

Chapter 1 Using This Guide

[image: image145.wmf]

[image: image146.png]
[image: image147.png]
[image: image148.wmf]

[image: image149.png]
[image: image150.png][image: image151.png]
[image: image152.png]
[image: image153.png]
Credits and Resources
	caAdapter Development

and Management Teams

	Development
	User’s Guide
	Program Management

	Harsha Jayanna 3
	Harsha Jayanna 3
	Anand Basu 2

	Nick Schroedl 1
	Nick Schroedl 1
	Christo Andonyadis 2

	Ki Sung Um 2
	Ki Sung Um 2
	Sichen Liu 2

	Eugene Wang 1
	Ye Wu 1
	Sharon Settnek 1

	Ye Wu 1
	Eugene Wang 1
	Smita Hastak 3

	Wendy Ver Hoef 3
	Wendy Ver Hoef 3
	

	Charles Yaghmour 3
	Charles Yaghmour 3
	

	1 Science Application International Corporation (SAIC)
	3 ScenPro, Inc.

	2
National Cancer Institute Center for Biomedical Informatics and Information Technology (NCI CBIIT)

	

	Contacts and Support

	NCI CBIIT Application Support
	http://ncicb.nci.nih.gov/NCICB/support
Telephone: 301-451-4384

Toll free: 888-478-4423

	LISTSERV facilities pertinent to the caAdapter

	LISTSERV
	URL
	Name

	caAdapter_Users
	https://list.nih.gov/archives/caadapter_users-l.html
	caAdapter Users Discussion Forum

	caBIO_Users
	https://list.nih.gov/archives/cabio_users.html
	caBIO Users Discussion Forum

	caBIO_Developers
	https://list.nih.gov/archives/cabio_developers.html
	caBIO Developers Discussion Forum

Release Schedule

This guide has been updated for the caAdapter 4.0 release. It may be updated between releases if errors or omissions are found. The current document refers to the 4.0 version of caAdapter, released in October 2007 by the NCI CBIIT.

Table of Contents
1Chapter 1
Using This Guide

1Intended Audience

1Recommended Reading

1Document Text Conventions

2Organization of this Guide

3Library and Resources Files

6Chapter 2
Overview of caAdapter

6caAdapter Overview

7caAdapter Core Engine Architecture

8caAdapter Mapping Tool Architecture

8HL7 Overview

10SDTM Overview

11Object and Data Model Overview

11Prerequisites for Using the caAdapter Mapping Tool

12caAdapter Installation

12Starting the caAdapter Mapping Tool

12Starting the Mapping Tool from the Binary Distribution

12Starting the Mapping Tool from the Source Distribution

12Starting the Mapping Tool from the Windows Distribution

12Starting the Mapping Tool on the Web (WebStart)

14Chapter 3
Using caAdapter

14API Process Flow for CSV to HL7 v3 Transformation

15API Operational Scenario for CSV to HL7 v3

16Mapping Tool Operational Scenario for CSV to HL7 v3

16Mapping Tool Operational Scenario for HL7 v2 to HL7 v3 Transformation

17Mapping Tool Operational Scenario for Regulatory Data Services Module

17Mapping Tool Operational Scenario for Model Mapping Service

18Chapter 4
CSV To HL7 v3 Mapping and Transformation

18caAdapter Mapping Tool Process Flow

19caAdapter Mapping Tool Common Features

19caAdapter Mapping Tool Interface

22caAdapter Mapping Tool Validation

23Source Specification

23Segmented CSV Specification

23Step-by-Step Instructions

28Target Specification

28HL7 v3 Specification

29Overview of HL7 v3 Specification Tab

32Defining inline Text

32Defining Units of Measure

32Defining Default Data

33Defining Object Identifiers (OIDs)

34Adding Clones to the HL7 v3 Specification

35Adding and Deleting Multiples to the HL7 v3 Specification

39Updating Abstract Data Types in the HL7 v3 Specification

40Enabling and Disabling Force xml with an Optional Clone

44Map Specification

44Business Rules

45Step-by-Step Instructions

56HL7 v3 Message

56Business Rules

57Step-by-Step Instructions

60Transforming an HL7 Message into a CSV Format

60Business Rules

64Chapter 5
HL7 v2 to HL7 v3 Conversion

64Understanding the Mapping and Transformation Processes

65Mapping and Converting HL7 v2 to CSV Format

65Mapping and Converting CSV File to HL7 v3 Format

66Using the HL7 v2 to HL7 v3 Module

67Advanced HL7 v2 to HL7 v3 Mapping

70Chapter 6
Regulatory Data Services Module

70Understanding the Mapping and Transformation Processes

71Mapping a CSV File to SDTM Domain Structures

75Generating SDTM Datasets from a CSV file

76Editing an Existing Map File

77Editing and Printing an Existing Map File

78Mapping a Relational Database to SDTM Domain Structures

82Generating SDTM Datasets from a Database

86Chapter 7
caAdapter Model Mapping Service

86Overview

86Using the caAdapter Model Mapping Service

87Exporting an XMI file from EA

88Creating an Object Model to Data Model Map Specification

90Basic Mapping

90Dependency Mapping (Object to Table)

92Association Mapping

92Validating Mapping Specifications

93Saving Mapping Specifications

93Generating Hibernate Mappings

94The Seven Mapping Scenarios

94One‐to‐One Bi‐Directional

95One‐to‐One Uni‐Directional

95One‐to‐Many Bi‐Directional

96One‐to‐Many Uni‐Directional

97Many‐to‐One Uni‐Directional

97Many‐to‐Many Bi‐Directional

98Many‐to‐Many Uni‐Directional

98Mapping Inheritance

99User Interface Legend

99Node Details

99Mapping Line Colors

99Additional Module Features

102Chapter 8
Using Functions in Mapping

102Functions Provided by caAdapter

104Function Specifications

104Function Specification Overview

111Vocabulary Mapping Specification Overview

114Adding Functions to the Function Library

116Chapter 9
Using the caAdapter APIs

116caAdapter Directory Structure

117caAdapter APIs

117Meta Data Loader

118Transformation Service

118HL7 v2 to HL7 V3 Transformation

119Vocabulary and MIF Schema Validation

120caAdapter API Error Logs

123Chapter 10
caAdapter Web Services Transformation Module

123Introduction

124Setup Mapping Scenarios Through the Web Portal

125Programmatic Access to the caAdapter Web Services

125Axis 1.x RPC Style Access to caAdapter Web Services

126Axis 1.x DII Style Access to caAdapter Web Services

128Axis 2.0 RPC Style Access to caAdapter Web Services

131Chapter 11
caAdapter File Types

131caAdapter File Formats and Locations

132CSV Data File

132CSV Specification

134HL7 v3 Specifications

139HL7 v2 Specifications

140Message Structure

140DataTypeSpec

141Segment Attribute Table

141Definition Table

142SDTM Data Files

143SDTM Meta Data Files

144Function Specification

144Function Specification Overview

146Adding Functions to the Function Library

146HL7 v3 Message

147CSV to HL7 v3 Map Specification

149Object to Database Map Specification

153Appendix A
caAdapter Example Data

155Appendix B
References

155Articles

155caBIG Material

155caCORE Material

155HL7 Concepts and Material

155Software Products

156Study Data Tabulation Model (SDTM) Concepts and Material

157Glossary

159Index

Chapter 1 Using This Guide
This chapter introduces you to the caAdapter User’s Guide.

Topics in this chapter include:

· Intended Audience on this page

· Recommended Reading on page 1
· Document Text Conventions on page 1
· Organization of this Guide on page 2
· Library and Resources Files on page 2
Intended Audience
The caAdapter User's Guide is the companion documentation to caAdapter. This guide includes information and instructions for using caAdapter which consists of two components: a set of Application Programming Interfaces (APIs) and a mapping tool graphical user interface (GUI). See Chapter 1 for an overview of caAdapter. The technical audience (Java programmers, system architects, etc.) use this guide to utilize the major caAdapter Application Programming Interfaces (APIs) to parse, build and validate Health Level Seven (HL7) version 3 (v3) messages. Analysts (HL7 analysts, database administrators, business analysts, etc.) use this guide to follow the step-by-step procedures to create v3 xml message instances using the GUI, map and generate Study Data Tabulation Model (SDTM) text files, and map object and data models.

This guide assumes that the reader is familiar with HL7, SDTM, object and data model terms and processes and only provides a brief overview of these concepts. Prerequisites for using the caAdapter Mapping Tool are also included.
Recommended Reading

Following is a list of recommended reading materials and resources which can be useful for familiarizing oneself with concepts contained within this guide.

· HL7: http://www.hl7.org
· National Cancer Institute Center for Biomedical Informatics and Information Technology (NCI CBIIT) HL7 Tutorial: http://trials.nci.nih.gov/projects/infrastructureProject/caAdapter/HL7_Tutorial
· SDTM: http://www.cdisc.org/models/sds/v3.1/
· UML: http://www.uml.org/
Uniform Resource Locators (URLs) are also used throughout the document to provide more detail on a subject or product.

Document Text Conventions

The following table shows various typefaces to differentiate between regular text and menu commands, keyboard keys, tool bar buttons, dialog box options, and text that you type. This illustrates how text conventions are represented in this manual:
	Convention
	Description

	Notes
	Notes: Notes are enclosed for emphasis

	Bold
	Bold type is used for emphasis, buttons, or tabs to select on windows, and names of dialog boxes.

	TEXT IN SMALL CAPS
	TEXT IN SMALL CAPS is used for keyboard keys that you press (for example, ALT+F4)

	Text in italics
	Italics are used to reference other documents, sections, figures, and tables.

	Special typestyle
	Special typestyle is used for filenames, directory names, commands, file listings, and anything that would appear in a Java program, such as methods, variables, and classes.

	Bold italics typestyle
	Bold italics is used for information the user needs to enter

	{ }
	Curly brackets are used for replaceable items (for example, replace {home directory} with its proper value such as C:\caadapter).

Organization of this Guide

The caAdapter User’s Guide contains the following chapters:

· Chapter 1 Using This Guide - This chapter provides an introduction to this user’s guide.

· Chapter 2 Overview of caAdapter - This chapter provides an overview of caAdapter, caAdapter’s architecture, HL7, SDTM and object and data models.

· Chapter 3 Using caAdapter - This chapter provides operational scenarios for caAdapter using real-life examples.

· Chapter 4 CSV to HL7 v3 Mapping and Transformation - This chapter provides detailed instructions for using the caAdapter Graphical User Interface (GUI) for CSV to HL7 v3 mapping and transformation.

· Chapter 5 HL7 v2 to HL7 v3 Conversion - This chapter provides detailed instructions for using the caAdapter GUI for HL7 v2 to HL7 v3 conversion.

· Chapter 6 Regulatory Data Services Module – CSV to SDTM Mapping and Transformation - This chapter provides detailed instructions for using the caAdapter GUI for CSV to SDTM mapping and transformation, and database to SDTM mapping and transformation.
· Chapter 7 Model Mapping - This chapter provides detailed instructions for using the caAdapter GUI for object model to data model mapping.

· Chapter 8 Using Functions in Mapping - This chapter provides detailed instructions for using and adding functions in caAdapter mappings.

· Chapter 9 Using the caAdapter APIs - This chapter provides Java developers information required to use caAdapter APIs.

· Chapter 10 Using the caAdapter Web Service - This chapter provides detailed instructions for using the caAdapter Web Service.

· Chapter 11 caAdapter File Types - This chapter provides an overview of the different types of files used by caAdapter and an example of each.

· Appendix A caAdapter Example Data - This appendix provides a description of the example data delivered with caAdapter.

· Appendix B References - This appendix provides a list of references used to produce this guide or referred to within the text.
Library and Resources Files

caAdapter uses several library files. A few of those files are licensed by a third party, therefore, NCI CBIIT cannot include those with the caAdapter distribution files. We recommend for the user to obtain those files from their respective providers. Once obtained, the user must place those files under the “\caAdapter v4.0\lib” directory. The table below shows a list of those files with information on how to obtain each.

	Resource File Name
	Source
	Source URL
	Comments

	
	
	
	

	jgraph.jar
	JGraph
	www.jgraph.com
	

	resource.zip
	HL7 Organization
	www.hl7.org
	caAdapter can generate this file from the HL7 V3 Normative Edition 2006 CD available from the HL7 Organization. Please reference the paragraph below for step-by-step instructions.

	resourceV2.zip – This file was manually constructed
	HL7 Organization
	www.hl7.org
	For details on obtaining this file, please contact the caAdapter support team at:

NCICB Application Support

http://ncicb.nci.nih.gov/NCICB/support

Telephone: 301-451-4384

Toll free: 888-478-4423

	sqleonardo.jar
	SQLeonardo
	sqleonardo.altervista.org
	

Generating the resources.zip File

1. Select Tools > Load HL7 v3 Normative Edition Processable Artifacts.

2. The following screen will be displayed, select [Yes]. Note that the system will display this screen only if you already ran this process before at least once.

[image: image1.png]
3. Locate the HL7 Normative Edition home directory and click OK.

[image: image2.png]
caAdapter will begin processing the information to create the resource.zip file, and displays a confirmation message upon completion.

[image: image3.png]
Chapter 2 Overview of caAdapter

This chapter provides an overview of caAdapter, its architecture, and its related data standards.

Topics in this chapter include:

· caAdapter Overview on this page
· caAdapter Core Engine Architecture on page 6
· caAdapter Mapping Tool Architecture on page 7
· HL7 Overview on page 7
· SDTM Overview on page 9
· Object and Data Model Overview on page 10
· Prerequisites for Using the caAdapter Mapping Tool on page 10
· caAdapter Installation on page 11
· Starting the caAdapter Mapping Tool on page 11
caAdapter Overview

The xe " caAdapter: overview"caAdapter(http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caadapter) consists of several xe "Components of caAdapter"components that, via messaging standards, support data sharing at xe "NCICB"NCI CBIIT (http://ncicb.nci.nih.gov) and/or cancer centers as part of the cancer Biomedical Informatics Grid (xe "caBIG solution"caBIG) (http://caBIG.nci.nih.gov) solution. The components include a core engine for building, parsing, and validating HL7 v3 messages via an API or web service, and a mapping tool for providing mapping and transformation services using an assortment of messaging standards or formats such as HL7 v2 and v3, SDTM, and object and data models.

The caAdapter core engine is an open source toolkit for building, parsing and validating HL7 v3 messages from source clinical systems to promote data exchange in an international, standards-based messaging format. The core engine is a messaging framework that is based on an object-oriented data model, the HL7 RIM, and a set of v3 defined data types. This framework enables clinical applications to build and parse HL7 v3 messages based on specific schema definitions and perform structural, vocabulary and schema validation. caAdapter integrates with NCI CBIIT cancer Common Ontologic Representation Environment (xe "caCORE, caAdapter integrates"caCORE) components (http://ncicb.nci.nih.gov/NCICB/infrastructure). See the caCORE Technical Guide (ftp://ftp1.nci.nih.gov/pub/cacore) and the caCORE Software Development Kit Programmer’s Guide (ftp://ftp1.nci.nih.gov/pub/cacore/SDK) for more information. This supports NCI CBIIT’s mission of developing a translational research infrastructure and building a clinical research network by providing a common platform for sharing data.

The caAdapter xe "Mapping tool:defined"Mapping Tool is an open source application that supports several types of mapping and transformation. It enables analysts and database engineers, who are knowledgeable about HL7, to create a mapping from Comma Separated Value (CSV) xe "Clinical data"clinical data to an equivalent target HL7 v3 xml format. It provides a front end GUI and a back end engine to support specification of file formats, drag-and-drop mapping between source and target, validation of specifications and data, and transformation of actual CSV data into HL7 v3 xml message instances.

Using similar GUI and mapping features, the caAdapter xe "Mapping tool:defined"Mapping Tool also enables HL7 v2 analysts to convert v2 messages into CSV format for use with the CSV to HL7v3 mapping capabilities. In addition, the caAdapter Mapping Tool permits SDTM analysts to map CSV study data to the SDTM format. Core engine support for these processes will be added in a later release.

Perhaps most useful to end users is the capability of the caAdapter Mapping Tool to support object to data model mapping. This component allows users to parse and load data and object models from an xmi file, map the object model to the data model using drag-and-drop capabilities, add SDK-required tags and tag values into the xmi file, and generate a Hibernate mapping file.

caAdapter Core Engine Architecture

Figure 2‑1 illustrates the caAdapter xe "Core engine architecture"core engine xe "Architecture:caAdapter core engine"architecture design including its subsystems and components.

[image: image4]
Figure 2‑1 caAdapter Core Engine Architecture

The main features of the caAdapter core engine are:

· xe "Meta Data Loader"Meta Data Loader - represents HL7 v3 metadata in-memory.
· xe "Message parser"Message Parser – parses HL7 v3 messages to Reference Information Model (RIM) object graph.
· xe "Message builder"Message Builder – builds HL7 v3 messages from the RIM object graph.
· xe "Validation services, defined"Validation Services

· xe "Message Service Integration, defined"Message Service Integration (future plans) – integrates with message exchange services.

caAdapter Mapping Tool Architecture

The xe "caAdapter:mapping tool architecture"caAdapter xe "Mapping tool:architecture"Mapping Tool is a graphical application for mapping clinical data to an HL7 v3 message. Figure 2‑2 illustrates the caAdapter Mapping Tool xe "Architecture:mapping tool"architecture design depicting its subsystems and components.

[image: image5]
Figure 2‑2 caAdapter Mapping Tool Architecture
 The mapping tool provides the following:

· xe "Source specification, defined"Source and xe "Target specification, defined"Target Specification - graphical interface for defining input and output data formats.
· xe "User interface, defined"User Interface - simple mechanism for mapping source fields to target elements containing tree structure, drag-and-drop functionality, and functions and property definitions.
· xe "Mapping:functions"Mapping Functions - capability to do simple source data manipulation.
· xe "Transformation Service, defined"Transformation Service - generation of HL7 v3 xml message instances and SDTM text files from a source database based on user-defined mapping specifications.
· xe "Validating:defined"Validation - capability to validate the structure and content of HL7 v3 messages.
HL7 Overview

Health Level Seven (xe "HL7:overview"HL7) (http://www.hl7.org/) is one of several American National Standards Institute (ANSI)-accredited Standards Developing Organizations (SDOs) operating in the healthcare arena. HL7 provides standards for data exchange to allow interoperability between healthcare information systems. It focuses on the clinical and administrative data domains. The standards for these domains are built by consensus by volunteers – providers, payers, vendors, government – who are members in the not-for-profit HL7 organization.

HL7 version 2 (v2) is a messaging standard that focuses on syntactic data interchange. HL7 messaging (v2 or higher) has been recommended as a data exchange standard by the e-Government initiative. In fact, various releases of this version are in use in over 90% of U.S. hospitals, and v2 is considered the most widely implemented standard for healthcare information in the world. However, since it lacks an explicit methodology, conformance rules, and grouping of messages, it cannot be considered an interoperability standard.

HL7 v2 messages are composed of segments (individual lines in a message) which are composed of fields (data values) which may in turn be composed of components and sub-components. Several different delimiters or field separators are used to mark boundaries between the various elements. Specifications for messages using these structures are published in a text document format which does not easily lend itself to being computable. Furthermore, messages are often customized at local sites making it difficult to share messages between sites. caAdapter consequently includes a computable version of the message specifications which can be tailored to suit the needs of cancer centers and hospitals.

HL7 as an organization aimed to address some of the problems of v2 in its next major version, version 3 (v3). The xe "HL7:key goal"key xe "Goal of HL7"goal of the HL7 community is syntactic and xe "Semantic interoperability"semantic interoperability. This goal is supported in HL7 v3 by what are commonly called the xe "Four pillars of semantic interoperability"four pillars ofxe "Semantic interoperability" semantic interoperability:

1. A common Reference Information Model (xe "RIM:used in four pillars"RIM) spanning the entire clinical, administrative, and financial healthcare universe. The RIM is the cornerstone of the HL7 v3 development process. An object model created as part of the v3 methodology, the RIM is a large pictorial representation of the clinical data domains and identifies the life cycle of events that a message or groups of related messages will carry. It is a shared model between all the domains and is the model from which all domains create their messages. Explicitly representing the connections that exist between the information carried in the fields of HL7 messages, the RIM is essential to HL7’s ongoing mission of increasing precision and reducing implementation costs.

2. A well-defined and tool-supported process for deriving xe "Data exchange specifications"data exchange specifications from the RIM. HL7 has defined a methodology and process for developing specifications, artifacts to document the models and specifications, tools to generate the artifacts and an organization for governing the overall process of standards development. Such structure avoids ambiguity common to many existing standards.

3. A formal and robust xe "Data type:specification"data type specification upon which to ground the RIM. Data types are the basic building blocks of attributes. They define the structural format of the data carried in the attribute and influence the set of allowable values an attribute may assume. HL7 defines an extensive set of complex data types which provide the structure and semantics needed to describe data in the healthcare arena.

4. A formal methodology for binding concept-based terminologies to RIM attributes. Within HL7, a xe "Vocabulary domain"vocabulary domain is the set of all concepts that can be taken as valid values in an instance of a coded field or attribute. HL7 has defined vocabulary domains for some attributes to support use of the RIM in messages. It also provides the ability to use, document, and translate externally coded vocabularies in HL7 messages. LISTNUM \l 1 \s 0

The specifications that are developed upon this foundation are documented in a progressive set of xe "Artifacts, HL7"artifacts that represent varying levels of abstraction of the domain data. The xe "HL7:artifacts"artifacts go from purely abstract and universal in scope to implementation-specific and very narrow in subject matter:

· The xe "RIM:defined"RIM is the foundational Unified Modeling Language (UML) class diagram representing the universe of all healthcare data that may be exchanged between systems.

· A Domain Message Information Model (xe "DMIM, defined"DMIM) is a subset of the RIM that includes RIM class clones, attributes, and associations that can be used to create messages for a particular domain (a particular area of interest in healthcare). DMIMs use HL7 modeling notation, terminology, and conventions.

· A Refined Message Information Model (xe "RMIM:defined"RMIM) is a subset of a DMIM that is used to express the information content for an individual message or set of messages with annotations and refinements that are message specific.

· xe "MIF:defined"A Model Interchange Format (MIF) is an xml representation of the information contained in an HL7 specification, and is the format that all HL7 v3 specification authoring and manipulation tools will be expected to use.

