptedString) throws EncryptionException {

Parameters:

encryptedString - The encrypted string
Returns:

Decrypted string
[image: image1][image: image2]

Design Document
Page 3 of 10