· A Message Type (xe "MT, defined"MT) is the specification of an individual message in a specific implementation technology.

The caAdapter APIs make use of the MIF and MT artifacts. While the HL7 standard is not implementation specific, caAdapter uses xml as its implementation technology.

The xe "NCICB:training resources"NCI CBIIT provides training resources to assist the caBIG community and other interested parties in implementing HL7 v3 messaging. These resources include online tutorials, self-paced xe "Training, online tutorials"training, and links to HL7 resources (http://trials.nci.nih.gov/projects/infrastructureProject/caAdapter/HL7_Tutorial).

SDTM Overview XE "SDTM:Overview"
The Study Data Tabulation Model, or SDTM, is a set of standards developed by the Clinical Data Interchange Standards Consortium (CDISC). It provides structured guidelines for submitting study data tabulations to a regulatory authority such as the United States Food and Drug Administration (FDA).

SDTM datasets are organized by “Domains” where each Domain contains a list of “Variables”. Each domain is identified by a two-letter acronym. An eight-character naming convention is used to refer to variables within a domain. An example domain is “Demographics” which is referred to by the acronym “DM”. The Demographics dataset contains variables such as patient name, patient date of birth, race, sex, and others.

Domains are grouped into “Classes”. Domain classes include:

· Trial Design

· Interventions

· Events

· Findings, and,

· Special Purpose

Figure 2‑3 lists SDTM Domain Classes and associated Domains.

[image: image6]
Figure 2‑3 SDTM Domain Classes

SDTM dataset structures are fully defined in the guide “Study Data Tabulation Model Implementation Guide: Human Trials”, which is available from the CDISD website at (www.cdisc.org). Furthermore, SDTM datasets are defined in an xml document often referred to as the “define.xml”. This document allows submitters to define the structure of the dataset being submitted, especially the list of valid values used to validate certain variables. CDISC provides a sample “define.xml” document which was used in the implementation of the CSV to SDTM Mapping capability of caAdapter version 4.0.
Object and Data Model Overview

The caAdapter v4.0 Model Mapping Service takes advantage of the caAdapter mapping infrastructure to facilitate object to database mapping. The model mapping service requires an .xmi file (with full Enterprise Architect (EA) roundtrip capability) that includes a data model and an object model as input. It loads all models into the tool and then users can map an object element to a data model element using drag-and-drop capability. Once the mapping is done, caAdapter 4.0 adds all SDK-required tagged values into the xmi file and saves them to the .map file for backwards compatibility. After reimporting the newly tagged xmi file into EA and exporting an xmi 1.1 compatible xmi file, caCORE SDK can perform all code generation tasks.

Prerequisites for Using the caAdapter Mapping Tool

You must have the following prerequisites to successfully use the mapping tool:

· Thorough familiarity with source data.
· HL7 artifacts, messages, and data types for v2 and v3.
· SDTM domains, variables, and “define.xml” document.

· Object and data model.
· Training on the caAdapter Mapping Tool.
· Familiarity with caAdapter Mapping Rules documentation.
caAdapter Installation

Complete instructions for installing caAdapter are located in the caAdapter Installation Guide at http://ncicb.nci.nih.gov/download/downloadhl7.jsp.
Starting the caAdapter Mapping Tool

xe "Starting, mapping tool"Starting the Mapping Tool from the xe "Binary distribution, starting"Binary Distribution

Perform the following steps to launch the caAdapter Mapping Tool GUI.

5. In a Command Prompt window, enter cd {home directory} to go to your home directory (for example, in Windows C:\caadapter).

6. Enter java -jar xe "caadapter_ui.jar"caadapter_ui.jar. The “Welcome to the caAdapter” screen momentarily appears and the caAdapter Mapping Tool GUI displays.
Starting the Mapping Tool from the xe "Source distribution, starting"Source Distribution

Perform the following steps to launch the caAdapter Mapping Tool GUI.

7. In a Command Prompt window, enter cd {home directory} to go to your caAdapter home directory (for example, in Windows C:\caadapter).
8. Enter xe "ant compile"cd ..\hl7sdk and then enter ant all.
9. Enter xe "ant launchui"ant launchui.
10. The “Welcome to the caAdapter” screen momentarily appears and the caAdapter Mapping Tool GUI displays. LISTNUM \l 1 \s 0
Starting the Mapping Tool from the xe "Windows distribution, starting"Windows Distribution

To launch the caAdapter Mapping Tool GUI, select caAdapter from the Start menu shortcut.

Starting the Mapping Tool on the Web (WebStart)
You can also use caAdapter via the web by entering the following: http://cbioga101.nci.nih.gov:49080/caadapter-mms/caadapter-mms.jnlp
Note: This version of caAdapter on the web only supports the Model Mapping Services Module. Other modules will be added in future releases.

Chapter 3 Using caAdapter

This chapter provides a high level overview for using caAdapter.

Topics in this chapter include:

· API Process Flow for CSV to HL7 v3 Transformation on this page

· API Operational Scenario for CSV to HL7 v3 on page 14
· Mapping Tool Operational Scenario for CSV to HL7 v3 on page 15
· Mapping Tool Operational Scenario for HL7 v2 to HL7 v3 Transformation on page 15
· Mapping Tool Operational Scenario for Regulatory Data Services Module on page 16
· Mapping Tool Operational Scenario for Model Mapping Service on page 16
API Process Flow for CSV to HL7 v3 Transformation

This section describes the process for creating a validated HL7 v3 adverse event (AE) message, also known in HL7 as an ICSR, based on a given CSV file or set of files and a corresponding mapping specification. caAdapter uses the Transformation and Validation engine to perform different validation levels based on a user’s selection: structural only, structural and vocabulary; or structural, vocabulary and schema.

The basic steps to accomplish this workflow using caAdapter are:

· caAdapter receives a CSV file, its meta file, an HL7 v3 message specification, and the mapping file that the user used to map the CSV schema to the HL7 v3 message.

· The transformation process uses the files above to create a preliminary HL7 v3 message, an internal instance, which will be put through the validation process.
· The validation process uses the internal instance of the message to perform the following validation sub-processes, (1) validation against the MIF specifications. (2) validation against HL7 v3 published vocabulary, and, (3) validation against the schema of that HL7 v3 message type.
· caAdapter then creates the final HL7 v3 message that corresponds to the source CSV file.

Figure 3.1 illustrates the transformation and validation processes.

 [image: image154.png] [image: image7]
Figure 3‑1 Transformation and Validation Processes

API Operational Scenario for CSV to HL7 v3

A clinical trials coordinating center is automating the receipt and routing of xe "Adverse event:reporting"AE reporting from the member hospitals and clinical centers. They have researched the options and chosen to implement HL7 v3 messaging. Their hospitals are implementing the messages and the coordinating center is preparing to handle the incoming messages. They have identified the xe "caAdapter:APIs"caAdapter APIs as one part of their messaging infrastructure.

When their messaging service receives an HL7 v3 message from a hospital or clinical center, it calls a caAdapter API to parse the incoming message. The xe "Parsing:message"parser validates the message against the appropriate xml schema description based on the message ID. It then xe "Building:object graph"builds an object graph in memory based on the schema definition and loads the data into the object graph. Another caAdapter API is called to xe "Validating:vocabulary using EVS"validate the vocabulary used for the HL7 v3 structural attributes using the NCI's xe "EVS, validation"EVS. This overall process builds a caAdapter log file that the system administrator can monitor.

With the validated message content held in the object graph, the system can now perform the following:

· Generate the HL7 v3 message for rerouting to the FDA using another caAdapter API for building messages.

· Pass the caAdapter object graph in an API call to a separate persistence application where the data is stored for research/data mining and administrative purposes.

· Notify the sending system that the message was received and processed using identifying data from the object graph.

Mapping Tool Operational Scenario for CSV to HL7 v3

A research hospital has been faxing AE reports to a clinical trials coordinating center for submission to the Food and Drug Administration (xe "FDA, operational scenario"FDA). Instead of using a manual effort to fill out the MedWatch 3500A form, they would like to automate and streamline the process. They have a clinical data management system (xe "CDMS, operational scenario"CDMS) where the necessary AE data is stored. They would like to automate the process by pulling data from this system and transforming it into an HL7 v3 message to route to the FDA. Their clinical systems analyst researched the HL7 standards and identified the correct specification to use, called the xe "ICSR:operational scenario"ICSR. The analyst uses the caAdapter Mapping Tool to implement this plan.

The clinical systems analyst uses the caAdapter Mapping Tool to define a file specification that describes the source file for the transformation. This source specification outlines the format of a CSV file where each line is a segment containing a logical grouping of fields. Each segment may have one or more dependent child segments to handle one-to-many relationships between logical groups of data. The analyst also uses the caAdapter Mapping Tool and the HL7 ICSR's xe "MIF:HL7 file"MIF file to generate a target file specification. This specification is based on the number and types of elements in the HL7 message that are needed to support their AE data. After source and target specifications are defined, the analyst then maps source fields to target fields using caAdapter's map specification tab. The application allows the analyst to drag-and-drop CSV source fields onto HL7 target fields and use functions to manipulate the data on the way. The result of this step is that a mapping specification is generated by the caAdapter Mapping Tool. After the mapping is complete, the analyst then uses the caAdapter Mapping Tool to test the generation of HL7 v3 ICSR xml message instances using a sample CSV file obtained from the CDMS.

When this development process is complete, the caAdapter specification files and transformation APIs can be implemented as part of a message routing infrastructure to deliver AE data to the FDA in a streamlined fashion.

Mapping Tool Operational Scenario for HL7 v2 to HL7 v3 Transformation

A number of research institutes have been submitting daily electronic AE data to a clinical trials coordinating center which in turn consolidates and submits to the FDA. The data is being submitted in HL7 v2.5 format. The coordination center anticipates a new FDA requirement which mandates that all AE submissions be in HL7 v3 format. The coordination center decides that the best way to meet this requirement is to add an HL7 v2.5 to v3 data conversion step to its current FDA submission process.

Instead of manually implementing the conversion process, the coordinating center decided to use the caAdapter Mapping and Transformation tools to expedite the implementation.

The clinical systems analyst researched the HL7 v3 standards and identified the best message type to use for submitting AE data. The next step is to map the data elements from the HL7 v3 v2.5 message currently being used, to the identified target HL7 v3 message.

The first task of the conversion and transformation process is to use caAdapter to create a CSV file and CSV file specifications that match the HL7 v2.5 source message. The second step is to use the CSV to HL7 v3 mapping and transformation capability to map the CSV data elements to the target HL7 v3 message. For more information, see the previous sections in this chapter. Once the map file has been created, caAdapter will use that to transform the data and create the HL7 v3 file.

Mapping Tool Operational Scenario for Regulatory Data Services Module

A research institute is planning the execution of a clinical trial and is in the process of reviewing reporting procedures to various regulatory entities. The results of the analysis showed that the Institute’s current CTMS can satisfy all electronic reporting requirements except for the reporting and submission to the FDA. The FDA has recently introduced the SDTM set of standards which all research centers must adhere to when submitting clinical trials data. The research institute can use caAdapter’s Regulatory Data Service (RDS) module to map its data, residing in CSV or relational database formats, to create the necessary SDTM datasets to help implement this new FDA requirement.

In the case where the data resides in CSV formats, the clinical systems analyst can use caAdapter’s Mapping Tool to map the data elements from a CSV file to the corresponding SDTM domain data elements using drag-and-drop capability. Once the mapping is complete and a map file is created, the analyst can use the transformation service to transform the data from CSV format into SDTM dataset format.

In the case where the data resides in a relational database, the clinical systems analyst can use caAdapter’s Mapping Tool to map a data element directly from the database to the proper SDTM domain(s). The caAdapter Data Viewer will help the user create the necessary SQL queries necessary to extract the data from the databases to create the SDTM datasets. Using the Data Viewer capability is optional; caAdapter automatically creates the SQL statements needed once the user completes the mapping.

Mapping Tool Operational Scenario for Model Mapping Service

In order to generate silver-level compliant software, caCORE SDK developers must first develop an object model and a data model in EA. Second, the developers must manually add tag values to associate objects to tables, associate attributes to columns, and define various associations between objects. This approach is error prone and very time consuming. The caAdapter model mapping service component can greatly automate this process by automatically loading the object model and the database. The user can map objects/attributes to tables/columns using drag-and-drop capability. Next, caAdapter will automatically add tag values to the original xmi file and create an updated one. The user then can use the updated xmi file for caCORE SDK code generation.

Users who are not using the caCORE SDK but want to map an object model to a database must develop a set of hibernate mapping files manually. The caAdapter model mapping service automates the Hibernate mapping file creation process in a similar fashion as described in the previous scenario. After developing the object model using EA, the user can import the corresponding data model. The user can then drag-and-drop objects/attributes to tables/columns and click the “generate hibernate hbm file” button to create the necessary set of hibernate mapping files.

Chapter 4 CSV To HL7 v3 Mapping and Transformation

This chapter defines the step-by-step procedures to use the caAdapter Mapping Tool to perform CSV to HL7 v3 mapping and transformation.

Topics in this chapter include:

· caAdapter Mapping Tool Process Flow on this page

· caAdapter Mapping Tool Common Features on page 18
· Source Specification on page 22
· Target Specification on page 27
· Map Specification on page 43
· HL7 v3 Message on page 55
· Transforming an HL7 Message into a CSV Format on page 59
caAdapter Mapping Tool Process Flow

The basic steps to use the caAdapter xe "Mapping tool:basic steps"mapping tool (Figure 4‑1) are as follows:

11. xe "Generating:CSV specification"Generate a CSV specification file from CSV data.

12. xe "Generating:HL7 specification"Generate an HL7 specification file from an HL7 MIF file.

13. Load the source specification (CSV specification) on the left side and load the target specification (HL7 specification) on the right side in the mapping tool GUI. xe "Defining:mappings"Define mappings by drawing lines between elements of the source and target sides and save the mapping to an xml file.
14. Select the CSV data and the mapping file; the mapping engine will xe "Transforming, into RIM object graph"transform the data into an object instance based on the mapping file. caAdapter uses the object instance and builds the HL7 v3 message instance.
[image: image8.wmf]
Figure 4‑1 How the mapping tool works
caAdapter Mapping Tool Common Features

caAdapter Mapping Tool Interface

The caAdapter xe "Mapping tool:interface"Mapping Tool interface (Figure 4‑2) is xe "Windows layout, mapping tool"Windows-based and includes a main xe "Menu bar"menu bar, a xe "Tool bar"tool bar, and xe "Tab:open"tabs located in the top of the window. The different panels can be xe "Resizing panels"resized by selecting the edge of the panel and dragging. xe "Scroll bars"Scroll bars are used when needed to display all the information.

[image: image9.png]
Figure 4‑2 Mapping Tool interface

The xe "Menu bar"menu bar is context sensitive. Only the options that are available for your current window are displayed in black font; the other options are unavailable. For example, the Report option is unavailable in Figure 4‑2 since it is not available for the .h3s file.

The menu bar consists of the File, Report, and Help options. The xe "File options"File option allows you to perform the functions in Table 4‑1.
	File Options
	Description

	xe "New file"New
	Creates a new file for the type of file you select including:

CSV to HL7 v3 Mapping and Transformation Service

CSV Specification

HL7 v3 Specification

CSV to HL7 v3 Map Specification

HL7 v3 Message

HL7 V3 to CSV Transformation Service

HL7 V3 To CSV
HL7 v2 to HL7 v3 Mapping and Transformation Service

HL7 V2 to SCS & CSV Conversion

HL7 v3 Specification

CSV to HL7 v3 Map Specification

HL7 v3 Message

RDS Mapping and Transformation Service

CSV Specification

CSV/Database to RDS Map Specification

RDS Text File

Model Mapping Service

Object to Database Map Specification

	xe "Opening:file"Open
	Opens an existing file for the type of file you select including:

CSV Specification

HL7 v3 Specification

CSV to HL7 v3 Map Specification

CSV to SDTM Map Specification

Object to Database Map Specification

	xe "Save file"Save (CTRL+S)
	Saves the file you are currently working on (in the selected tab).

	xe "Save as file"Save as
	Opens a ‘Save as’ dialog box to allow you to save the file to another file name.

	xe "Validating:file option"Validate
	Validates the file you are currently working on (in the selected tab).

	xe "Close file"Close (CTRL+F4)
	Closes the file you are currently working on (in the selected tab). The following Data Changed dialog box appears if you have not saved your work, “Data has been changed but is not saved. Would you like to save your changes?” Select Yes, No or Cancel.

	xe "Close all files"Close all
	Closes all the files.

	xe "Exit caAdapter"Exit (ALT+F4)
	Exits the caAdapter Mapping Tool.

Table 4‑1 File menu options
The xe "Report:option"Report option currently allows you to generate reports for CSV and map specifications and for CSV to SDTM map specifications. The xe "Help option"Help option contains information about caAdapter and online help Contents and Index options.

The xe "Tool bar"tool bar is context sensitive. Only the options that are available for your current window are displayed. Table 4‑2 contains a list of available icons. There are shortcuts for the same functionality that can be accessed from the menu bar.
	Tool Bar Options
	Description

	[image: image10.wmf]
	Opens a new file of the type of file that is currently open.

	[image: image11.wmf]
	Saves the file that is currently open.

	[image: image12.wmf]
	Closes the tab that is currently open.

	[image: image13.wmf]
	Validates the file that is currently open.

	[image: image14.wmf]
	Refreshes the mapping panel. It is only visible if it is on the mapping panel.

	[image: image15.wmf]
	Opens the Help window.

Table 4‑2 Tool bar options
The caAdapter Mapping Tool uses a document-oriented paradigm where up to four files of different types can be open at the same time, each within its own tab in a single window. The four different types of xe "Tab:types of"tabs are:

1. CSV specification

2. Map Specification (CSV to HL7 v2, CSV to SDTM, and Object to Database)

3. HL7 v3 Specification (.h3s, xml)

4. HL7 v3 Message / CSV data file

In some cases, only one of each file type may be open at a time. If you xe "Opening:new file"open a new file of a file type that is restricted and already open, then the existing file will be replaced with the new file. The tab name displayed is the name of the file in the tab (for example, 040011.h3s as shown in Figure 4‑2) or it is labeled untitled.<ext>, where <ext> is the appropriate file extension for that type of tab. The window layout changes depending on the type of tab displayed. For example, the HL7 v3 specification tab displays a tree structure in the left-hand panel and the properties and validation messages in the right-hand panel.

caAdapter Mapping Tool Validation

The caAdapter Mapping Tool contains xe "Validating:purpose"validation on some of its tabs (further types of validation will be provided in later releases). Validation is used to:

5. Validate the given specification to ensure it is technically correct before continuing onto the next step.

6. Provide a user-friendly method to report errors so you can correct them.

7. Provide reminder notes on the process (information messages).

The results of the validation are displayed in the xe "Validation Messages panel"Validation Messages panel (Figure 4‑3). Only one level of message is displayed at a time. From this panel you can:

· Change the xe "Message Level"Message Level by selecting a different level from the drop-down list.

· Click Save to xe "Saving:validation messages"save the messages to a file.

· Click xe "Printing, validation messages"Print to send the messages to your printer.

· Select a message to display the full content of the selected message in a panel below the Validation Messages panel (see Figure 4‑3).

[image: image16.jpg]
Figure 4‑3 Validation Messages panel

Table 4‑3 contains the different levels of xe "Messages, types of errors"messages produced during validation.

	Message Level
	Description
	Example

	 xe "FATAL message"FATAL
	The process leads the application into an unrecoverable situation where the application itself has to halt the process instead of moving forward.
	A file with a wrong file type is given to the map specification module and it does not know how to open the file.

	xe "ERROR message"ERROR
	The process leads the application into a recoverable situation with serious issues that require your attention. It is better if these errors are resolved before proceeding or you could receive partial or incorrect results.
	The CSV data does not match a given specification.

	xe "WARNING message"WARNING
	The process leads the application into a recoverable situation with medium level issues that won’t prevent the application from proceeding further. However, it may require your attention to resolve them so the process will generate the expected results.
	Not all segments and fields within the CSV specification have been mapped to the HL7 v3 specification.

	xe "INFO message"INFO
	Contains information, such as tips, suggestions, reminders, etc. You can simply ignore them if you want to.
	Contains the choice selected for an element

Table 4‑3 Validation messages

xe "Source specification"

xe "Source specification"Source Specification

Segmented CSV Specification

Business Rules

Following are the xe "Business rules:CSV specification"business rules for a segmented xe "CSV specification:business rules"CSV specification:

· Two or more segments cannot have the same name.
· Two or more fields cannot have the same name in same segment (case-insensitive).
· Segment names must be a combination of any letters (A-Z) in CAPITALS, numbers or the underscore character.
· Field names must be a combination of any letters (A-Z or a-z), numbers, or the underscore character.
Step-by-Step Instructions

This section contains the detailed instructions to use the Mapping Tool to create or update a CSV specification.

Overview of CSV Specification Tab
The xe "CSV specification:tab overview"CSV Specification xe "Tab:CSV specification"tab (Figure 4‑4) allows you to identify the hierarchy of segments and fields that describe an incoming CSV data file that must be converted into one or more HL7 v3 xml messages. The CSV specification tab separates the tree structure in the left-hand panel from the validation results and properties in the right-hand panel. The tree structure displays the hierarchy of segments and fields that represent the way data in the source CSV files are organized. Typical features of the tree structure are used, such as dragging and dropping an element to another location in the tree, or the ability to expand and collapse a branch of the tree using the + and - symbols respectively. The Properties section in the right-hand panel allows you to work with the metadata on the left.

[image: image17.jpg]
Figure 4‑4 CSV Specification tab

The following sections describe how to access, update, validate, and save the CSV specification.

xe "Creating:CSV Specification"Creating and Opening a CSV Specification
First, you must create a new or open an existing CSV specification. Select xe "File:New CSV Specification"File > New > CSV to HL7 v3 Mapping and Transformation Service > CSV Specification to display the xe "New CSV specification dialog"New CSV Specification dialog box. Select one of the following as the source to create a new CSV specification.

a. Blank CSV Schema - Click OK to open the CSV Specification file, named Untitled_1.scs, in a new tab with an empty tree except for an initial root segment which is named ROOT by default.

b. Generate from a CSV Instance - Click Browse to display the Open CSV File dialog box. Select the appropriate .CSV file and click Open. The file is displayed in the New CSV Specification dialog box. Click OK to open the CSV data file in a new tab, named Untitled_1.scs, with the information from the data file displayed.

c. New from an xe "Existing CSV specification"Existing CSV Specification File - Click Browse to display the Open CSV Specification dialog box. Select the appropriate .scs file and click Open. The file is displayed in the New CSV Specification dialog box. Click OK to open the CSV Specification file in a new tab, named Untitled_1.scs, with the information from the selected file displayed.

Alternatively, xe "Opening:CSV specification"open a CSV Specification file that was previously saved by selecting xe "File:Open CSV Specification"File > Open > CSV Specification to display the xe "Open CSV specification dialog"Open CSV Specification dialog box. Select the appropriate .scs file and click Open. A new tab opens with the CSV Specification file displayed in the tree.

xe "Updating:CSV specification"Updating the CSV Specification
1. Once you have a xe "CSV specification:updating"CSV Specification file open, you can perform the following basic functions to update the tree hierarchy. Update any default field names to have meaningful names.

d. Click on a segment in the tree structure to display the details of that element in the xe "Segment:properties"Segment Properties section (Figure 4‑5).
[image: image18.jpg]
Figure 4‑5 Segment properties

b. Click the xe "Move Up button"Move Up and xe "Move Down button"Move Down buttons to re-arrange the sequence of the fields displayed under the given segment. By default the Move Up and Move Down buttons are both disabled unless you select any element in the field list (they are enabled in Figure 4‑5 because id_extention is selected). Select a number/name row and click the Move Up or Move Down button until you have the fields arranged correctly. Click Apply to update the tree structure.

c. xe "Editing:segment name"Edit the Segment Name and click Apply to update the tree in the left-hand panel.

Right-click on a segment to get the options available to perform on that xe "Segment:options"segment (Figure 4‑6).

[image: image19.jpg]
Figure 4‑6 CSV segment right-click options

d. Right-click and select xe "Adding:segments in CSV"Add Segment to display the Add Segment dialog box. Enter the CSV segment name and click OK. The segment is added to the tree structure.

e. Right-click and select xe "Adding:fields in CSV"Add Field to display the Add Field dialog box. Enter the CSV field name and click OK. The field is added to the tree structure.

f. Right-click and select xe "Editing:segments in CSV"Edit to display the Edit dialog box. Edit the CSV segment name and click OK. The segment name is changed in the tree structure.

g. Select one or more segments, right-click and select xe "Deleting:segments in CSV"Delete to display the Confirmation dialog box. Click Yes or No. The segment name(s) are deleted from the tree structure.

2. Click on a field in the tree structure, to display the details of that element in the xe "Field properties"Field Properties section (Figure 4‑7).

[image: image20.jpg]
Figure 4‑7 Field Name metadata properties

xe "Editing:field name"Edit the Field Name and click Apply to update the tree in the left-hand panel.

3. Right-click on a field to get the options (Edit, Delete) available to perform on that field.
4. Right-click and select xe "Editing:fields in CSV"Edit to display the Edit dialog box. Edit the field name and click OK. The field name is changed in the tree structure.

5. Select one or more fields, right-click and select xe "Deleting:fields in CSV"Delete to display the Confirmation dialog box. Click Yes or No. The field name(s) are deleted from the tree structure.

6. xe "Dragging-and-dropping elements in CSV"Drag-and-drop a field or segment to another area in the tree to rearrange the tree contents. xe "Moving a segment in CSV"Moving a segment takes its complete sub-tree with it. You may not drag-and-drop the root segment; it must remain as the root, but its fields may be moved. The cursor indicates when the field or segment can be dropped.

7. The xe "Reset button"Reset button can be used to reset changes made before selecting Apply.

8. The xe "Delete button"Delete button can be used to delete an element from the tree.

Validating the CSV Specification
Once you are satisfied with the CSV specification, you can xe "Validating:CSV"validate it by performing the following steps.

2. Select xe "File:Validate"File > Validate or select the Validate icon from the tool bar to display the Validate dialog box (Figure 4‑8).

[image: image21.jpg]
Figure 4‑8 CSV Validate options

2. Select one of the following:

a. xe "Validating:CSV specification"To validate the specification, click Validate.

b. Or select xe "Validating:CSV data against specialization"Validate CSV Data Against Specification to test a CSV data file against the specification. Click Browse to display the Open CSV File dialog box. Select the appropriate .CSV file and click Open. Click Validate.

3. The Dock validation results check box is automatically selected so that the messages are displayed in the right-hand panel, after the validation dialog is closed. The read-only validation messages are displayed. See caAdapter Mapping Tool Validation for more information on using the validation messages.

xe "Saving:CSV Specification"Saving a CSV Specification

When you are finished working on the CSV specification, select xe "File:Save"File > Save or xe "File:Save As"File > Save As from the menu bar or click the save icon on the tool bar to create an xml-like file describing the tree structure. This file is portable and can be opened by the same or another user later.

xe "Generating:CSV Report"Generating a Report

When the CSV Specification tab is selected, you can export the CSV specification into an Excel spreadsheet by performing the following steps.

1. Select xe "Report:generate report"Report > Generate xe "Report:CSV example"Report from the menu bar to display the Select File to Save Generated Report dialog box.

2. Enter a file name and click Save. A “Report has been successfully generated” message displays.

A part of a generated CSV report is shown in Figure 4‑9.

[image: image22.jpg]
Figure 4‑9 Part of a generated CSV report

xe "Target specification:types"Target Specification

HL7 v3 Specification

Business Rules

Following are the xe "Business rules:HL7 v3 specification"business rules for the HL7 v3 specification:

· Abstract data types must be specialized.

· A choice must be selected on choice options.

· If an element’s cardinality is one then it must have either a default value or a mapping.

· If an element’s cardinality is greater than one then you have a choice to add multiple fields.

· Only mandatory clones are included when a new HL7 v3 specification is first created. Optional clones may be added.

· nullFlavor filed is optional.
· Address data types are only enabled with a pre-defined subset of its data fields. All other data fields can be optionally added or removed.
Step-by-Step Instructions

This section contains the detailed instructions on how to use the mapping tool to create or update an HL7 v3 specification.

Overview of xe "Tab:HL7 v3 specification"HL7 v3 Specification Tab

The xe "HL7 v3 specification:tab overview"HL7 v3 specification tab (Figure 4‑10) allows you to identify the hierarchy of elements needed for your data based on what is available in the predefined structure of an HL7 v3 message type. You update the basic specification to reflect your specific requirements, such as adding multiples of fields with a cardinality of greater than one, including or excluding clones, defining concrete data types for abstract ones or selecting choice options.

[image: image23.png]
Figure 4‑10 HL7 v3 Specification tab

The HL7 v3 specification tab separates the tree structure in the left-hand panel from the properties and validation messages in the right-hand panel. The tree structure displays the hierarchy of elements that represent the way data in the .h3s files are organized. The xe "Element:types of HL7 v3 specification"elements are designated as follows:

· C - xe "Clone:HL7 v3 specification"Clone

· A - xe "Attribute, HL7 v3 specification"Attribute

· D - xe "Data type:element"Data Type

Typical features of the tree structure are used, such as the ability to expand and collapse a branch of the tree using the + and - symbols respectively. The properties panel allows you to update some information such as the user-defined default value for a given data type field or to select a concrete data type for a given Attribute. Right-click on an element to display the actions available as shown in the submenu in Figure 4‑11. The available options are regular font.

[image: image24.png]
Figure 4‑11 Options for xe "HL7 v3 specification:element options"HL7 v3 elements

The following sections describe how to create, update, validate, and save the HL7 v3 specification.

xe "Creating:HL7 v3 Specification"Creating and Opening an HL7 v3 Specification

You must either create a new or open an existing HL7 v3 specification. The following steps describe how to create a new HL7 v3 specification.

1. Select xe "File:New HL7 v3 Specification"File > New > CSV to HL7 v3 Mapping and Transformation Service > HL7 v3 Specification to display the xe "HL7 v3 specification:dialog box"HL7 v3 Specification dialog box with valid message types.

2. Select the appropriate HL7 message category and message type from the drop-down lists (Figure 4‑12) and click OK.

[image: image25.png] [image: image26.png]
Figure 4‑12 Example HL7 v3 message types

Currently, the mapping tool supports all xe "Message types, supported"message types as defined by HL7 standards
3. A new HL7 v3 specification tab displays with the name untitled_1.h3s.

To xe "Opening:HL7 v3 specification"open an existing HL7 v3 specification, select xe "File:Open HL7 v3 Specification"File > Open > HL7 v3 Specification (.h3s) or File>Open >HL7 V3 Specification (.xml) to display the xe "Open HL7 v3 Specification File dialog box"Open HL7 v3 Specification (H3S) File dialog box. Select a File name to open and click OK. The HL7 v3 specification displays in a tab with the name of the file and its extension.

Defining inline Text
The data type field named xe "inlineText data type field"inline Text is caAdapter's way of referring to text that appears between xml tags as opposed to being a value assigned to an xml attribute. The names of data types designed with inline Text fields are configured within the caadapter.properties file under the item: caadapter.hl7.attribute.inlinetext.required. The data types of address parts and name parts are assigned as system default. Any other data type may be added in. For example, in the following xml, "Rockville" is the inlineText: <city>Rockville</city>. But in the following xml, "WP" is the value for an xml attribute: <addr use="WP">. Enter the required text for such an attribute in the xe "User-defined default value"User-defined Default Value field.

xe "Defining:units of measure"Defining Units of Measure

Some HL7 v3 data types contain xe "Units of measure properties"units of measure properties. These units of measure must match those specified in the Unified Code for Units of Measure (xe "UCUM, units of measure"UCUM). The UCUM is a code system intended to include all units of measure being contemporarily used in international science, engineering, and business. For a complete list, see http://aurora.regenstrief.org/UCUM/ucum.html.

xe "Defining:default data"Defining Default Data

User-defined xe "Default values:defining"default values are pre-defined constants for data type field values. These defaults allow you to assign values for data type fields that may not be available from the source data. For example, if the root for all user ids is common across the organization, this value can be entered in the target specification. HL7 structural attributes and other elements that have their values fixed by the HL7 v3 standard cannot have user-defined default values.

xe "User-defined default value"User-defined default values are overridden by values mapped from a data source. While required attributes should always be populated with either an HL7-defined or user-defined default value, optional ones are only populated when a map is present for that data type. Table 4‑4 shows the expected behavior for attributes that are mapped with a CSV value, mapped with a null CSV value and unmapped data types.

	
	Mapped to Non-Null Field
	Mapped to
Null Field
	UnMapped

	Optional
	CSV Value
	Default Value
	Element not created unless other sibling fields are mapped

	Optional(Force xml)
	CSV Value
	Default Value
	Default Value

	Required
	CSV Value
	Default Value
	Default Value

	Mandatory
	CSV Value
	Default Value
	Default Value

Table 4‑4 Default value behavior

“Optional” means that the element is optional in the target message. It is not required if it has not been mapped.
“Optional (Force xml)” means that the element is optional in the HL7 MIF specification, but it is required by the user to create an empty element with a default value.
“xe "Mandatory:values"Mandatory” means that the value may not be NULL, unless its container (clone, attribute, etc.) is NULL. Required means values must be supported but they may be NULL.

xe "Defining:object identifiers"Defining Object Identifiers (xe "OID:defining"OIDs)

HL7 v3 artifacts use OIDs to identify coding schemes and identifier namespaces. A full list of xe "HL7:assigned OIDs"HL7 assigned OIDs, and the details of the registered schemes, is available from the xe "OID:registry page"OID Registry page of the www.hl7.org web site (Members Only section). There are two types of OIDs that can be used within an HL7 message:

1. HL7 OIDs

2. Existing OIDs

In HL7, OIDs are assigned within the appropriate branch of the HL7 OID root (2.16.840.1.113883). If you are interested in assigning an OID to a scheme, be sure to check that the scheme you are assigning does not already have an OID assigned to it within the HL7 OID hierarchy. The process of registering an existing OID with HL7 involves adding an OID and its descriptive data to a central registry. The OID does not have to be within the HL7 root OID or any other specific root or branch OID. Once a scheme has been registered, no other OIDs that identify the same scheme can be registered.

xe "Example:OIDs" Examples of OIDs used in HL7 are:

· Coding schemes created by professional bodies that are intended to be used widely. For example, Systematized Nomenclature of Medicine (SNOMED), Logical Observation Identifiers, Names and Codes (LOINC), International Classification of Diseases (ICD), etc. need to be registered by HL7 International.

· Civil namespaces. Identification schemes such as driver’s license, social security numbers need to be registered by the appropriate HL7 Affiliate.

· In the HL7 v3 specification, when you have a xe "codeSystem data type"codeSystem data type field, you must assign the OID in the xe "User-defined default value"User-defined Default Value field (Figure 4‑13) or you must have a map.
[image: image27.png]
Figure 4‑13 OID entered in the User-defined Default Value field

xe "Adding:clones to HL7 v3 Specification"Adding Clones to the HL7 v3 Specification

The ability to add or remove a xe "Clone:adding"clone is the way the caAdapter Mapping Tool accommodates xe "Optional associations"optional associations in an HL7 message. Due to the size and complexity of numerous associations, nodes are initially created in the tree for mandatory associations only. You must customize the HL7 v3 specification to include the associations that are needed for your particular mapping plans by using the xe "Add Clone option"Add Clone and Remove Clone options.

Perform the following steps to add associations or expand one recursive child generation at a time.

1. Right-click on an element name with an optional or recursive relationship and select Add Clone to display the xe "Clone List dialog box"Clone List dialog box (Figure 4‑14).

[image: image28.png]
Figure 4‑14 Clone List dialog box

2. In the Clone List dialog box, select one or more of the unused clones and click OK. The corresponding nodes are added to the tree in the left-hand panel.
3. There may be further optional associations available on the new clones just added. This is the case with a recursive association, where you could continue adding recursive levels to an arbitrary level as needed by using Add Clone.

Perform the following steps to remove clones.

1. Right-click on an element name with an optional or recursive relationship to its parent and select xe "Remove Clone option"Remove Clone to display the Clone List dialog box.
2. In the Clone List dialog box, select one or more of the unused clones and click OK. The corresponding nodes are deleted from the tree in the left-hand panel.

Adding and Deleting xe "Multiples in HL7 v3 specification"Multiples to the HL7 v3 Specification

Message elements that have either a xe "Cardinality"cardinality of 0..* or 1..* and/or a data type that involves a collection (for example, SET, BAG, LIST) contain the [Multiple] label. The [Multiple] label is displayed as a numbered label to indicate the number of elements defined for that multiple (for example, [1], [2], etc.). These items appear in the HL7 v3 specification as simple repeats of the element. To accommodate the possible requirement of mapping more than one source element to the same target element, you must add multiples of these elements.

Perform the following steps to xe "Adding:multiple clones on HL7 v3 specification"add multiple clones.

1. Right-click on a clone that contains a [Multiple] label (or a [1] label, which is the first of this group of multiple clones) and select xe "Add Multiple Clone option"Add Multiple Clone (Figure 4‑15).

[image: image29.png]
Figure 4‑15 HL7 v3 specification multiple clones

1. Another element is created and the label is changed to the number of elements created.

Perform the following steps to remove multiple clones.

1. Right-click on a clone with the [xx] label (where xx is a number greater than one), indicating that it is a replicated clone, the Remove xe "Remove Multiple Clone option"Multiple Clone is enabled, select xe "Removing, multiple clones from HL7 v3 specification"Remove xe "Remove Multiple Clone option"Multiple Clone. See Figure 4‑15 HL7 v3 specification multiple clones.
2. One multiple of the element is removed from the tree structure.

Perform the following steps to xe "Adding:multiple attributes on HL7 v3 specification"add multiple attributes.

1. Right-click on an attribute with the [1] label, indicating that it is a replicated attribute, the Remove xe "Remove Multiple Attribute option"Multiple Attribute is enabled, select xe "Removing, multiple attributes from HL7 v3 specification"Remove xe "Remove Multiple Attribute option"Multiple Attribute (Figure 4‑16).

[image: image30.png]
Figure 4‑16 HL7 v3 specification multiple attributes

2. Another element is created and the label is changed to the number of elements created.

Perform the following steps to remove multiple attributes.

1. Right-click on an attribute with the [1] label, indicating that it contains multiple numbered labels, and select xe "Removing, multiple attributes from HL7 v3 specification"Remove xe "Remove Multiple Attribute option"Multiple Attribute.

2. One multiple of the attribute is removed from the tree structure.

If a clone contains one or more child choice associations, it is always enabled with “Adding and Deleting multiple clone” without influencing its cardinality. This feature is implemented to support more than the possible chosen item for the child choice associations. Figure 4‑17 and Figure 4‑18 show that the patient is a clone with a cardinality of 1..1, but is enabled with “Add Multiple Clone” and “Remove Multiple Clone” actions.

[image: image31.png]
Figure 4‑17 Clone with one or More Child (Patient 1)

[image: image32.png]
Figure 4‑18 Clone with one or More Child (Patient 2)
xe "Updating:abstract data types"Updating Abstract Data Types in the HL7 v3 Specification

xe "Abstract data types:updating"Abstract data types occur when HL7 message developers do not specify a particular data type to use when populating attributes and are indicated by a [xe "QTY label"QTY] or [xe "ANY label"ANY] label in an HL7 v3 specification. You must assign a specialized data type to the abstract element by performing the following steps.

1. Select the element name in the left-hand panel to display its properties in the HL7 v3 Specification Properties panel.

2. Use the drop-down list in the xe "Data type:field"Data Type field (Figure 4‑19) to select the data type. Click Apply.

[image: image33.png]
Figure 4‑19 Data Type drop-down list

3. After assigning a concrete data type with an abstract data type, the system will retrieve the data fields of the assigned data type and attach those to the original attributes accordingly. Repeat steps 1 and 2 above if you need to change a different concrete data type.

Using Choice Boxes in the HL7 v3 Specification

xe "HL7:choice boxes"HL7 xe "Choice:boxes"choice boxes pose a challenge in the representation of options in a mapping tool. Currently, the caAdapter Mapping Tool's implementation limitation for choice boxes is the ability to choose only a single option to which all logical records in the source file may be mapped. The presence of a choice is indicated with a [xe "Choice:selected"Selected Choice] or [xe "Choice:unselected"Choice Unselected] label.

Perform the following steps to make a choice selection for an element.

1. Right-click on an element name that contains a [Choice - Unselected] label and select xe "Select Choice option"Select Choice to display the xe "Clone List dialog box"Clone List dialog box.

2. Select one and only one clone from the displayed list and click OK. This creates an expandable node with the [xe "Selected Choice for label"Selected Choice for] label displayed beside the parent clone node (Figure 4‑20).

[image: image34.wmf]
Figure 4‑20 Selected choice

Note: Since a business rule for an HL7 v3 specification specifies a choice must be selected, there is no option to unselect a choice. However, if the parent association is optional, the association can be dropped and re-added.

Enabling and Disabling Force xml with an Optional Clone

xe "HL7:choice boxes"If a clone is optional for the target message specification, right click the tree node to make Enable Force xml active (Figure 4‑21).
xe "HL7:choice boxes"If a clone is optional for the target message specification, and it has been enabled, right click the tree node to enable Disable Force xml. Enable Force xml or Disable Force xml will inform the HL7 message transformation engine whether or not to create an empty element if no mapping has been set (Figure 4‑22).
[image: image35.png]
Figure 4‑21 Enable Force xml
[image: image36.png]
Figure 4‑22 Disable Force xml
Adding and Removing Parts of an Address Data Type

If the xe "HL7:choice boxes"system has predefined a subset of data fields for an attribute with an Address data type, other data fields can be added or removed (Figure 4‑23 and Figure 4‑24).
[image: image37.png]
Figure 4‑23 Adding or removing parts of address data type
[image: image38.png] [image: image39.png]
Figure 4‑24 Modifying an Address Data Type
xe "Validating:HL7 v3 specification"xe "Validating:HL7 v3 specification"Validating the HL7 v3 Specification

You can validate a portion of or the entire xe "HL7 v3 specification:validating"HL7 v3 specification. A clone must be selected to perform the validation. The validation is performed on the selected clone and any children and further descendants below it in the tree structure.

Perform the following steps.

1. Select xe "File:Validate"File > Validate, select the Validate icon from the tool bar or right click a clone and select Validate to perform the validation.

2. A Message dialog box displays (Figure 4‑25) indicating the status of the validation. Click OK.

[image: image40.png]
Figure 4‑25 HL7 v3 specification validation

15. The messages display in the xe "Validation Messages panel"Validation Messages panel (caAdapter Mapping Tool Validation).

xe "Saving:HL7 v3 Specification"Saving an HL7 v3 Specification

When you are finished working on the HL7 v3 specification, select xe "File:Save"File > Save or xe "File:Save As"File > Save As from the menu bar, or click the save icon on the tool bar. If the specification is being saved for the first time, the system prompts to select either an .h3s or .xml format (Figure 4‑26). To change the format after it has been selected the first time, select Save As. The file is portable and can be opened by the same or another user later.

[image: image41.png]
Figure 4‑26 Saving HL7 Specifications
Map Specification

A map is a user-defined, direct relationship between two pieces of specification elements. Using the mapping tool, you create xe "Link:defined"links between source fields and target data type fields and between source segments and target clones or attributes. Links between source fields and target data type fields are used to represent data relationships. Links between segments and clones or attributes are used to explicitly link concepts that provide a context to the data and are also called container mappings. Links may also be created between source fields and input parameters of a variety of functions provided by caAdapter, and between the function's output parameters and target elements.

Business Rules

Following are the xe "Business rules:map specification"business rules for a xe "Map specification:business rules"map specification:

· It must contain a valid mapping pair (source and target files).

· The source element referenced in the map specification must exist in the source specification.

· The destination element referenced in the map specification must exist in the destination specification.

· A mandatory MIF element must have either a mapping in the map specification or an HL7-defined or user-defined default value in the HL7 v3 specification.

· Each input parameter for a function must have a mapping or a constant defined.

· Each output parameter for a function must have a mapping.

Step-by-Step Instructions

This section contains the step-by-step instructions to create the mappings. See Appendix A on page 151 for detailed information on mapping scenario 8 included with the example data.
Overview of the Map Specification Tab

The xe "Tab:map specification"map specification xe "Map specification:tab overview"tab allows you to assign fields in a source specification to elements in a target specification. For the source (the CSV specification) and the target (HL7 v3 specification), the hierarchy is visually represented using an expandable/collapsible tree structure. The target specification can either be .h3s or .xml format.

The map specification tab (Figure 4‑27) consists of the following:

· Two tree panels - contain the source specification in the left-hand panel and the target specification in the right-hand panel.

· Center mapping panel - displays the lines that indicate the mapping between source and target elements and any functions that are used in the mappings.

· Functions panel - displays a tree of available functions.

· Properties panel - changes depending on the item selected in the other panels (for example, displays link properties, HL7 v3 specification data type field properties, CSV field properties, etc.)

[image: image42.png]
Figure 4‑27 Map Specification tab

The tree structures are read-only; you must make any changes to the tree structures in the source or target specification tabs. You can only define the mappings from this tab.

Warning! Adding to source or target specifications that are referenced in a map file is allowable, but editing or removing source or target elements may result in a related mapping (link) getting dropped or producing other unpredictable behavior.

The following sections describe how to access, create, and save the map specification.

Creating and Opening a Map Specification

You must create a new or open an existingxe "Map specification:creating" map specification.

Perform the following steps to xe "Creating:map specification"create a new map specification.

1. Select xe "File:New Map Specification"File > New > CSV to HL7 v3 Mapping and Transformation > Map Specification from the menu bar to open a new mapping tab with empty source and destination panels.

2. Click Open Source to display the xe "Open Source File dialog box"Open Source File dialog box.

3. Select the source file and click Open to populate the source panel with its tree structure.

4. Click Open Target to display the xe "Open Target File dialog box"Open Target File dialog box.

5. Select the target file (.h3s or .xml format) and click Open to populate the target panel with its tree structure.

Perform the following steps to xe "Opening:map specification"open an existing xe "Map specification:opening"map specification.

1. Select xe "File:Open Map Specification"File > Open > CSV to HL7 v3 Map Specification. The Open Map File dialog box displays.

2. Select the map specification file and click Open to display the source and target trees along with any existing mappings.

xe "Updating:map specification"Updating the xe "Map specification:updating"Map Specification

Perform the following steps to xe "Creating:mapping link"create a mapping.

1. Select a source element and drag it to the appropriate target element. The cursor indicates if the source is not allowed to be mapped to the target element (Figure 4‑28 and Figure 4‑29).

[image: image43.wmf]
 SEQ Figure * ARABIC \s 1 xe "Mapping:allowed symbol"Figure 4‑28 Mapping is not allowed
The cursor indicates when the source can be mapped to the target element. Drop the source on the target element.

[image: image44.wmf]
 SEQ Figure * ARABIC \s 1 xe "Mapping:allowed symbol"Figure 4‑29 Mapping is allowed

2. Once a source field is mapped to a target element, a xe "Mapping:line"mapping line appears between them in the mapping panel. Figure 4‑30 shows a mapping line between id_root and root.
[image: image45.png].

Figure 4‑30 Mapping line between a source field and target element

To delete a mapped line or a function in the center panel, perform the following steps.

1. Select the item you want to delete, right-click and select xe "Deleting:map lines"Delete.

2. Click Yes to confirm the deletion. The selected item is deleted from the mapping.

The xe "Properties:panel"Properties panel displays information on the selected element. When you select a source element, the xe "CSV Field Properties"CSV Field Properties displays (Figure 4‑31).

[image: image46.png]
Figure 4‑31 CSV Field Properties panel

When you select a mapping line, the xe "Link:properties panel"Link Properties displays (Figure 4‑32).

[image: image47.png]
Figure 4‑32 Link Properties panel

When you select a target element, the xe "HL7 v3 specification:attribute properties panel"HL7 v3 Specification Attribute Properties, xe "HL7 v3 specification:data type field properties panel"HL7 v3 Specification Data Type Field Properties or the xe "Clone:Attribute Object Properties panel"Clone Attribute Object Properties displays (Figure 4‑33).

[image: image48.png]
Figure 4‑33 Attribute properties
When you select a function either in the Mapping panel or in the Functions panel, the xe "Function:properties panel"Function Properties display. When you select a function group in the Functions panel, the xe "Function:group properties panel"Function Group Properties display (Figure 4‑34).

[image: image49.png]
Figure 4‑34 Function Group Properties
xe "Using functions in map specifications"Using Functions in Map Specifications

The xe "Function:panel, defined"Functions panel (Figure 4‑35) provides a list of system defined functions that facilitate the data transformation requirement. Functions are grouped by functional categories (for example, constant, date, math, string, etc.). You may use a function in the mapping to effect a change of the source element to the target element. For example, you can use the concatenate function to add a prefix to an element.

Note: You can add your own required functions to the function library. See Adding Functions to the Function Library on page 113 for instructions.
When a function is selected in the function library, its properties information displays, such as name and number of input and output parameters, in the xe "Function:properties panel"Function Properties panel (Figure 4‑35).

[image: image50.jpg]
Figure 4‑35 Functions in mapping specification

Perform the following steps to include a function in your mapping specification.

1. Add a function to the mapping panel. Select a function in the Functions panel, right-click in the center panel and select xe "Adding:function to map specification"Axe "Add Function option"dd Function, or drag-and-drop the required function from the Functions panel to the mapping panel. Move this function box around the mapping panel as convenient to attach the mapping lines.

2. Drag-and-drop the source field(s) onto the input parameters. Figure 4‑36 shows the selected field text being dropped as an input to the Initcap function.

[image: image51.wmf]
xe "Adding:input to a function"Figure 4‑36 Adding an input to a function

3. Drag-and-drop the target field onto the output parameter. The mapping lines go from the source fields into the function box and out of the function box to the target fields.

Editing a Constant Function

Perform the following steps to xe "Editing:constant function"edit a constant function.

1. Select a xe "Constant function"constant function in the mapping panel, right-click and select xe "Edit Constant option"Edit Constant.
2. In the Edit Constant dialog box, change the Type and/or Value for the constant and click OK.
xe "Using:date function"Using the Date Function

The xe "Date function, changeFormat"date function, xe "changeFormat date function"changeFormat, uses the Java xe "SimpleDateFormat class"SimpleDateFormat class. See h

HYPERLINK "http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html"
ttp://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html for more information. Table 4‑5 show the correct syntax for each date or time component.

	Date or Time Component
	Presentation
	Example Pattern 1
	Example Pattern 2

	Year
	Lowercase y
	yy => 05
	yyyy => 2005

	Month
	Uppercase M
	MM => 07
	MMM => JUL

	Day
	Lowercase d
	dd => 07 or 17 (7th or 17th date of the month)
	d => 7 or 17

	Hour
	Uppercase H or lowercase h
	Using 2 PM

HH => 14
	 hh => 02, h => 2

	Minute
	Lowercase m
	mm => 09
	m => 9

	Second
	Lowercase s
	ss => 12
	

	Millisecond
	Uppercase S
	SSS => 002
	

Table 4‑5 Date formats
For example, July 7th 1988, PM 02:23:14 can be presented in the following ways:

· yyyyMMddHHmmss => 19880707142314

· dd-MMM-yyyy, HH:mm:ss => 07-JUL-1988, 14:23:14

· MM/dd/yy => 07/07/88

Refreshing the Map Specification Tab

Click the Refresh button on the tool bar to check and update the associated CSV specification or HL7 v3 specification used in the mapping panel. If changes to the mapping panel were required, an information message (Figure 4‑37) displays.

[image: image52.wmf]
Figure 4‑37 Mapping panel refreshed message

This option allows you to update and save the associated CSV or H3S file in their own tabs, while you are also performing the mapping between the two.

If either the CSV or H3S files are updated and saved in their own tabs, and you switch back to the mapping panel, then a dialog (Figure 4‑38) displays to notify you of the changes. You are not forced to refresh the mapping panel at this time, since you may have some pending mapping activity unsaved.

[image: image53.wmf]
Figure 4‑38 Refresh mapping panel recommendation

xe "Validating:map specification"Validating the Map Specification

Perform the following steps to validate the xe "Map specification:validating"map specification.

1. Select xe "File:Validate"File > Validate or select the Validate icon from the tool bar to perform the validation.

2. A Message dialog box displays indicating the status of the validation. Click OK.

3. The detailed messages display in the xe "Validation Messages dialog box"Validation Messages dialog box (caAdapter Mapping Tool Validation).

xe "Saving:map specification"Saving a Map Specification

When you are finished working on the map specification, select xe "File:Save"File > Save or xe "File:Save As"File > Save As from the menu bar or click the save icon on the tool bar to save the file. This file is portable and can be opened by the same or another user later.

Warning! The map specification has an internal reference to the full path name of the source and target specification files and those must be accurate to process the conversion or edit a map specification successfully. If you are sharing map specification files with other users, you must send all three files, the CSV specification (.scs), HL7 v3 specification (.h3s), and map specification (.map); not just the map specification. Furthermore, the CSV and HL7 v3 specification files must be in the same path locations as they were on the machine where they were created. Alternatively, the path name can be manually removed by editing the .map file however this is dangerous and unpredictable results may occur if the file is changed improperly.

xe "Generating:Map Report"Generating a Map Specification Report

When a map specification tab is selected, you can generate a report on the status of the xe "Map specification:status"mapping specification by performing the following steps.

1. Select xe "Report:generate map report"Report > Generate xe "Report:Map specification"Report from the menu bar to display the Select File to Save Generated Report dialog box.

2. Enter a File name and click Save. A “Report has been successfully generated” message displays.

The report is an xe "Excel spreadsheet"Excel spreadsheet containing the status of the mapping specification. The report contains up to six worksheets (tabs) within the generated report. Under the mapped category, it contains the mapping status between:

· Source and target - Mapped(Source_Target)

· Source and function - Mapped(Source_Function)

· Function and target - Mapped(Function_Target)

· Function and function - Mapped(Function_Function)

Under the unmapped category, it contains the unmapped elements:

· Source - Unmapped_Source

· Target - Unmapped_Target

HL7 v3 Message

Generating the xe "HL7 v3 message:defined"HL7 v3 message is the end goal in using the mapping tool. xml HL7 message instances are created using the map specification and a corresponding CSV data file.

Business Rules

Following are the xe "Business rules:HL7 v3 message"business rules for creating an xe "HL7 v3 message:business rules"HL7 v3 message:

· You must have data in a CSV format.

· The map specification must be valid.

· The source and target specifications used to create the map must be located in the same directory as they were when the map specification was created (or the map specification must have been edited to point to the new location of these files if they were moved). The map specification uses the references to these files as it converts the data into the new format.

Step-by-Step Instructions

This section contains the step-by-step instructions to generate the HL7 v3 message.

Note: There is no File > Open option that corresponds to HL7 v3 messages since you always want to generate fresh messages based on the current selection of source and map files.

Overview of the xe "Tab:HL7 v3 message"HL7 v3 Message Tab

The purpose of the xe "HL7 v3 message:overview"HL7 v3 Message tab is to allow you to generate and view the xml instances and messages converted from a data file and map specification. Each data file may have one or more logical records which result in a corresponding number of xml instances (or more depending on the structure of the mapping). The user interface allows you to navigate between the instances. The HL7 v3 message tab (Figure 4‑39) contains the following four panels:

· Regenerate and navigation buttons

· Name of data file and map specification used

· Scrollable text fields for xml instances

· Scrollable text fields for validation messages

[image: image54.jpg]
Figure 4‑39 HL7 v3 Message tab

Starting the Conversion Process

Perform the following steps to xe "Converting data file into HL7 v3 message"convert a xe "Generating:HL7 v3 messages"data file into xe "Creating:HL7 v3 message"an xe "HL7 v3 message:creating"HL7 v3 message.

1. Select xe "File:New HL7 v3 Message"File > New > CSV to HL7 v3 Mapping and Transformation > HL7 v3 Message from the menu bar to display the xe "HL7 v3 message:dialog box"HL7 v3 Message dialog box (Figure 4‑40).

[image: image55.wmf]
Figure 4‑40 HL7 v3 Message dialog box

2. Click Browse next to Data File to display the xe "Open Data File dialog box"Open Data File dialog box.

3. Select the data file you want to use in the conversion process and click Open.

4. Click Browse next to Map Specification to display the xe "Open Map Specification dialog box"Open Map Specification dialog box.

5. Select the map specification file you want to use in the conversion process and click Open.

6. Click OK to generate HL7 v3 messages from the selected files.

7. Given the underlying data and mapping structure, it could take a long time to complete the HL7 v3 message generation task. If the system estimates that it will take longer than ten seconds (as is defined and configurable in the source distribution), then the Question dialog displays as shown in Figure 4‑41. Click Yes to start the process or click No to abort the process given the estimated time.

[image: image56.wmf]
Figure 4‑41 HL7 v3 message generation confirmation

8. After a Yes confirmation, the process starts and a progress dialog box displays (Figure 4‑42). The system monitors the transformation progress for both loading the data, which includes reading the map file, source and target data specification; and the count of messages generated.

[image: image57.png] [image: image58.png]
Figure 4‑42 HL7 v3 message generation progress dialog

9. Once the process starts, you can cancel the process by clicking Cancel. If cancelled, the underlying generation process is terminated and an information dialog displays (Figure 4‑43).

 [image: image59.wmf]
Figure 4‑43 HL7 v3 message generation cancelled
10. A message displays (Figure 4‑44) after the overall process completes. Click OK.
[image: image60.wmf]
Figure 4‑44 HL7 v3 message process complete

11. The HL7 v3 Message tab displays.

Using the Basic Features of the HL7 v3 Messages Tab

The two main features of the xe "HL7 v3 message:tab features"HL7 v3 Message tab (Figure 4‑45) are the two scrollable text fields containing an xml instance and the associated error, warning and/or informational messages generated during the conversion process.

[image: image61.jpg]
Figure 4‑45 HL7 v3 Message tab

Click the xe "Previous button"Previous and xe "Next button"Next buttons to cycle through the xml messages one at a time. As the messages change, the validation messages change. See caAdapter Mapping Tool Validation on page 21 for more information on the validation messages. Click the xe "Regenerate button"Regenerate button to regenerate the messages from scratch using the same data file and map specification.

xe "Saving:HL7 v3 Message"Saving an HL7 v3 Message

Select xe "File:Save"File > Save or xe "File:Save As"File > Save As from the menu bar or click the save icon on the tool bar to save the HL7 v3 message. If there is more than one instance of a message, then the files are saved with number extensions (for example, example_message_1.xml, example_message_2.xml, example_message_3.xml).
Note: Validation messages are not saved with their corresponding xml message and must be saved separately using the Save button in the Validation Messages panel.
Transforming an HL7 Message into a CSV Format

This version of caAdapter provides the capability to map and transform an HL7 messages into a CSV structured files. This capability addresses such requirement where HL7 v3 data must be persisted into a system already capable to of persisting data from CSV files.

Business Rules

The business rules are similar to those that apply to transforming CSV data into HL7 v3 messages with the source and target reversed, i.e. transforming HL7 V3 into CSV structure/file.

Step-by-Step Instructions

This section contains the step-by-step instructions to generate a CSV dataset from an HL7 V3 message.

Note: There is no File > Open option that corresponds to CSV data file since you always need to generate fresh CSV data based on the current selection of the source HL7 V3 message, and the map files.

Reuse of the xe "Tab:HL7 v3 message"HL7 v3 Message Tab

The purpose for reusing the xe "HL7 v3 message:overview"HL7 V3 Message tab is to generate and view the CSV data generated from the HL7 V3 message data. Each data file may have one or more logical records which result in a corresponding number of CSV meta instances (or more depending on the structure of the mapping). The user interface allows navigating between the various instances. The reused HL7 v3 message tab (Figure 4‑39) contains four panels:
[image: image62.png]
Figure 4‑46 Displaying CSV Data with HL7 v3 Message Tab
Starting the Conversion Process

Use the following steps to xe "Converting data file into HL7 v3 message"convert xe "Creating:HL7 v3 message"an xe "HL7 v3 message:creating"HL7 v3 message into a CSV xe "Generating:HL7 v3 messages"data file.
1. Select xe "File:New HL7 v3 Message"File > New > HL7 V3 To CSV Transformation Service> New HL7 V3 To CSV from the menu bar to display the xe "HL7 v3 message:dialog box"HL7 V3 To CSV dialog box (Figure 4‑47).
[image: image63.png]
Figure 4‑47 HL7 V3 to CSV Dialog Box
2. Click Browse next to Data File to display the xe "Open Data File dialog box"Open Data File dialog box.

3. Select the data file to use in the conversion process and click Open.

4. Click Browse next to Map Specification to display the xe "Open Map Specification dialog box"Open Map Specification dialog box.

5. Select the map specification file to use in the conversion process and click Open.

6. Click OK to generate CSV data file from the selected files.

Click the xe "Previous button"Previous and xe "Next button"Next buttons to cycle through the CSV data one at a time. As the data change, the validation messages change as well. See caAdapter Mapping Tool Validation for more information on the validation messages. Click the xe "Regenerate button"Regenerate button to regenerate the data from scratch using the same data file and map specification.

xe "Saving:HL7 v3 Message"Saving the CSV Data File

Select xe "File:Save"File > Save or xe "File:Save As"File > Save As from the menu bar, or click the Save icon on the tool bar, to save the data file.
Chapter 5 HL7 v2 to HL7 v3 Conversion

This chapter provides instructions on using caAdapter to map and convert an HL7 v2 message to an HL7 v3 message.

Topics in this chapter include:

· Understanding the Mapping and Transformation Processes on this page

· Using the HL7 v2 to HL7 v3 Module on page 65
· Advanced HL7 v2 to HL7 v3 Mapping on page 66
Understanding the Mapping and Transformation Processes

There are two major steps involved in converting an HL7 v2 message to an HL7 v3 message:

· Step 1: Map and convert the HL7 v2 message to CSV format

· Step 2: Map and convert the CSV file (which is equivalent to the original HL7 v2 format), to HL7 v3 format

Figure 5‑1 shows the entire conversion process and the sub-steps involved.

[image: image64]
Figure 5‑1 HL7 v2 to HL7 v3 conversion steps

Mapping and Converting HL7 v2 to CSV Format

The first step in the process involves using caAdapter to reproduce the HL7 v2 message in CSV format. The input files in this step are:

1. HL7 v2 Message file
2. HL7 v2 Resources file collection. Those include HL7 v2 specifications files to help parse the message. The Resources file collection includes four types of files which describe: LISTNUM \l 1 \s 0
· Message Structure

· Data Type Specs

· Segment Attributes

· Vocabulary Definition

The Resources file collection may vary depending on the version of the HL7 v2. This release of caAdapter includes the Resources file collections for HL7 v2.4 and HL7 v2.5. Update to the files reflects the exact “flavor” of the v2.4 or v2.5 used.

The output files in this step are:

1. CSV specification, or an .scs, file. This file defines a CSV file equivalent in structure to the HL7 v2 message. caAdapter detects the message type, retrieves its specifications from the Resources file collection, and creates the corresponding CSV file.

2. CSV data file. This file contains HL7 v2 data in CSV format that corresponds to the scs specification file described above.

Mapping and Converting CSV File to HL7 v3 Format

In the second step, caAdapter uses the files generated in step 1 to create the HL7 v3 message. The input files in this step are:

1. The CSV specification file created in Step 1.
2. The CSV data file created in Step 1.
2. H3s Files, which contain the specifications for HL7 v3 messages.

4. Using caAdapter’s Mapping Tool, the user will map the data elements from the CSV file to the proper HL7 v3 message.

Note: caAdapter cannot determine the target HL7 v3 message to which the source v2 message is mapped. The user must have thorough understanding of both HL7 v2 (source) and HL7 v3 (target) message structures to make this determination.

The output files in this step are:

1. CSV to HL7 v3 .map file. This file contains the mapping rules between the CSV file and HL7 v3. This file will be used by caAdapter’s Transformation Service to create the actual HL7 v3 message.

2. HL7 v3 Message. This file contains the transformed data in HL7 v3 format. LISTNUM \l 1 \s 0
 XE "HL7 v2 to HL7 v3 Mapping" Using the HL7 v2 to HL7 v3 Module

This section describes the detailed instructions for using the HL7 v2 to v3 Module which is organized by the two major steps involved as listed in the previous section.

Select File > New > HL7 v2 to HL7 v3 Conversion Service > HL7 v2 to scs & CSV Conversion (Figure 5‑2).

[image: image65]
Figure 5‑2 Launching the HL7 v2 to CSV Conversion Module
Use the window in Figure 5‑3 to define the input and output files needed to complete step one of the process. The top two input files are:

· HL7 v2.x Resource file collection directory. This example uses the Resources file collection for HL7 v2.4.

· HL7 v2.x message file

The bottom two files are the output files that caAdapter will generate:

· CSV File which contains the HL7 v2 message data presented in CSV format.
· [image: image155.jpg]A CSV specification file that matches that of the HL7 v2 message.
[image: image66]
Figure 5‑3 Creating the CSV and SCS Files that Correspond to the HL7 v2 Message

Click the Process button. caAdapter presents a confirmation message that the two output files were created successfully (
Figure 5‑4
). LISTNUM \l 1 \s 0
[image: image156.png]
Figure 5‑4 Confirmation Message

In the second step, use the Mapping Module to map the .scs file created in step one to the appropriate HL7 v3 message. See Chapter 14 for detailed instructions on performing this task.

Advanced HL7 v2 to HL7 v3 Mapping
The Advanced HL7 v2 to HL7 v3 mapping option provides the following additional features.
1. Create a CSV specification file without an actual HL7 v2 message. Specify the HL7 v2 message type and trigger event. caAdapter then uses the Resources file collection to create the corresponding CSV specification file.

2. Explicitly set up the OBX Segment in the CSV specification file. The OBX segment contains essential clinical information including lab results, X-ray image data, doctor’s comments, and others. Such information is captured into various OBX data types, i.e. ST for String, ED for Encapsulated Data, etc. caAdapter provides the capability to specify the exact OBX data types to include in the generated CSV specification file.

Generating a CSV Specification File without an Actual HL7 v2 Message

When the user specifies a message type that contains an OBX segment to generate a CSV Specification file, the “OBX Data Type Selection” on the bottom of the window becomes active (Figure 5‑5). The following options determine the content of the generated CSV specification file.
· Treat all OBX data types as an ST data type by selecting the ST Data Type Only radio button.

· Group all OBX data types into an ST data type for simplification by selecting the Yes radio button in the “Grouping” block.

· Specify the OBX data types to include by selecting the Selecting Data Types radio button and checking the data types to be included.

Note: When the OBX data types are specified, e.g. ST and ED, caAdapter can only transform HL7 v2 messages that contain ST and ED OBX data types. If the user provides an HL7 v2 message containing OBX data types other than ST and ED, caAdapter will flag those as errors during the transformation process.
Generating a CSV Specification File from an Actual HL7 v2 Message

When the user provides an actual HL7 v2 message to create the CSV specification file, and the message contains OBX segments, the “OBX Data Type Selection” section on the bottom of the window becomes active. The following options determine the content of the generated CSV specification file:

· Include specifications that correspond to the actual OBX data types provided in the message by selecting the Apparent Data Type Only radio button.

· Treat all OBX data types as ST data type by selecting the ST Data Type Only radio button.

· Group the ST, TX, and FT OBX data types into a single ST data type for simplification by selecting the Yes radio button in the “Grouping” block.

· Specify additional OBX data types to include by selecting the Selecting Data Types radio button and checking the data types to be included.

[image: image67.png]
Figure 5‑5 Advanced HL7 v2 Converting Panel

Figure 5‑6 contains an example CSV specification file for an HL7 v2 message that contains two OBX data types: ST and ED.

[image: image68.png]
Figure 5‑6 Example Case of various forms of OBX segments
Chapter 6 Regulatory Data Services Module

This chapter provides instructions on using the Regulatory Data Services Module (RDS). This module allows mapping existing data structures to generate regulatory-type data submission files. This version of caAdapter only supports creating SDTM files from a database or a CSV source. The user can use the Mapping Tool to map database tables, or a CSV files, structure to one or more SDTM domain structure. The transformation feature then transforms and generates corresponding SDTM domain files.

Topics in this chapter include:

· Understanding the Mapping and Transformation Processes on this page
· Mapping a CSV File to SDTM Domain Structures on page 70
· Generating SDTM Datasets from a CSV file on page 74
· Editing an Existing Map File on page 75
· Editing and Printing an Existing Map File on page 76
· Mapping a Relational Database to SDTM Domain Structures on page 77
· Generating SDTM Datasets from a Database on page 81
Understanding the Mapping and Transformation Processes

There are two steps involved in creating SDTM domain datasets from a database or .CSV files. First, the user must map the data elements from the source to their corresponding data elements in the SDTM domain structure(s). caAdapter will capture the mapping specifications in a .map file. The .map file can be edited at a later time if needed. Second, caAdapter will use the source and map specifications files to generate the SDTM dataset from the source data files. Those datasets will be stored in a flat file with a .txt extension. Figure 6‑1illustrates the steps involved. Arrows marked with “1” and “2” correspond to the first and second steps listed above.

[image: image69]
Figure 6‑1 RDS Module Mapping and Transformation Processes
Mapping a CSV File to SDTM Domain Structures
This section contains detailed instructions for using the mapping tool to create a CSV-to-SDTM .map file.

1. Select File > New > RDS Mapping and Transformation Service > CSV/Database to RDS Map Specification (Figure 6‑2). caAdapter presents a blank map specification tab (Figure 6‑3).

[image: image70]
Figure 6‑2 Launching the Mapping Tool for CSV to SDTM Mapping

[image: image71]
Figure 6‑3 Blank Map Specification tab
2. Click the Open SCS File button on the left panel and select a .scs file (Figure 6‑4). caAdapter will load the CSV specification file, or the .scs file, in the left panel (Figure 6‑5).

[image: image72]
Figure 6‑4 Select a CSV File Specification (.scs File)

[image: image73.jpg]
Figure 6‑5 A CSV Specification file loaded in the left panel

3. Click the Open SDTM Definition File button and select the define.xml file which contains SDTM Domain Specifications (Figure 6‑6). caAdapter displays the SDTM Domain specifications in the right panel (Figure 6‑7).

[image: image74]
Figure 6‑6 Select “define.xml” file

[image: image75.jpg]
Figure 6‑7 SDTM Domain Structure loaded in the right panel

4. Using the mouse, drag a data element from the left panel and drop it over the corresponding field in the right panel. caAdapter draws a line linking the two elements depicting a mapping rule. Repeat the same procedure for the rest of the data elements in the left panel (Figure 6‑8). This version of caAdapter supports mapping one CSV file to more than one SDTM domain.
[image: image76.jpg]
Figure 6‑8 Data Elements Mapped from the CSV to the SDTM Domain Structure

5. Click the Save icon on the tool bar to save the mapping specifications to a .map file (Figure 6‑9).

[image: image77]
Figure 6‑9 Saving the Map file

Generating SDTM Datasets from a CSV file

Once the .map file is created, as presented in the previous section, caAdapter will use the .map and .CSV file to generate SDTM datasets. This section contains detailed instructions on how to perform this task.

1. Select File > New > RDS Mapping and Transformation Service > RDS Text File as shown in Figure 6‑10.

[image: image78]
Figure 6‑10 Launching the SDTM File Generation Process

2. caAdapter opens the [Create RDS Text File] dialog box (Figure 6‑11) for specifying the .map file.

[image: image79.png]
Figure 6‑11 Selecting the .map file

3. Once the .map file has been specified, caAdapter displays the SDTM Text File dialog box for specifying the CSV file containing the data, and the target directory where the SDTM file(s) will be saved (Figure 6‑12).

[image: image80.png]
Figure 6‑12 SDTM Text File
4. Click the Transform button. caAdapter creates a SDTM data file(s) which corresponds to the CSV file using the .map file. A confirmation message is displayed (Figure 6‑13).LISTNUM \l 1 \s 0

[image: image81]
Figure 6‑13 SDTM Data file was Created Successfully

Editing an Existing Map File

caAdapter provides the capability to edit a previously saved .map file. This section contains detailed instructions on how to perform this task.

1. Select File > Open > CSV/Database to RDS Map Specification (Figure 6‑14).

[image: image82]
Figure 6‑14 Launching the Edit Map File Feature

2. Once the .map file is selected, the file opens in the Mapping Tool. The file is now ready to be edited (Figure 6‑15).

[image: image83.jpg]
Figure 6‑15 Mapping Tool with the Map File loaded

Editing and Printing an Existing Map File

Once a .map file has been created and saved, you can use caAdapter to edit the mapping specification. To edit the .map file select File > Open > CSV/Database to RDS Map Specification. Locate the .map file you wish to edit. caAdapter will display the file in the Mapping Tool.

caAdapter also provides the capability to generate a report of the mapping specification in MS Excel format. You can use this feature from the Mapping Tool. Select Report > Generate Report from the main menu. caAdapter will create a .xls file capturing the mapping specification.

Mapping a Relational Database to SDTM Domain Structures

caAdapter provides the capability to generate SDTM domain datasets from an existing database. The user can use the Mapping Tool to map various fields in the database tables to SDTM data elements in one or more domains. Once the mapping has been completed, the user can then use the Data Viewer utility to construct the SQL queries necessary for extracting the data from the database to create the SDTM datasets.

This section contains detailed instructions on using caAdapter to map a relational database to SDTM domain structures.

The first step is to define and create the database connection profile. The connection profile contains the necessary information for caAdapter to access the database. Please note that this version of caAdapter was only tested with an Oracle database.

1. To create the profile, select File > New > RDS Mapping and Transformation Service > CSV/Database to RDS Map Specification as shown in Figure 6‑16. caAdapter opens a blank map specification tab (Figure 6‑17).

[image: image84]
[image: image157.png]Figure 6‑16 Launching the Mapping Tool for CSV to SDTM Mapping

[image: image85]
Figure 6‑17 Blank Map Specification Tab
2. Click the Choose Database button. The Enter Connection Parameters dialog box displays (Figure 6‑18).

Note: When caAdapter is opened for the first time, the left panel will not have any profiles listed.
[image: image86.png]
Figure 6‑18 Enter Connection Parameters dialog box

3. Click the New Profile button. The New Profile dialog box displays. Fill in values for all fields specifying database connection information as shown in Figure 6‑19. Click the OK button. This step creates the Connection Profile. To view the new profile you just created, double click the profiles folder; the new profile is displayed in Figure 6‑20. Once the profile has been created, caAdapter saves it for future use until it is deleted. Delete the profile by right-clicking on the profile name in the Enter Connection Profile’s left panel and select Delete Profile.

[image: image87.png]
Figure 6‑19 New Profile Dialog Box

[image: image88.png]
Figure 6‑20 New Profile information displayed

4. Fill in the password and click the Connect button. caAdapter accesses the database, reads the schema, and presents all tables and views that the user has been authorized to access in the left panel. Figure 6‑21 shows an example database schema opened in the left panel of the Mapping Tool.

[image: image89.png]
Figure 6‑21 Database Schema Displayed in the Left Panel

5. Open the define.xml file to populate the right panel with SDTM domain structures. Use the Mapping Tool to map database columns to SDTM data elements as shown in Figure 6‑22.

[image: image90.png]
Figure 6‑22 Mapping Database Columns to SDTM Data Elements

6. Once the mapping is complete, click the Save button to save the map file. caAdapter displays a confirmation message, and provides the option to open the Data Viewer, Figure 6‑23. The Data Viewer is a visual tool which uses the mapping information to assist the user in further refining the SWL queries needed to create the SDTM datasets. If the Data Viewer is not chosen for use, caAdapter creates the queries and adds them to the .map file.

[image: image91.jpg]
Figure 6‑23 Option to Open the Data Viewer Tool
7. When the Yes button is clicked in the previous step, caAdapter opens the Data Viewer tool. The Data Viewer has a tab for each SDTM domain used in the mapping. Each domain tab displays all database tables with columns used in the mapping. The “designer” view can be used with drag-and-drop features to add joins between tables, insert new tables, select additional fields, etc. The “syntax” view shows the constructed SQL query. The query can also be modified in the “syntax” view. See Figure 6‑24 and Figure 6‑25. The Data Viewer has additional capabilities that help with creating the queries to include validating and running the query.

[image: image92.png]
Figure 6‑24 Data Viewer Module (Designer View)
[image: image93.jpg]
Figure 6‑25 Data Viewer Module (Syntax View)
8. Once constructing the queries has been completed, click the Save ALL & Exit button. caAdapter updates the map file with the updated queries syntaxes.
Generating SDTM Datasets from a Database

This section contains details on generating SDTM datasets from a database based on the mapping completed in the previous sections

6. Select File > New > RDS Mapping and Transformation Service > RDS Text File as illustrated in Figure 6‑26.

[image: image158.png]
[image: image94]
Figure 6‑26 Launching the SDTM File Generation Process

7. The Create RDS Text File window opens (Figure 6‑27), which allows specifying the .map file.

[image: image95.png]
Figure 6‑27 Selecting the .map file

8. Provide caAdapter with the password to the connection profile to access the database and with the directory where caAdapter can store SDTM datasets. See Figure 6‑28 and Figure 6‑29.

[image: image96.png]
Figure 6‑28 Entering Database Password

[image: image97.png]
Figure 6‑29 Specifying Directory to Store Generated SDTM Datasets

9. Specify whether the SDTM datasets generated contains fixed length columns or not by selecting Tool > Preferences. In the RDMS Module tab select Fixed Length and click OK (Figure 6‑30). If this option is selected, and prior to generating SDTM datasets, a dialog box opens to specify the length of every SDTM column used in the mapping (Figure 6‑31).

Note: caAdapter will pad the fields with trailing spaces when the data is shorter than the field length specified.

[image: image98.png]
Figure 6‑30 Fixed Length Columns Option

[image: image99.png]
Figure 6‑31 Entering Column Lengths

10. Once the transformation is completed, caAdapter creates one file per SDTM domain. Figure 6‑32 shows the SDTM datasets generate in the specified directory in step 3 above.

[image: image100.jpg]
Figure 6‑32 SDTM Datasets

Chapter 7 caAdapter Model Mapping Service

This chapter describes how to use caAdapter to facilitate object to database mapping.
Topics in this chapter include:
· Overview on this page
· Using the caAdapter Model Mapping Service on this page
· The Seven Mapping Scenarios on page 93
· User Interface Legend on page 98
Overview

The caAdapter 4.0 Model Mapping Service for the caCORE 3.2 SDK takes advantage of the caAdapter mapping infrastructure to facilitate object to database mapping. The model mapping service requires an .xmi file (with full Enterprise Architect [EA] roundtrip capability) that includes a data model and object model as inputs. The service module loads all models into the tool. Object to database mapping is done by dragging object model elements and dropping them onto target data model elements. Once mapping is complete, caAdapter adds SDK-required values as TaggedValues to the original xmi file (and, for backwards compatibility, also creates a .map file). After importing the newly tagged xmi file into EA and exporting an xmi 1.1-compatible file, the caCORE SDK can perform all code generation tasks.
Using the caAdapter Model Mapping Service

The caAdapter Model Mapping Service provides the following functionalities:
· Parse and load data model and object model from an xmi file
· Drag and drop mapping between an object model and a data model
· Add SDK required tags and tag values into an xmi file
· Generate Hibernate mapping file
The following diagram (Figure 7‑1) describes the overall flow of how the caAdapter Model Mapping Service is integrated with other components. caAdapter users need to first develop an object model and a data model in EA. An xmi file needs to be exported from EA and then the caAdapter Model Mapping Service can load the xmi file. caAdapter users will map objects to tables, and attributes and associations to columns by dragging and dropping. Once completed, caAdapter can directly generate a set of Hibernate HBM mapping files. Alternatively, the original xmi file which has caCORE compliant tag values added can be saved for later use. The tagged xmi file can be reimported into EA to generate an xmi file that can be used by the caCORE SDK.

The following subsections describe each of these steps in detail.

[image: image101]
Figure 7‑1 caAdapter Model Mapping Service Overall Process

Note: While it still supports the .map file, this version of caAdapter does not require it; all mapping information is now stored in the .xmi file.
Exporting an XMI file from EA

Before beginning to map between an object model and a data model through the caAdapter Model Mapping Service, an xmi file needs to be generated through EA by following these steps.
1. Open the .eap file (that contains the object and data models) and right click on Logical View. Select Import/Export > Export package to XMI file (Figure 7‑2).

[image: image102]
Figure 7‑2 Export XMI file from EA
2. On the Export Package to XMI window, check the Format XMI Output box and the Enable Full EA Roundtrip box. Specify the output file name of the xmi file and click Export. The generated xmi file can be parsed by the caAdapter Model Mapping Service module (Figure 7‑3).

[image: image103]
Figure 7‑3 Options to export XMI file from EA
Creating an Object Model to Data Model Map Specification

Perform the following steps to create a new map specification.
1. Select File > New > Model Mapping Service > Object Model to Data Model Map Specification (Figure 7-4) to open a new mapping tab with empty source and destination panels.
2. Click Open XMI file… to display the Open XMI file … dialog box (Figure 7-5). Select the XMI file to start mapping an object model to a data model.
[image: image159.png]
[image: image104]
Figure 7‑4 Creating an Object Model to Data Model Map Specification
3. After the xmi file is loaded, the object model opens in the left panel, and the data model displays in the right panel. Start mapping objects and attributes to tables and columns.
[image: image105.jpg]
Figure 7‑5 Open XMI file
Opening an Existing Object to Database Mapping Specification
Perform the following steps to open an existing map specification.
3. Select File > Open > Object Model to Data Model Map Specification. The Open Map File dialog box displays.
4. Select either the xmi file or the map specification file and click Open. (For backwards compatibility, caAdapter 4.0 saves the mappings in the .map file as well as the xmi file, so either may be used to open the mapping specification).
5. If you select a .map file and the xmi associated with the mapping cannot be found, the Select xmi file dialog box opens. Browse to the correct xmi file and click Open.
Basic Mapping
Perform the following steps to create an object to database mapping specification (dependency mapping, attribute mapping, and association mapping).
1. Select a source element (objects, attributes, or associations) from the Object Model and drag it to the appropriate target element (tables, columns or foreign keys) in the Data Model. The cursor indicates whether the source element is, or is not, allowed to be mapped to the target element (Figure 7‑6). Drop the source element on the target element.
[image: image160.png]
[image: image106]
Figure 7‑6 Cursor indicates whether mapping is allowed

2. Once a source element is mapped to a target element, a mapping line appears between them in the mapping panel. Figure 7‑7 shows a mapping line between Amendment in the Object Model, on the left, and Amendment in the Data Model, on the right.

[image: image107.jpg]
Figure 7‑7 Mapping line between source element and target element
Dependency Mapping (Object to Table)

A dependency mapping is a mapping between an object and a table. Perform the following steps to create a dependency mapping.
1. Select a source element from the Object Model on the right. The example in Figure 7-8 shows HealthcareSite. Click and drag to HealthcareSite to HEALTHCARE_SITE in the Data Model.

2. A mapping line between HealthcareSite in the Object Model and HEALTHCARE_SITE in the Data Model should now be visible. Dependency mapping lines are color-coded green.

[image: image108.jpg]
Figure 7‑8 Dependency Mapping
Attribute Mapping

An attribute mapping is a mapping between an attribute in the object model and a column in the data model. (Before any attribute mapping can be performed, users have to complete dependency mapping first) Perform the following steps to create an attribute mapping.
1. The example in Figure 7-9 shows the attribute id (A) for the class HealthcareSite. Select 'id (A)' in the Object Model and drag it to ID in the Data Model.

2. A mapping line should be visible between the attribute and column. Attribute mapping lines are color-coded blue. Repeat this for 'name (A)' to NAME.
[image: image109.jpg]
Figure 7‑9 Attribute Mapping
3. If the object has not already been mapped to the table, an attempt to map the object’s attributes to the table’s columns will result in an error message (Figure 7-10).
[image: image110.jpg]
Figure 7‑10 Attribute Mapping error message
Association Mapping
An association mapping is a mapping between one end of an association listed under an object in the object model and a foreign key column in a table in the data model. Perform the following steps to create an association mapping.
1. First create a dependency mapping between the object model and the data model. For example, in Figure 7-11 the green line shows a dependency between 'HealthcareSite' and ‘HEALTHCARE_SITE’.

2. Map 'id (A)' to ID and 'name (A)' to NAME.

3. Click and drag 'address (1 to 1)' to ADDRESS_ID. When complete, the final result should look like Figure 7.11. Association mapping lines are color-coded red.

[image: image111.jpg]
Figure 7‑11 Association Mapping
Deleting Mapping Lines
Perform the following steps to delete a mapping line.
1. Select the mapping line by left clicking on it in the mapping panel. The line is highlighted.

2. Right click on the highlighted mapping line and select Delete (Figure 7.12). The line is removed from the mapping panel.
[image: image112.jpg]
Figure 7‑12 Deleting Mapping Lines
Validating Mapping Specifications

Validating a mapping specification identifies any pertinent business rules that have been violated and indicates any changes that need to be made. Perform the following steps to validate the object to database mapping specification.
1. Click the Validate button (top of Figure 7.13). The following message displays: “Validation process completed successfully with no message received”. If there are errors in the validation process, the following message displays: “Validation process completed but received <some number> ERRORs”.

2. If there are errors the Message Dialog (bottom of Figure 7.13) window opens and allows examination of any messages, errors, or warnings. Error messages may identify what actions to perform to correct errors, while warnings and informational messages may require no changes at all. It is recommended that mappings be re-validated after changes are made.

[image: image113.jpg][image: image114.jpg]
[image: image115.jpg]
Figure 7‑13 Validate Mapping Specification
Saving Mapping Specifications

To save a mapping specification, select File > Save. caAdapter saves the mappings to the xmi file and to the .map file (for backward compatibility). The Save Complete dialog displays when completed.
The xmi file created can be used by the caCORE SDK for code generation purposes.
Generating Hibernate Mappings

An alternative to creating caCORE SDK APIs is to generate Hibernate files and use those files in an application to access data from a database. Perform the following steps to generate Hibernate files from the current object to database mapping.
1. Click the Generate HBM Files button; the Open dialog box displays (Figure 7‑14).

2. Select a directory to save the HBM file(s) and click Open.
3. The HBM files are saved to the directory specified.

.
[image: image116.jpg]
Figure 7‑14 Generate HBM Files
The Seven Mapping Scenarios
Before performing any of the following mapping scenarios, all dependency mappings between objects and tables have to be completed.

One‐to‐One Bi‐Directional
To map one-to-one bi-directional relationships, the rule is to map the association from the object whose corresponding table has the foreign key (source) to the foreign key in the corresponding table (target). In the example (Protocol and Amendment) in Figure 7‑20, drag the association (Amendment.protocol (1 to 1)) and drop it onto the foreign key (PROTOCOL_ID) of the corresponding table (AMENDMENT). For one-to-one bi-directional mapping, only one end of the relationship needs to be mapped; the other end (Protocol.amendment (1 to 1)) does not need to be mapped.
[image: image117.jpg]
Figure 7‑15 One-to-One Bi-Directional Mapping
One‐to‐One Uni‐Directional
To map one-to-one uni-directional relationships, the rule is to map the association from the object whose corresponding table has the foreign key (source) to the foreign key in the corresponding table (target). In the example (HealthcareSite and Address) in Figure 7‑16, drag the association (HealthcareSite.address (1 to 1)) and drop it onto the foreign key (ADDRESS_ID) of the corresponding table (HEALTHCARE_SITE).
[image: image118.jpg]
Figure 7‑16 One-to-One Uni-Directional Mapping
One‐to‐Many Bi‐Directional
To map one-to-many bi-directional relationships, the rule is to map the association from the object whose corresponding table has the foreign key (source) to the foreign key in the corresponding table (target). In the example (AdverseEvent and AdverseEventTherapy) in Figure 7‑17, drag the association (AdverseEventTherapy.adverseEvent (1 to Many)) and drop it onto the foreign key (ADVERSE_EVENT_ID) of the corresponding table (ADVERSE_EVENT_THERAPTY). For one-to-many bi-directional mapping, the other end of the association will be rendered by a dark blue element, and is not required to be mapped through caAdapter.

[image: image119.jpg]
Figure 7‑17 One-to-Many Bi-Directional Mapping
One‐to‐Many Uni‐Directional

To map one-to-many uni-directional relationships, the rule is to map the association from the object whose corresponding table has the foreign key (source) to the foreign key in the corresponding table (target). In the example (CancerStage and Diagnosis) in Figure 7‑18, drag the association (CancerStage.diagnosis (1 to Many)) and drop it onto the foreign key (DIAGNOSIS_ID) of the corresponding table (CANCER_STAGE). For one-to-many uni-directional mapping, the other end of the association will be rendered by a dark blue element, and is not required to be mapped through caAdapter. The pink color-coded association end is added by the system to support mapping and should be mapped, but the dark blue association end should not be mapped.

[image: image120.jpg]
Figure 7‑18 One-to-Many Uni-Directional Mapping
Many‐to‐One Uni‐Directional

To map many-to-one uni-directional relationships, the rule is to map the association from the object whose corresponding table has the foreign key (source) to the foreign key in the corresponding table (target). In the example (HistopathologyGrade and Histopathology) in Figure 7‑19, mapping is done in a similar fashion as the one-to-many uni-directional relationship. Drag the association (HistopathologyGrade.histopathCollection (1 to Many)) and drop it onto the foreign key (HISTOPATHOLOGY_ID) of the corresponding table (HISTOPATHOLOGY_GRADE).
[image: image121.jpg]
Figure 7‑19 Many-to-One Uni-Directional Mapping
Many‐to‐Many Bi‐Directional

To map a many-to-many bi-directional association, first identify an intersection table. In the example in Figure 7‑20, STUDY_SITE_PARTICIPANT is the intersection table (typically the name of the intersection table is a concatenation of the two tables that correspond to the two objects). Then, drag both ends of the associations and drop them onto the two corresponding columns in the mapping table.

[image: image122.jpg]
Figure 7‑20 Many-to-Many Bi-Directional Mapping
Many‐to‐Many Uni‐Directional

To map a many-to-many uni-directional association, first identify an intersection table. In the example in Figure 7‑21, ASSESSMENT_OBSERVATION is the intersection table (typically the name of the intersection table is a concatenation of the two tables that correspond to the two objects). Then, drag both ends of the associations and drop them onto the two corresponding columns in the intersection table (just like for a bi-directional association).

[image: image123.jpg]
Figure 7‑21 Many-to-Many Uni-Directional Mapping
Mapping Inheritance

To map inheritance through the caAdapter Model Mapping Service, following the above steps to map each child class or attribute to its corresponding table or column, and the tool will automatically mark inherited attributes as (A – Derived). Those attributes do not need to be mapped, and during the validation, an information level message is displayed.

[image: image124.jpg]
Figure 7‑22 Mapping with Inheritance
User Interface Legend

Node Details

· (A) – The node is an attribute

· (A – Derived) –The node is an inherited attribute

· (1 to 1) – The node is a one-to-one association

· (1 to Many) – The node is a-one-to many association

· (Many to 1) – The node is a many-to-one association

· (Many to Many) – The node is a many-to-many association

Mapping Line Colors
· Green – Dependency Mapping.

· Blue – Attribute Mapping.

· Red – Association Mapping.

[image: image125.jpg]
Figure 7‑23 Mapping Line Colors
The following icons are used to indicate various element tagging as discussed in the next section:
	Lazy - [image: image126.png]
	Eager - [image: image127.png]

	CLOB - [image: image128.png]
	Discriminator - [image: image129.png]

	Primary Key - [image: image130.png]
	

Additional Module Features
To tag a column in the data model as Lazy-Load, CLOB, or Discriminator, click on the column and select the appropriate tag (Figure 7‑24).
Note: This version of caAdapter supports mapping more than one object to a single table. However, at least one column in that table must be tagged as a “Discriminator”.

[image: image131.jpg]
Figure 7‑24 Tagging a Column with Lazy, CLOB, or Discriminator
Only one attribute can be tagged in an object as a Primary Key. Right click on the attribute and select Make Primary Key. If no primary key was specified, caCORE SDK will assume that the field with the name “id” is the primary key (Figure 7‑25).

[image: image132.jpg]
Figure 7‑25 Designating a Primary Key for an Object
Specify the prefix to use for Object or Data Model elements using the Tools > Preferences menu option (Figure 7‑26).
[image: image133.jpg]
Figure 7‑26 Designating Prefixes

The following table show various tags implemented by caAdapter.
	Tag Name
	Tag Value
	Location

	id-attribute
	Fully qualified class name
	Class attribute

	mapped-attributes
	Fully qualified attribute name
	Table column

	implements-association
	Fully qualified association name
	Table column (foreign key)

	inverse-of
	Fully qualified association name
	Table column (foreign key)

	discriminator
	Fully qualified class name (when used on the column),

Discriminating value (when used on the class)
	Table column (foreign key),

Class

	correlation-table
	Join table name
	Association

	documentation
	Comments on the class or attribute
	Class or Attribute of class

	description
	Comments on the class or attribute
	Class or Attribute of class

	Lazy-load
	Yes/No
	Association

	Type
	CLOB
	Table column. Corresponding class attribute must be String type)

Table 7‑1 caAdapter Implemented Tags

Chapter 8 Using Functions in Mapping
This chapter describes the different functions provided by caAdapter.xe "File types"

Topics in this chapter include:

· Functions Provided by caAdapter on this page
· Function Specifications on page 103
· Adding Functions to the Function Library on page 113
Functions Provided by caAdapter

caAdapter provides a variety of basic functions as part of the initial installation. These functions may be used in any mapping where the function panel is available. There are five groups of functions:

· constant – There is one function in this group that allows the user to define a value that can be used as input with other functions
· date – There is one function in this group that allows the user to convert any date format into the HL7 v3 required date format.
· math – Five basic math functions are provided in this group.
· string – Ten commonly used functions in this group allows users to do basic data manipulation.
· vocabulary – These functions were new in the 4.0 release of caAdapter and allow a user to translate values in incoming data into a different value in the outgoing format.
The following table provides a simple overview of the functions that reside in each of these groups.
	Function Group Name
	Function Name
	Function Description

	constant
	Constant
	Allows the user to define a string or integer for use as an input value to another function or to a target field.

	Date
	changeFormat
	Requires the user to define the incoming date format (using either a constant function or a source field mapping) and the date field to be converted. Only transforms to the HL7 v3 required date format, but does handle varying levels of specificity (e.g. with or without time).

	math
	Addition
	Takes in two values and provides the sum.

	math
	Subtract
	Takes in two values and provides the difference.

	math
	Multiply
	Takes in two values and provides the product.

	math
	Divide
	Takes in two values and provides the quotient.

	math
	Round
	Takes in two values, a value to be rounded, and the digit number to which to round.

	string
	Concatenate
	Takes in two strings and provides a single value have the first string appended with the second.

	string
	Split
	Takes in a string and a position number and breaks the string into two strings at the given position.

	string
	Length
	Takes in a single string and provides the number of characters present.

	string
	Substring
	Takes in a string and a starting and ending position, returning a portion of the string.

	string
	Trim
	Takes in a single string and provides the same basic value with leading and trailing blanks removed.

	string
	Replace
	Takes in three strings, one containing the value to be operated on, one containing the “from” characters to search for, and the last containing the “to” characters to substitute, producing a single string with “from” characters substituted with “to” characters.

	string
	Instring
	Takes in a string on which to operate and a pattern to search for, returning the position within the string where the pattern is found, or 0.

	string
	Upper
	Takes in a single string and returns the same string only with all alphabetic characters in uppercase.

	string
	Lower
	Takes in a single string and returns the same string only with all alphabetic characters in lowercase.

	string
	Initcap
	Takes in a single string and returns the same string only with all alphabetic characters in lowercase except the first which is in uppercase.

	vocabulary
	translateValue
	Requires the user to select either a vocabulary mapping file (.vom) or a URL to use as the basis of the conversion. Also may require a domain to be specified if the .vom file has more than one translation set in it. Takes in a single string and returns a converted string based on the “from” and “to” values and business rules defined in the vocabulary mapping file or the URL-based function.

	vocabulary
	translateInverseValue
	Behaves the same way as the translateValue function only in reverse, matching the input value to the “to” side of the vocabulary mappings and returning the value from the “from” side.

Table 8‑1 caAdapter Functions

Function Specifications

There are two function-related specifications. The first one describes the function groups and functions, and the inputs, outputs and implementation for each function. The second one describes the vocabulary mappings used by the vocabulary functions.
Function Specification Overview

The xe "Function:specification format"function specification is used as a guide for function objects to read the function specification and determine what objects to call to execute a function (for example, concatenation). The xe "Format:function specification"function specification also stores data points for rendering by a function graphical representation within the mapping tool. It uses the following types of nested elements:

<function>

<group name>

<function name>

<inputs>

<datapoint>

<outputs>

Following is an xe "Example:function specification file"example of a xe "Function:specification, example file"function specification file (core.fls). See the {home directory}\map\functions directory for the entire file.

<?xml version="1.0"?>
<functions>
 <group name="constant" xmlPath="constant">
 <function name="constant" xmlPath="constant.constant">
 <outputs>
 <datapoint pos="0" name="constant" datatype="string" xmlPath="constant.constant.outputs.0"/>

 </outputs>
 </function>
 </group>
 <group name="date" xmlPath="date">
 <function name="changeFormat" xmlPath="date.changeFormat">
 <inputs>
 <datapoint pos="0" name="fromFormat" datatype="string" xmlPath="date.changeFormat.inputs.0"/>

 <datapoint pos="1" name="dateIn" datatype="string" xmlPath="date.changeFormat.inputs.1"/>

 </inputs>
 <outputs>
 <datapoint pos="0" name="dateOut" datatype="string" xmlPath="date.changeFormat.outputs.0"/>

 </outputs>
 <implementation classname="gov.nih.nci.caadapter.common.function.DateFunction" method="changeFormat"/>

 </function>
 <function name="countDays" xmlPath="date.countDays">
 <inputs>
 <datapoint pos="0" name="fromDate" datatype="string" xmlPath="date.countDays.inputs.0"/>

 <datapoint pos="1" name="toDate" datatype="string" xmlPath="date.countDays.inputs.1"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="dayNumber" datatype="int" xmlPath="date.countDays.outputs.0"/>
 </outputs>
 <implementation classname="gov.nih.nci.caadapter.common.function.DateFunction" method="countDays"/>

 </function>
 </group>
 <group name="math" xmlPath="math">
 <function name="Addition" xmlPath="math.Addition">
 <inputs>
 <datapoint pos="0" name="Value1" datatype="double" xmlPath="math.Addition.inputs.0"/>
 <datapoint pos="1" name="Value2" datatype="double" xmlPath="math.Addition.inputs.1"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Sum" datatype="double" xmlPath="math.Addition.outputs.0"/>
 </outputs>
 <implementation classname="gov.nih.nci.caadapter.common.function.MathFunction" method="add"/>
 </function>
 <function name="Subtract" xmlPath="math.Subtract">
 <inputs>
 <datapoint pos="0" name="Value1" datatype="double" xmlPath="math.Subtract.inputs.0"/>
 <datapoint pos="1" name="Value2" datatype="double" xmlPath="math.Subtract.inputs.1"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Difference" datatype="double" xmlPath="math.Subtract.outputs.0"/>

 </outputs>
 <implementation classname="gov.nih.nci.caadapter.common.function.MathFunction" method="subtract"/>

 </function>
 <function name="Multiply" xmlPath="math.Multiply">
 <inputs>
 <datapoint pos="0" name="Value1" datatype="double" xmlPath="math.Multiply.inputs.0"/>
 <datapoint pos="1" name="Value2" datatype="double" xmlPath="math.Multiply.inputs.1"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Product" datatype="double" xmlPath="math.Multiply.outputs.0"/>
 </outputs>
 <implementation classname="gov.nih.nci.caadapter.common.function.MathFunction" method="multiply"/>

 </function>
 <function name="Divide" xmlPath="math.Divide">
 <inputs>
 <datapoint pos="0" name="Dividend" datatype="double" xmlPath="math.Divide.inputs.0"/>
 <datapoint pos="1" name="Divisor" datatype="double" xmlPath="math.Divide.inputs.1"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Quotient" datatype="double" xmlPath="math.Divide.outputs.0"/>
 </outputs>
 <implementation classname="gov.nih.nci.caadapter.common.function.MathFunction" method="divide"/>

 </function>
 <function name="Round" xmlPath="math.Round">
 <inputs>
 <datapoint pos="0" name="Input" datatype="double" xmlPath="math.Round.inputs.0"/>
 <datapoint pos="1" name="roundDigit" datatype="int" xmlPath="math.Round.inputs.1"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Output" datatype="double" xmlPath="math.Round.outputs.0"/>
 </outputs>
 <implementation classname="gov.nih.nci.caadapter.common.function.MathFunction" method="round"/>
 </function>
 </group>
 <group name="string" xmlPath="string">
 <function name="Concatenate" xmlPath="string.Concatenate">
 <inputs>
 <datapoint pos="0" name="String1" datatype="string" xmlPath="string.Concatenate.inputs.0"/>

 <datapoint pos="1" name="String2" datatype="string" xmlPath="string.Concatenate.inputs.1"/>

 </inputs>
 <outputs>
 <datapoint pos="0" name="Result" datatype="string" xmlPath="string.Concatenate.outputs.0"/>

 </outputs>
 <implementation classname="gov.nih.nci.caadapter.common.function.StringFunction" method="concat"/>

 </function>
 <function name="Split" xmlPath="string.Split">
 <inputs>
 <datapoint pos="0" name="String1" datatype="string" xmlPath="string.Split.inputs.0"/>
 <datapoint pos="1" name="Pos" datatype="int" xmlPath="string.Split.inputs.1"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Result1" datatype="string" xmlPath="string.Split.outputs.0"/>
 <datapoint pos="1" name="Result2" datatype="string" xmlPath="string.Split.outputs.1"/>
 </outputs>
 <implementation classname="gov.nih.nci.caadapter.common.function.StringFunction" method="split"/>

 </function>
 <function name="Length" xmlPath="string.Length">
 <inputs>
 <datapoint pos="0" name="String" datatype="string" xmlPath="string.Length.inputs.0"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Length" datatype="int" xmlPath="string.Length.outputs.0"/>
 </outputs>
 <implementation classname="gov.nih.nci.caadapter.common.function.StringFunction" method="length"/>

 </function>
 <function name="Substring" xmlPath="string.Substring">
 <inputs>
 <datapoint pos="0" name="String" datatype="string" xmlPath="string.Substring.inputs.0"/>

 <datapoint pos="1" name="StartPos" datatype="int" xmlPath="string.Substring.inputs.1"/>
 <datapoint pos="2" name="EndPos" datatype="int" xmlPath="string.Substring.inputs.2"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Result" datatype="string" xmlPath="string.Substring.outputs.0"/>

 </outputs>
 <implementation classname="gov.nih.nci.caadapter.common.function.StringFunction" method="substring"/>

 </function>
 <!-- function name="Trim" xmlPath="string.Trim">
 <inputs>
 <datapoint pos="0" name="String" datatype="string" xmlPath="string.Trim.inputs.0"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Result" datatype="string" xmlPath="string.Trim.outputs.0"/>
 </outputs>
 <implementation classname="gov.nih.nci.caadapter.common.function.StringFunction" method="trim"/>

 </function -->
 <function name="Replace" xmlPath="string.Replace">
 <inputs>
 <datapoint pos="0" name="String" datatype="string" xmlPath="string.Replace.inputs.0"/>
 <datapoint pos="1" name="FromStr" datatype="string" xmlPath="string.Replace.inputs.1"/>
 <datapoint pos="2" name="ToStr" datatype="string" xmlPath="string.Replace.inputs.2"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Result" datatype="string" xmlPath="string.Replace.outputs.0"/>
 </outputs>
 <implementation classname="gov.nih.nci.caadapter.common.function.StringFunction" method="replace"/>

 </function>
 <function name="Instring" xmlPath="string.Instring">
 <inputs>
 <datapoint pos="0" name="String" datatype="string" xmlPath="string.Instring.inputs.0"/>
 <datapoint pos="1" name="Pattern" datatype="string" xmlPath="string.Instring.inputs.1"/>

 </inputs>
 <outputs>
 <datapoint pos="0" name="Result" datatype="int" xmlPath="string.Instring.outputs.1"/>
 </outputs>
 <implementation classname="gov.nih.nci.caadapter.common.function.StringFunction" method="instring"/>

 </function>
 <function name="Upper" xmlPath="string.Upper">
 <inputs>
 <datapoint pos="0" name="String" datatype="string" xmlPath="string.Upper.inputs.0"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Result" datatype="string" xmlPath="string.Upper.outputs.0"/>
 </outputs>
 <implementation classname="gov.nih.nci.caadapter.common.function.StringFunction" method="upper"/>

 </function>
 <function name="Lower" xmlPath="string.Lower">
 <inputs>
 <datapoint pos="0" name="String" datatype="string" xmlPath="string.Lower.inputs.0"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Result" datatype="string" xmlPath="string.Lower.outputs.0"/>
 </outputs>
 <implementation classname="gov.nih.nci.caadapter.common.function.StringFunction" method="lower"/>

 </function>
 <function name="Initcap" xmlPath="string.Initcap">
 <inputs>
 <datapoint pos="0" name="String" datatype="string" xmlPath="string.Initcap.inputs.0"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Result" datatype="string" xmlPath="string.Initcap.outputs.0"/>
 </outputs>
 <implementation classname="gov.nih.nci.caadapter.common.function.StringFunction" method="initcap"/>

 </function>
 </group>
 <group name="vocabulary" xmlPath="vocabulary">
 <function name="translateValue" xmlPath="vocabulary.translateValue">
 <inputs>
 <datapoint pos="0" name="dataIn" datatype="string" xmlPath="vocabulary.translateValue.inputs.0"/>

 </inputs>
 <outputs>
 <datapoint pos="0" name="dataOut" datatype="string" xmlPath="vocabulary.translateValue.outputs.0"/>

 </outputs>
 <implementation classname="gov.nih.nci.caadapter.common.function.FunctionVocabularyMapping" method="translateValue"/>

 </function>
 <function name="translateInverseValue" xmlPath="vocabulary.translateInverseValue">
 <inputs>
 <datapoint pos="0" name="dataIn" datatype="string" xmlPath="vocabulary.translateInverseValue.inputs.0"/>

 </inputs>
 <outputs>
 <datapoint pos="0" name="dataOut" datatype="string" xmlPath="vocabulary.translateInverseValue.outputs.0"/>

 </outputs>
 <implementation classname="gov.nih.nci.caadapter.common.function.FunctionVocabularyMapping" method="inverseTranslateValue"/>

 </function>
 </group>
</functions>

Vocabulary Mapping Specification Overview

The xe "Function:specification format"vocabulary mapping specification is used as a guide for translating values from one vocabulary set to another. It includes one or more vocabulary domain names with associated translations (source and target values) and a mechanism for handling cases where the incoming value does not match any of the mapped values.

The vocabulary mapping specification uses the following types of nested elements:

· <VocabularyMapping>

· <comment>

· <domain>

· <translation>

· <source>

· <target>
7. <elseCase>
8. <inverseElseCase>

The elsecase and inverseElseCase elements can have several types which govern what happens when an incoming value doesn’t match any of the maps. Some of the flavors also include a value that the mapping can define for that case. The types include the following:

	Else Case Type
	Description
	Includes a Value?

	keepValue
	Returns the incoming value without any change
	No

	null
	Returns a null
	No

	assignValue
	Returns the value provided in the value attribute
	Yes

	makeAnError
	Returns an error status to cause caAdapter to report a vocabulary mapping error
	No

Table 8‑2 Else Case types
Following is an xe "Example:function specification file"example of a xe "Function:specification, example file"vocabulary mapping specification file (using the designated file extension, .vom). See the {home directory}\workingspace\examples\V2V3 Mapping Examples\ADT_A03_to_402003 file for a soft copy of this code and see the {home directory}\etc functions file for the vom.xsd file that governs the structure of the .vom file.

<?xml version="1.0" encoding="UTF-8"?>

<VocabularyMapping name="Test_Example01>

 <comment>

 This vom file was made for test instance of V2-V3 mapping

 which is between ADT^A03 and PRPA_MT402003

 </comment>

 <domain name="AdministrativeGender">

 <comment>

 Source:HL70001(Administrative Sex),

Target:2.16.840.1.113883.11.1(AdministrativeGender)

 </comment>

 <translation name="Male">

 <source value="M" remark="Male"/>

 <target value="M" remark="Male"/>

 </translation>

 <translation name="Female">

 <source value="F" remark="Female"/>

 <target value="F" remark="Female"/>

 </translation>

 <translation name="unknown1">

 <source value="U" remark="Unknown"/>

 <target value="UN" remark="Undifferentiated"/>

 </translation>

 <translation name="unknown2">

 <source value="O" remark="Other"/>

 <target value="UN" remark="Undifferentiated"/>

 </translation>

 <translation name="unknown3">

 <source value="A" remark="Ambiguous"/>

 <target value="UN" remark="Undifferentiated"/>

 </translation>

 <translation name="unknown4">

 <source value="N" remark="Not applicable"/>

 <target value="UN" remark="Undifferentiated"/>

 </translation>

 <elseCase type="keepValue"/>

 <inverseElseCase type="assignValue" value="UN"/>

 </domain>

 <domain name="DiseaseCodingSystemOID">

 <translation name="ICD-10">

 <source value="I10"/>

 <target value="2.16.840.1.113883.6.3"/>

 </translation>

 <translation name="ICD-9CM">

 <source value="I9C"/>

 <target value="2.16.840.1.113883.6.2"/>

 </translation>

 <translation name="SNOMED">

 <source value="SNM"/>

 <target value="2.16.840.1.113883.6.5"/>

 </translation>

 <elseCase type="keepValue"/>

 <inverseElseCase type="keepValue"/>

 </domain>

</VocabularyMapping>
xe "Adding:functions"

xe "Adding:functions to function library"Adding Functions to the Function Library

The xe "Function:library"function library provides a list of system defined functions that facilitate the data transformation requirement. xe "Function:requirements"Functions are grouped by its functional categories (for example, math group, string group, etc). It is required that each group has to have a unique name across the whole function library, but the name of individual function is only required to be unique within its defined group.

The design of function library encompasses some extensibility on the support of user-customized functions in the definition of the function library's xml schema. In this version of release, no GUI utility is available to allow you to xe "Registering custom function libraries"register custom function libraries to the mapping tool. However, advanced software engineers can update the function library definition file, named xe "core.fls file"core.fls, located in the {home directory}\etc directory, to register or replace your own function implementations. After registration, the configuration engineer needs to make sure the corresponding customized Java library is available on the classpath, so that next time the mapping tool starts, it can secure the needed Java implementation classes during the generation of HL7 v3 messages.
Chapter 9 Using the caAdapter APIs

This chapter describes the set of primary caAdapter APIs.

Topics in this chapter include:

· caAdapter Directory Structure on this page
· caAdapter APIs on page 116
· caAdapter API Error Logs on page 119
caAdapter Directory Structure

Depending on the type of distribution of caAdapter, the directory structure will vary. Table 9‑1contains the directories under your {home directory}for the binary distribution.

	Directory
	Contents

	xe "build directory"conf
	Component level configuration

	xe "docs directory"docs
	Javadocs and other useful information

	xe "lib directory"lib
	Java libraries and dependencies; and the MIF.zip file

	xe "schema directory"schema
	HL7 v3 Schema files

	xe "workingspace directory"workingspace
	Default directory where you can save project files. It contains log files and HL7 v3 xml instances. It also contains an xe "examples directory"examples directory with xe "Example:data"example data (see Appendix A caAdapter Example Data).

Table 9‑1 Directory Structure for caAdapter (Binary Distribution)

Table 9‑2 contains the directories under your {home directory} for source distribution.
	Directory
	Contents

	xe "build directory"components
	Different caAdapter components. Each component has its own build script, required libraries, and configurations. caAdapter has common, hl7, RDS, UI, and web service components.

	xe "build directory"conf
	Component level configuration

	xe "docs directory"docs
	Javadocs and other useful information

	xe "lib directory"lib
	Java libraries and dependencies; and the MIF.zip file

	xe "etc directory"etc
	Important supplementary files

	xe "workingspace directory"workingspace
	Default directory where you can save project files. It contains log files and HL7 v3 xml instances. It also contains an xe "examples directory"examples directory with xe "Example:data"example data (see Appendix A caAdapter Example Data).

Table 9‑2 Directory Structure for caAdapter (Source Distribution)

caAdapter APIs

There are four primary modules in the set of caAdapter xe "API, caAdapter"APIs.

· Meta Data Loader

· Transformation Service

· HL7 v2 to HL v3 Transformation

· Vocabulary and MIF schema Validation

The following sections provide a description of each.

xe "Meta Data Loader"Meta Data Loader

HL7 provides the following format for specifying message metadata (structure, format, and constraints):

· Model Interchange Format (xe "MIF:format"MIF. MIF is xml based. When the message is being parsed, the Meta Data Loader drives how the internal HL7 message instance is built.

Note: The Meta Data Loader supports both format types: a java object of the serialized MIF file, an xml based file. The following example demonstrates how to use the Meta Data Loader. xe "JdomMessageTypeLoader"

1. Load Serialized xe "MIF:file"MIF file from resource.zip - located at lib directory.
InputStream is = this.getClass()

.getResourceAsStream("/mif/" + mifFileName);

ObjectInputStream ois = new ObjectInputStream(is);

MIFClass mifClass = (MIFClass)ois.readObject();

ois.close();

is.close();

2. Load Serialized xe "MIF:file"MIF file from an xml file.

XmlToMIFImporter xmlToMIFImporter = new XmlToMIFImporter();

 MIFClass mifClass = xmlToMIFImporter

.importMifFromXml(new File(filepath));

xe "Transformation Service"Transformation Service

The transformation service reads the mapping file and converts a compliant source file into a series of HL7 v3 xml instances. The mapping file contains a reference to the source specification, target specification, function library specification, and mapping information.

The transformation service classes are located in the xe "gov.nih.nci.hl7.map package" gov.nih.nci.caadapter.hl7.transformation package.

The following example demonstrates how to use the transformation service. Given the CSV source file and the mapping file, the xe "TransformationService class"TransformationService class transforms the CSV file into the xe "MapGenerateResult class"MapGenerateResult class, which contains the generated HL7 v3 message text and the corresponding validation results.
TransformationService ts = new TransformationService

("data/Transformation/COCT_MT010000_MAP1-1.map",

"data/Transformation/COCT_MT01000_Person.CSV");

List<XMLElement> xmlElements = ts.process();

if (xmlElements==null)
{

//if failed in processing the source data

//file,it returns error messages

ValidatorResults rs=ts.getValidatorResults();

String errorMsg= rs.getAllMessages().toString();

}

else {

//return a list of generated messages

for(XMLElement rootElement: xmlElements) {

 String hl7MessageXml= rootElement. toXML().

 toString();

 }

HL7 v2 to HL7 V3 Transformation
The first step in mapping an HL7 v2 to an HL7 v3 is to create a CSV specification file, or an scs file, equivalent to the HL7 v2 message structure. The user can then use the caAdapter GUI to transform the HL7 v2 message into a CSV file based on the CSV specification file created in this step. The second step is to map the elements of the CSV file to the appropriate HL7 v3 message. These steps have been described in previous chapters.

Alternatively, the user may use caAdapter’s APIs to automatically transform the HL7 v2 data to create the corresponding CSV file (reference the second part of the first step above).

Following is a sample code that shows how to accomplish this task.

V2Converter con = new V2Converter(FileUtil.getV2DataDirPath());

con.convertV2ToCSV(hl7FileName, csvFileName, scsFileName);

if (!con.isCSVValid())

 List<String> errList = con.getValidationMessages();
This sample code must be caught by the HL7MessageTreeException.
Vocabulary and MIF Schema Validation
xe "Vocabulary validation"Vocabulary validation provides the ability to xe "Validating:HL7 structural attributes"validate HL7 structural attributes against the HL7 published vocabulary. MIF schema validation validates an xml format HL7 message against a MIF schema file provided by the user (calling program).
The following example demonstrates how to invoke the two validation processes:

ValidatorResults validatorsToShow=new ValidatorResults();

String level=CaadapterUtil.readPrefParams(

Config.CAADAPTER_COMPONENT_HL7_TRANSFORMATION_VALIDATION_LEVEL);

//always process the structure validation ... level_0

validatorsToShow.addValidatorResults(xmlMsg.getValidatorResults());

if(level!=null&&! level.equals(CaAdapterPref.VALIDATION_PERFORMANCE_LEVLE_0))

{

//add vocabulary validation ... level_1

validatorsToShow.addValidatorResults(xmlMsg.validate());

if(level.equals(CaAdapterPref.VALIDATION_PERFORMANCE_LEVLE_2))

{
//add xsd validation

try {

String xsdFile= FileUtil.searchMessageTypeSchemaFileName(xmlMsg.getMessageType(),"xsd");

 HL7V3MessageValidator h7v3Validator=new HL7V3MessageValidator();

//add xsd validation ... level_2

validatorsToShow.addValidatorResults(h7v3Validator.validate(xmlMsg.toXML().toString(), xsdFile);

} catch (Exception e)

{

e.printStackTrace();

}

}

caAdapter API Error Logs

Many of the targets provide logging information that is printed to the console and saved to a file. The xe "Log files"log files can be found in the {home directory}\workingspace directory. All log messages are saved to the file xe "caadapter.log file"caadapter.log.# where # is the number of the log file created.

The logging utility is configurable; edit the {home directory}\xe "logging.properties file"logging.properties file to xe "Changing logging properties"change your logging properties.
Chapter 10 caAdapter Web Services Transformation Module
This chapter contains information on using caAdapter’s Web Services.

Topics in this chapter include:

· Introduction on this page

· Setup Mapping Scenarios Through the Web Portal on page 122
· Programmatic Access to the caAdapter Web Services on page 123
Introduction
A Web service is a software application identified by a URI, whose interface and bindings are capable of being identified, described and discovered by xml artifacts. The web service also supports direct interactions with other software applications using xml based messages via Internet-based protocols (by World Wide Web Consortium).

caAdapter’s CSV to HL7 v3 Message Transformation Service API is a JAVA API and can only be directly integrated with a JAVA-based application. This web service provides a powerful mechanism to integrate caAdapter’s CSV to HL7 v3 Transformation Service into a variety of systems that are developed under different platforms and software environment.

caAdapter 4.0 Web Service Model includes the following two sub-components:

· Web Portal – provides basic mapping scenario management.

· Web Service API – provides CSV to HL7 v3 transformation service.

The Web Portal provide a mechanism to upload all the mapping files including the actual .map file, CSV specification file, and HL7 v3 specification file. Once uploaded, the files can be used by subsequent transformation services. This is typically a one time effort.
Figure 10‑1 illustrates the Web Service Module architecture.

[image: image134]
Figure 10‑1 caAdapter Web Service Module Architecture
Setup Mapping Scenarios Through the Web Portal

This section contains the step-by-step instructions to upload mapping, CSV, and HL7 v3 specification.

1. Open an IE/Firefox browser and enter the following link:

http://caadapter.nci.nih.gov
[image: image135.png]
Figure 10‑2 caAdapter Portal

2. In the “Mapping Scenario Name” field, specify the name for the set of mapping files you are going to upload, and use this name in the later web services clients.
3. In the “Mapping file” field, specify the name and path to the mapping file, usually with .map suffix.
4. In the “scs file” field, specify the name and path to the CSV specification file, usually with .scs suffix.
5. In the “H3S file” field, specify the name and path to the HL7 v3 metadata file, usually with .h3s suffix.

Once the mapping scenario is created successfully, a confirmation message displays (Figure 10‑3).

[image: image136]
Figure 10‑3 Confirmation Message

Programmatic Access to the caAdapter Web Services

There are a few ways to access the caAdapter Web Services which will be explained in the following subsection.

Axis 1.x RPC Style Access to caAdapter Web Services

1. Download Axis 1.x (axis-bin-1_4.zip) from the following URL: http://www.apache.org/dyn/closer.cgi/ws/axis/1_4
2. Unzip the axis-bin-1_4.zip

3. Add the following files for the axis-1_4/lib directory to you classpath.

a. axis.jar

b. axis-ant.jar

c. commons-discovery-0.2.jar

d. commons-logging-1.0.4.jar

e. jaxrpc.jar

f. log4j-1.2.8.jar

g. saaj.jar

h. wsdl4j-1.5.1.jar
4. Run the following command to generate all the stubs:

java org.apache.axis.wsdl.WSDL2Java http://caadapter.nci.nih.gov/caAdapterWS/ws/caAdapterTransformationService?wsdl

5. Use the following code to access the caAdapter Web Services
import java.util.*;

import gov.nih.nci.caadapter.caAdapterWS.ws.caAdapterTransformationService.*;

public class AxisRPCClient {

 public static void main(String[] args) {

 try {

 String csvString = "ORGS,RAD\nORGID,2.1";

CaAdapterTransformationServiceService service

= new CaAdapterTransformationServiceServiceLocator();

CaAdapterTransformationService caAdapterService

= service.getcaAdapterTransformationService();

Object[] res = (Object[])caAdapterService.transformationService(

" My_WS_Scenario",csvString);

for(int i=0;i<res.length;i++)

System.out.println((String)res[i]);

 }catch(Exception e) {

 e.printStackTrace();

 }

 }
Axis 1.x DII Style Access to caAdapter Web Services

1. Download Axis 1.x (axis-bin-1_4.zip) from the following URL: http://www.apache.org/dyn/closer.cgi/ws/axis/1_4
2. Unzip the axis-bin-1_4.zip

3. Add the following files for the axis-1_4/lib directory to you classpath.

a. axis.jar

b. axis-ant.jar

c. commons-discovery-0.2.jar

d. commons-logging-1.0.4.jar

e. jaxrpc.jar

f. log4j-1.2.8.jar

g. saaj.jar

h. wsdl4j-1.5.1.jar

4. Use the following code to access the caAdapter web services
import org.apache.axis.client.Call;

import org.apache.axis.client.Service;

import org.apache.axis.encoding.XMLType;

import javax.xml.rpc.ParameterMode;

import javax.xml.namespace.QName;

import org.apache.axis.utils.Options;

import java.util.*;

public class AxisClient {

 public static void main(String[] args) {

 try {

 String endpointURL = " http://caadapter.nci.nih.gov/caAdapterWS/ws/caAdapterTransformationService";

 String methodName = "transformationService";

 String csvString = "ORGS,RAD\nORGID,2.1";

 Service service = new Service();

 Call call = (Call)service.createCall();

 call.setTargetEndpointAddress(new java.net.URL(endpointURL));

 call.setOperationName(methodName);

 call.addParameter("parameter_name",
XMLType.XSD_STRING,
ParameterMode.IN);

 call.addParameter("csvstringname",

 XMLType.XSD_STRING,
 ParameterMode.IN);

 call.setReturnClass(java.util.ArrayList.class);

 ArrayList res = (ArrayList)call.invoke(
new Object[]{"My_WS_Scenario",csvString});

 System.out.println(res);

 }catch(Exception e) {

 e.printStackTrace();

 }

 }
In the above code, “My_WS_Scenario" is the “Mapping Scenario Name” you used in the caAdapter Web Service Management Portal. CSV String is the actual data that needs to be transformed. The result is an xml message of the result HL7 v3 messages.

Axis 2.0 RPC Style Access to caAdapter Web Services

1. Download Axis 2.0 (axis2-1.1.zip) from the following URL: http://ws.apache.org/axis2/
2. Unzip the axis2-1.1.zip

3. Add the following files for the axis-1_4/lib directory to you classpath.

a. axis.jar

b. axis-ant.jar

c. commons-discovery-0.2.jar

d. commons-logging-1.0.4.jar

e. jaxrpc.jar

f. log4j-1.2.8.jar

g. saaj.jar

h. wsdl4j-1.5.1.jar
4. Use the following code to access the caAdapter Web Services

package swe645;

import java.util.ArrayList;

import javax.xml.namespace.QName;

import org.apache.axis2.AxisFault;

import org.apache.axis2.addressing.EndpointReference;

import org.apache.axis2.client.Options;

import org.apache.axis2.rpc.client.RPCServiceClient;

import org.apache.axiom.om.impl.llom.OMTextImpl;

import org.apache.axiom.om.impl.llom.OMElementImpl

public class AxisClient {

 public static void main(String[] args1) throws AxisFault {

 String csvString = "ORGS,RAD\nORGID,2.1";

 RPCServiceClient serviceClient = new RPCServiceClient();

 Options options = serviceClient.getOptions();

 EndpointReference targetEPR = new EndpointReference(" http://caadapter.nci.nih.gov/caAdapterWS/ws/caAdapterTransformationService");

 options.setTo(targetEPR);

 // QName of the target method

 QName opAddEntry = new QName("caAdapter", "transformationService");

 Object[] opAddEntryArgs = new Object[] {
"My_WS_Scenario",
csvString };

 Class[] returnTypes = new Class[] { ArrayList.class };

 // Invoking the method

 Object[] res = serviceClient.invokeBlocking(opAddEntry,

opAddEntryArgs, returnTypes);

 ArrayList resultArrayList = (ArrayList) res[0];

for(int i=0;i< resultArrayList.size();i++) {
 OMElementImpl omE = (OMElementImpl)resultArrayList.get(i);

 OMTextImpl textOM = (OMTextImpl)omE.getFirstOMChild();

 System.out.println(textOM.getText());

}

 }

}
Chapter 11 caAdapter File Types

This chapter includes the different xe "File types"file types and their xe "Format:of files"formats used by caAdapter.

Topics in this chapter include:

· caAdapter File Formats and Locations on this page
· CSV Data File on page 130
· CSV Specification on page 130
· HL7 v3 Specification on page 132
· HL7 v2 Specifications on page 137
· SDTM Data Files on page 140
· SDTM Meta Data Files on page 141
· Function Specification on page 142
· "Format:HL7 v3 message"HL7 v3 Message
 on page 144
· Object to Database Map Specification on page 147
caAdapter File Formats and Locations

caAdapter uses a variety of files in its APIs and mapping tool. Table 11‑1 contains the xe "File extensions"files and xe "Extensions, file descriptions"extensions used by caAdapter.
	File Type
	Extension

	CSV Specification
	xe ".scs extension".scs

	HL7 v3 Specification
	xe ".h3s extension".h3s and .xml

	HL7 v2 Message Structure
	xe ".h3s extension".dat

	HL7 v3 DataTypeSpec
	xe ".h3s extension".dat

	HL7 v3 Segment Attribute Table
	xe ".h3s extension".dat

	HL7 v3 Definition Table
	xe ".h3s extension".dat

	Function Library Specification
	xe ".fls extension".fls

	SDTM Data File
	xe ".fls extension".txt

	SDTM Metadata File
	xe ".fls extension".xml

	Map Specification
	xe ".map extension".map

	HL7 v3 Message
	xe ".xml extension".xml

Table 11‑1 File extensions
Note: Manual editing of those files is not supported and is highly discouraged.
Warning! The xe "Map specification:internal reference"map specification has an internal reference to the full path name of the source and target specification files. This must be accurate in order to process the conversion or to edit a map specification successfully. Though it is not recommended, the map specification file can be manually edited to change the file path for the source and target specification if necessary. If you are sharing map specification files with other users, you must send all three files, the CSV Specification (.scs), HL7 v3 Specification (.h3s, or .xml), and map specification (.map) and not just the map specification.

CSV Data File

It is an assumption for this version of the mapping tool that the source data systems provide data in xe "CSV data file format"CSV flat file xe "Format:CSV data file"formats with the following characteristics:

· File contents are organized into multi-line logical records.

· Each line, called a segment, begins with an identifier, called a segment name, and is terminated by a new-line character.

· Each segment has one or more data items, called fields, which follow the segment name and terminates by commas (except for the last field on the line that uses the segment terminator).

· Segments may occur more than once in the same logical record, except for the first, or root, segment, which always indicates the beginning of a new record.

· Segments are related to one another in a parent-child hierarchy that documents the one-to-many nature of the association between related data items.

· A CSV file may have one or more logical records. Each of these is terminated by the beginning of the next record (a new root segment) or the end of file.

· The intention is that each logical record will become one single HL7 v3 xml message instance.

CSV Specification

xe "CSV specification:format"CSV specification describes the structure of a CSV instance. In essence, it is a CSV specification in the same way an XSD is a specification of an xml instance. The CSV specification is based on common concepts found in EDI, CSV and HL7 v2-related files. To document this structure, the CSV specification uses an xml xe "Format:CSV specification"format that has three main elements:

1. <csvMetadata>

2. <segment>

3. <field>

There can only be one root <segment>, but within it there can be any number of dependent <segment> elements and any number of <field> elements. All <field> elements have a column number assigned which corresponds to the second, third, etc., column in the CSV file (the first is the segment name which is considered column 1). The field names are informational and are not used in the mapping file; only the segment name and column number are referenced.

Following is a xe "CSV specification:file example"CSV specification file (090102.scs) xe "Example:CSV specification file"example.

<?xml version="1.0" encoding="UTF-8"?>

<csvMetadata xmlPath="csvMetaData" version="1.2">

 <segment name="ORGS" xmlPath="ORGS" cardinality="1..1">

 <segment name="ORGID" xmlPath="ORGS.ORGID" cardinality="0..*">

 <field column="1" name="Root" datatype="String" xmlPath="ORGS.ORGID.Root"/>

 <field column="2" name="Extension" datatype="String" xmlPath="ORGS.ORGID.Extension"/>

 </segment>

 <segment name="ORGNM" xmlPath="ORGS.ORGNM" cardinality="0..*">

 <field column="1" name="Name" datatype="String" xmlPath="ORGS.ORGNM.Name"/>

 </segment>

 <segment name="ORGAD" xmlPath="ORGS.ORGAD" cardinality="0..*">

 <field column="1" name="Street_1" datatype="String" xmlPath="ORGS.ORGAD.Street_1"/>

 <field column="2" name="Street_2" datatype="String" xmlPath="ORGS.ORGAD.Street_2"/>

 <field column="3" name="City" datatype="String" xmlPath="ORGS.ORGAD.City"/>

 <field column="4" name="State" datatype="String" xmlPath="ORGS.ORGAD.State"/>

 <field column="5" name="Zip_Code" datatype="String" xmlPath="ORGS.ORGAD.Zip_Code"/>

 </segment>

 <segment name="PERSNM" xmlPath="ORGS.PERSNM" cardinality="0..*">

 <field column="1" name="First_Name" datatype="String" xmlPath="ORGS.PERSNM.First_Name"/>

 <field column="2" name="Last_Name" datatype="String" xmlPath="ORGS.PERSNM.Last_Name"/>

 <field column="3" name="Middle_Initial" datatype="String" xmlPath="ORGS.PERSNM.Middle_Initial"/>

 <field column="4" name="Job_Code" datatype="String" xmlPath="ORGS.PERSNM.Job_Code"/>

 </segment>

 <segment name="PERSID" xmlPath="ORGS.PERSID" cardinality="0..*">

 <field column="1" name="Root" datatype="String" xmlPath="ORGS.PERSID.Root"/>

 <field column="2" name="Extension" datatype="String" xmlPath="ORGS.PERSID.Extension"/>

 </segment>

 <segment name="PERSAD" xmlPath="ORGS.PERSAD" cardinality="0..*">

 <field column="1" name="Street_1" datatype="String" xmlPath="ORGS.PERSAD.Street_1"/>

 <field column="2" name="Street_2" datatype="String" xmlPath="ORGS.PERSAD.Street_2"/>

 <field column="3" name="City" datatype="String" xmlPath="ORGS.PERSAD.City"/>

 <field column="4" name="State" datatype="String" xmlPath="ORGS.PERSAD.State"/>

 <field column="5" name="Zip_Code" datatype="String" xmlPath="ORGS.PERSAD.Zip_Code"/>

 </segment>

 <field column="1" name="ORG_CODE" datatype="String" xmlPath="ORGS.ORG_CODE"/>

 </segment>

</csvMetadata>
HL7 v3 Specifications
The HL7 v3 specification, used to define the HL7 v3 metadata information, is based largely on the MIF for the target HL7 v3 message. An HL7 V3 specification may be saved either as a binary .h3s file or as an .xml file. The .h3s file is not readable. The .xml file uses four main types of nested elements:

· < class>

· < association>

· <attribute>

· < type>

· < dataField>

Following is part of an xe "HL7 v3 specification:example file"HL7 v3 specification file (150003.h3s) xe "Example:HL7 v3 specification"example. See the {home directory}\workingspace\xe "examples directory"examples\150003 for the entire file.

<class name="ContactParty" isEnabled="true" title="MIF Clone Properties" referenceName="" sortKey="">

<packageLocation />

<attribute name="classCode" type="CS" defaultValue="CON" isEnabled="true" title="MIF Attribute Properties" mnemonic="CON" sortKey="1" minimumMultiplicity="1" isStrutural="true" parentXmlPath="Organization.contactParty00" maximumMultiplicity="1" isMandatory="true" conformance="R" dDefaultValueProperty="CON" dDomainNameOidProperty="RoleClassContact (2.16.840.1.113883.11.12205)" codingStrength="CNE" multiplicityIndex="0" minimumSupportedLength="0" domainName="RoleClassContact" />

<attribute name="id" type="II" isEnabled="true" title="MIF Attribute Properties" sortKey="2" minimumMultiplicity="0" parentXmlPath="Organization.contactParty00" maximumMultiplicity="-1" multiplicityIndex="0" minimumSupportedLength="0">

 <type name="II" isEnabled="true" parents="ANY">

<dataField name="nullFlavor" type="NullFlavor" max="-2" isValid="true" title="MIF Data Field Properties" isSimple="true" parentXmlPath="Organization.contactParty00.id00" min="-2" isOptional="true" isAttribute="true" />

<dataField name="assigningAuthorityName" type="st" max="-2" isValid="true" isEnabled="true" title="MIF Data Field Properties" isSimple="true" parentXmlPath="Organization.contactParty00.id00" min="-2" isOptional="true" isAttribute="true" />

... ...

 </type>

</attribute>

<attribute name="addr" type="AD" isEnabled="true" title="MIF Attribute Properties" sortKey="4" minimumMultiplicity="0" parentXmlPath="Organization.contactParty00" maximumMultiplicity="-1" multiplicityIndex="0" minimumSupportedLength="0">

 <type name="AD" isEnabled="true" parents="ANY">

<dataField name="direction" type="adxp.direction" max="-2" isValid="true" title="MIF Data Field Properties" min="-2" />

<dataField name="city" type="adxp.city" max="-2" isValid="true" isEnabled="true" title="MIF Data Field Properties" isOptionChosen="true" parentXmlPath="Organization.contactParty00.addr00" min="-2">

 <type name="adxp.city" isEnabled="true" parents="ADXP">

<dataField name="reference" type="TEL" max="0" title="MIF Data Field Properties" min="0" />

<dataField name="mediaType" type="cs" max="-2" isValid="true" isEnabled="true" title="MIF Data Field Properties" isSimple="true" parentXmlPath="Organization.contactParty00.addr00.city" min="-2" isAttribute="true" />

... ...

 </type>

</dataField>

<dataField name="streetNameBase" type="adxp.streetNameBase" max="-2" isValid="true" title="MIF Data Field Properties" min="-2" />

<dataField name="precinct" type="adxp.precinct" max="-2" isValid="true" title="MIF Data Field Properties" min="-2" />

<dataField name="unitType" type="adxp.unitType" max="-2" isValid="true" title="MIF Data Field Properties" min="-2" />

... ...

</attribute>

<association name="contactPerson" isEnabled="true" title="MIF Association Properties" sortKey="1" minimumMultiplicity="0" isOptionChosen="true" parentXmlPath="Organization.contactParty00" maximumMultiplicity="1" multiplicityIndex="0">

<class name="Person" isEnabled="true" title="MIF Clone Properties" referenceName="" sortKey="">

<packageLocation />

<attribute name="classCode" type="CS" isEnabled="true" title="MIF Attribute Properties" mnemonic="PSN" sortKey="1" minimumMultiplicity="1" isStrutural="true" parentXmlPath="Organization.contactParty00.contactPerson" maximumMultiplicity="1" isMandatory="true" conformance="R" dDefaultValueProperty="PSN" dDomainNameOidProperty="EntityClass (2.16.840.1.113883.11.10882)" codingStrength="CNE" multiplicityIndex="0" fixedValue="PSN" minimumSupportedLength="0" domainName="EntityClass" />

<attribute name="determinerCode" type="CS" isEnabled="true" title="MIF Attribute Properties" mnemonic="INSTANCE" sortKey="2" minimumMultiplicity="1" isStrutural="true" parentXmlPath="Organization.contactParty00.contactPerson" maximumMultiplicity="1" isMandatory="true" conformance="R" dDefaultValueProperty="INSTANCE" dDomainNameOidProperty="EntityDeterminer (2.16.840.1.113883.11.10878)" codingStrength="CNE" multiplicityIndex="0" fixedValue="INSTANCE" minimumSupportedLength="0" domainName="EntityDeterminer" />

<attribute name="name" type="EN" isEnabled="true" title="MIF Attribute Properties" sortKey="3" minimumMultiplicity="1" parentXmlPath="Organization.contactParty00.contactPerson" maximumMultiplicity="-1" conformance="R" multiplicityIndex="0" minimumSupportedLength="0">

<type name="EN" isEnabled="true" parents="ANY">

 <dataField name="suffix" type="en.suffix" max="-2" isValid="true" isEnabled="true" title="MIF Data Field Properties" isOptionChosen="true" parentXmlPath="Organization.contactParty00.contactPerson.name00" min="-2">

<type name="en.suffix" isEnabled="true" parents="ENXP">

 <dataField name="mediaType" type="cs" max="-2" isValid="true" isEnabled="true" title="MIF Data Field Properties" isSimple="true" parentXmlPath="Organization.contactParty00.contactPerson.name00.suffix" min="-2" isAttribute="true" />

 <dataField name="representation" type="BinaryDataEncoding" max="-2" isValid="true" isEnabled="true" title="MIF Data Field Properties" isSimple="true" parentXmlPath="Organization.contactParty00.contactPerson.name00.suffix" min="-2" isAttribute="true" />

 <dataField name="integrityCheckAlgorithm" type="IntegrityCheckAlgorithm" max="-2" isEnabled="true" title="MIF Data Field Properties" isProhibited="true" isSimple="true" min="-2" isAttribute="true" />

 <dataField name="language" type="cs" max="-2" isValid="true" isEnabled="true" title="MIF Data Field Properties" isSimple="true" parentXmlPath="Organization.contactParty00.contactPerson.name00.suffix" min="-2" isOptional="true" isAttribute="true" />

 <dataField name="thumbnail" type="ED" max="0" title="MIF Data Field Properties" min="0" />

 <dataField name="compression" type="CompressionAlgorithm" max="-2" isEnabled="true" title="MIF Data Field Properties" isProhibited="true" isSimple="true" min="-2" isAttribute="true" />

 <dataField name="nullFlavor" type="NullFlavor" max="-2" isValid="true" isEnabled="true" title="MIF Data Field Properties" isSimple="true" parentXmlPath="Organization.contactParty00.contactPerson.name00.suffix" min="-2" isOptional="true" isAttribute="true" />

 <dataField name="partType" type="EntityNamePartType" max="-2" isValid="true" isEnabled="true" title="MIF Data Field Properties" isSimple="true" parentXmlPath="Organization.contactParty00.contactPerson.name00.suffix" min="-2" isAttribute="true" />

 <dataField name="integrityCheck" type="bin" max="-2" isEnabled="true" title="MIF Data Field Properties" isProhibited="true" isSimple="true" min="-2" isAttribute="true" />

 <dataField name="reference" type="TEL" max="0" title="MIF Data Field Properties" min="0" />

 <dataField name="qualifier" type="set_EntityNamePartQualifier" max="-2" isValid="true" isEnabled="true" title="MIF Data Field Properties" isSimple="true" parentXmlPath="Organization.contactParty00.contactPerson.name00.suffix" min="-2" isOptional="true" isAttribute="true" />

 <dataField name="inlineText" max="1" isValid="true" isEnabled="true" title="MIF Data Field Properties" isOptionChosen="true" isSimple="true" parentXmlPath="Organization.contactParty00.contactPerson.name00.suffix" min="1" />

</type>

 </dataField>

 <dataField name="nullFlavor" type="NullFlavor" max="-2" isValid="true" isEnabled="true" title="MIF Data Field Properties" isSimple="true" parentXmlPath="Organization.contactParty00.contactPerson.name00" min="-2" isOptional="true" isAttribute="true" />

 <dataField name="inlineText" max="1" isValid="true" isEnabled="true" title="MIF Data Field Properties" isOptionChosen="true" isSimple="true" parentXmlPath="Organization.contactParty00.contactPerson.name00" min="1" />

 <dataField name="delimiter" type="en.delimiter" max="-2" isValid="true" title="MIF Data Field Properties" parentXmlPath="Organization.contactParty00.contactPerson.name00" min="-2" />

 <dataField name="validTime" type="IVL_TS" max="-2" isValid="true" title="MIF Data Field Properties" parentXmlPath="Organization.contactParty00.contactPerson.name00" min="0" />

</type>

</attribute>

</class>

</association>

... ...

</class>
HL7 v2 Specifications

The xe "HL7 v3 specification:format"HL7 v2 message specification is described in four kinds of resource files, i.e. Message Structure, DataTypeSpec, DefinitionTable, SegmentAttributeTable. caAdapter requires all four file collections to be able to parse HL7 v2 messages. Figure 11‑1 shows the directory structure where the resources files are stored.

[image: image137.jpg]
Figure 11‑1 Resource Directory Structure

Message Structure

The Message Structure directory contains the information of the HL7 v2 message. The directory is organized by a collection of DAT files with file names corresponding to message type of the HL7 v2 message. ‘ADT_A03’ is a message type and the ‘ADT_A03.DAT’ is the data file. This DAT file represents the order of segments and represents the required and optional segments.

 [image: image138.jpg]
Figure 11‑2 Contents of “RTB_Z78.DAT”message structure

DataTypeSpec

This directory contains DAT files with the file names corresponding to the data type. For example: AD is a datatype for representing the address object. The corresponding file in the directory has a physical file with the name “AD.DAT”. The content of “AD.DAT” is shown below in Figure 11‑3. The position, datatype (e.g. ST for String and ID for Identification), and description of each field are listed.

[image: image139.jpg]
Figure 11‑3 Contents of “AD.DAT”data type

Segment Attribute Table

The segment attribute table represents the structure of the Message Header (MSH) segment. It shows the fields, data types, positions, repeating fields, and index of each field for the MSH segment. Figure 11‑4 shows an example of a Segment Attribute Table.

[image: image140.jpg]
Figure 11‑4 Contents of “MSH.DAT”segment information

Definition Table
The definition table stores the HL7 v2 vocabulary information for each segment in the message. For example, in the 9901.DAT file, shown in Figure 11‑5, ‘ABS’ segment is represented as ‘Abstract’ and ‘’DB1’ as ‘Disability’.

[image: image141.jpg]
Figure 11‑5 Contents of “9901.DAT”segment information

SDTM Data Files

A Study Data Tabulation Module (SDTM) text file consists of the mapped data elements from the CSV file. The file has a .txt extension. This text file is created by the SDTM transformation service. For each mapped source field in a segment in the scs file, a record will be created keeping the parent-child relationship intact. This is accomplished by prefixing the path information to each row in the CSV file. The transformation service engine will fetch values for all the fields in the specified path.

For example, the converted CSV file is transformed by the transformation service as shown below.

“\SourceTree\INVESTEVN\TRIGGER_5\REACTION_51\INVESTIGATIVESUBJECT_511\SUPPLY_5112\AUTHOR_51123\ASGNDENTT090000_511231\ASSIGNEDPERSON_5112311^Doeighty,Conrard,D.”

The field name is ‘ASSIGNEDPERSON_5112311’ and the value is ‘Doeighty,Conrard,D.’ but the parent segment for this particular record are as listed below:
1. \SourceTree\INVESTEVN\TRIGGER_5\REACTION_51\INVESTIGATIVESUBJECT_511\SUPPLY_5112\AUTHOR_51123\ASGNDENTT090000_511231\ASSIGNEDPERSON_5112311^Doeighty,Conrard,D.

2. \SourceTree\INVESTEVN\TRIGGER_5\REACTION_51\INVESTIGATIVESUBJECT_511\SUPPLY_5112\AUTHOR_51123\ASGNDENTT090000_511231

3. \SourceTree\INVESTEVN\TRIGGER_5\REACTION_51\INVESTIGATIVESUBJECT_511\SUPPLY_5112\AUTHOR_51123\

4. \SourceTree\INVESTEVN\TRIGGER_5\REACTION_51\INVESTIGATIVESUBJECT_511\SUPPLY_5112\

5. \SourceTree\INVESTEVN\TRIGGER_5\REACTION_51\INVESTIGATIVESUBJECT_511\

6. \SourceTree\INVESTEVN\TRIGGER_5\REACTION_51\

7. \SourceTree\INVESTEVN\TRIGGER_5\

8. \SourceTree\INVESTEVN\

9. \SourceTree\

The transformation service checks for mapped fields in any of the parent segments. If a mapping segment exists, the corresponding value from the CSV file will be set in the same record in the resulting SDTM .txt file.
[image: image142.png]
Figure 11‑6 Contents of SDTM Text File
SDTM Meta Data Files

SDTM metadata file, also called Case Report Tabulation Data Definition Specification (define.xml), describes the data exchange structure for the different domains. Sample define.xml can be found at CDISC web site:http://www.cdisc.org/models/def/v1.0/index.html. The following is a sample section of the define.xml file downloaded form CDISC.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- *** -->

<!-- File: defineexample1.xml -->

<!-- Date: 28-01-2005 -->

<!-- Author: Clinical Data Interchange Standards Consortium (CDISC) -->

<!-- Description: This is an example define.xml document which … the Case -->

<!-- Report Tabulation Data Definition Specification Version 1.0.0 -->

<!-- *** -->

<ODM

 xmlns="http://www.cdisc.org/ns/odm/v1.2"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 xmlns:def="http://www.cdisc.org/ns/def/v1.0"

 xsi:schemaLocation="http://www.cdisc.org/ns/odm/v1.2 define1-0-0.xsd"

 FileOID="Study1234"

 ODMVersion="1.2"

 FileType="Snapshot"

 CreationDateTime="2004-07-28T12:34:13-06:00">

<Study OID="1234">

 <GlobalVariables>

 <StudyName>1234</StudyName>

 <StudyDescription>1234 Data Definition</StudyDescription>

 <ProtocolName>1234</ProtocolName>

 </GlobalVariables>

 <MetaDataVersion OID="CDISC.SDTM.3.1.0"
Function Specification

Function Specification Overview

The xe "Function:specification format"function specification is used as a guide for function objects to read the function specification and determine what objects to call to execute a function (for example, the concatenation function). The xe "Format:function specification"function specification also stores data points for rendering the function graphical representation within the mapping tool. It uses the following types of nested elements:

· <function>

· <group name>

· <function name>

· <inputs>

· <datapoint>

· <outputs>

Following is an xe "Example:function specification file"example of a xe "Function:specification, example file"function specification file (core.fls). See the {home directory}\map\functions directory for the entire file.

<?xml version="1.0"?>

<functions>

 <group name="constant" xmlPath="constant">

<function name="constant" xmlPath="constant.constant">

<outputs>

<datapoint pos="0" name="constant" datatype="string" xmlPath="constant.constant.outputs.0"/>

</outputs>

</function>

 <!--<function name="saveValue" xmlPath="e34f7420-09db-11da-8gd4-io90d451x7h5">

<inputs>

<datapoint pos="0" name="save" datatype="string" xmlPath="e35g7420-09db-11da-8ge5-io90d451x7k6"/>

</inputs>

 <outputs>

<datapoint pos="0" name="dummy" datatype="string" xmlPath="e37i7420-09db-11da-8gg9-io90d451x7m8"/>

</outputs>

 </function>

 <function name="readValue" xmlPath="e36h7420-09db-11da-8gf6-io90d451x7l7">

<outputs>

<datapoint pos="0" name="read" datatype="string" xmlPath="e37i7420-09db-11da-8gg7-io90d451x7m8"/>

</outputs>

</function> -->

 </group>

 <group name="date" xmlPath="date">

<function name="changeFormat" xmlPath="date.changeFormat">

<inputs>

<datapoint pos="0" name="fromFormat" datatype="string" xmlPath="date.changeFormat.inputs.0"/>

<datapoint pos="1" name="dateIn" datatype="string" xmlPath="date.changeFormat.inputs.1"/>

</inputs>

<outputs>

<datapoint pos="0" name="dateOut" datatype="string" xmlPath="date.changeFormat.outputs.0"/>

</outputs>

<implementation classname="gov.nih.nci.caadapter.common.function.DateFunction" method="changeFormat"/>

</function>

 <function name="countDays" xmlPath="date.countDays">

<inputs>

<datapoint pos="0" name="fromDate" datatype="string" xmlPath="date.countDays.inputs.0"/>

<datapoint pos="1" name="toDate" datatype="string" xmlPath="date.countDays.inputs.1"/>

</inputs>

<outputs>

<datapoint pos="0" name="dayNumber" datatype="int" xmlPath="date.countDays.outputs.0"/>

</outputs>

<implementation classname="gov.nih.nci.caadapter.common.function.DateFunction" method="countDays"/>

</function>

</group>

… …

</functions>
xe "Adding:functions"

xe "Adding:functions to function library"Adding Functions to the Function Library

The xe "Function:library"function library provides a list of system defined functions that facilitate the data transformation requirement. xe "Function:requirements"Functions are grouped by functional categories, e.g. math group, string group, etc. It is required that each group has a unique name across the whole function library, but the name of individual function is only required to be unique within its defined group.

The design of the function library encompasses some extensibility to support user-customized functions in the definition of the function library's xml schema. This version of caAdapter does not provide a GUI utility to allow registering custom function libraries to the Mapping Tool. However, advanced software engineers can update the function library definition file, named xe "core.fls file"core.fls, located in the {home directory}\etc directory, to register or replace customized function implementations. After registration, the configuration engineer needs to make sure the corresponding customized Java library is available on the classpath. This insures that the mapping tool can locate the needed Java implementation classes during the generation of HL7 v3 messages.

xe "Format:HL7 v3 message"HL7 v3 Message

The xe "HL7 v3 message:format"HL7 xe "Format:HL7 v3 message"v3 message is the end goal of using caAdapter. It is represented in xml. Following is an xe "Example:HL7 v3 message file"example xe "HL7 v3 message:Example file"HL7 v3 message file (ExampleOutput1.xml).

<?xml version="1.0" encoding="UTF-8" ?>

- <COCT_MT090102.AssignedPerson xmlns="urn:hl7-org:v3" classCode="ASSIGNED">

 <id root="2.16.840.1.113883.19.1" extension="12345" />

 <id root="2.16.840.1.113883.19.2" extension="23456" />

 <id root="2.16.840.1.113883.19.3" extension="34567" />

 <code code="NRS10" codeSystem="2.16.840.1.113883.19.1" />

- <addr use="WP">

 <streetAddressLine>123 Main St.Suite 500</streetAddressLine>

 <city>Rockville</city>

 <state>MD</state>

 <postalCode>20852</postalCode>

 </addr>

- <addr>

 <streetAddressLine>456 Washington BlvdSuite 1000</streetAddressLine>

 <city>Washington</city>

 <state>DC</state>

 <postalCode>20002</postalCode>

 </addr>

- <assignedPerson classCode="PSN" determinerCode="INSTANCE">

- <name use="L">

 <family>Shang</family>

 <given>Lee</given>

 </name>

 </assignedPerson>

- <representedOrganization classCode="ORG" determinerCode="INSTANCE">

 <id root="2.16.840.1.113883.19.4" extension="1111GHHMO" />

 <id root="2.16.840.1.113883.19.5" extension="2222" />

 <name>Good Health HMO</name>

 <name>Good Health Radiology</name>

 <name>GHHMOR</name>

- <addr use="WP">

 <streetAddressLine>456 Washington BlvdSuite 1000</streetAddressLine>

 <city>Washington</city>

 <state>DC</state>

 <postalCode>20002</postalCode>

 </addr>

- <addr>

 <streetAddressLine>567 Empire Ave.Suite 10000</streetAddressLine>

 <city>New York</city>

 <state>NY</state>

 <postalCode>10118</postalCode>

 </addr>

 </representedOrganization>

 </COCT_MT090102.AssignedPerson>
CSV to HL7 v3 Map Specification

A CSV to HL7 v3 xe "Map specification:format"map specification describes the relationship between components via links and/or views. It has the following main elementsxe "Format:map specification":

1. <components>

2. <links>

3. <source>

4. <target>

5. <linkpointer>
6. <views>

A xe "Component, defined"component is a reference to a resource that exists in the system prior to the mapping. A xe "Function:component, defined"function component is an algorithm between two (or more) pieces of data.

Following is a part of a xe "Map specification:example file"map specification file (150003.map) xe "Example:map specification file"example. See the {home directory}\workingspace\xe "examples directory"examples\150003 for the entire file.

<?xml version="1.0" encoding="UTF-8"?>

<mapping version="1.2">

 <components>

 <component kind="scs" location="150003.scs" type="source"/>

 <component kind="h3s" location="150003.h3s" type="target"/>

 </components>

 <links>

 <link>

 <source>

 <linkpointer kind="scs" xmlPath="ORGS.ORG_CODE"/>

 </source>

 <target>

 <linkpointer kind="h3s" xmlPath="Organization.contactParty00.contactPerson.name00.inlineText"/>

 </target>

 </link>

 <link>

 <source>

 <linkpointer kind="scs" xmlPath="ORGS.ORGID.Root"/>

 </source>

 <target>

 <linkpointer kind="h3s" xmlPath="Organization.contactParty00.id00.extension"/>

 </target>

 </link>

 <link>

 <source>

 <linkpointer kind="scs" xmlPath="ORGS.ORGID"/>

 </source>

 <target>

 <linkpointer kind="h3s" xmlPath="Organization.contactParty00"/>

 </target>

 </link>

 </links>

 <views>

 <view component-id="source.scs.0" height="0" width="0" x="0" y="0"/>

 <view component-id="target.h3s.0" height="0" width="0" x="0" y="0"/>

 </views>

</mapping>
Object to Database Map Specification

An object to database xe "Map specification:format"map specification describes the relationship between objects/attributes and database tables/columns via links. It has the following main elementsxe "Format:map specification":

· <components>

· <links>

A xe "Component, defined"component is a reference to an xmi file that exists in the system prior to the mapping. The location attribute of the component specifies the exact name and location of that xmi file.

A link describes a mapping for an object, an attribute or an association. A link element has a type and datatype attribute.

If the type value is “dependency “, the <source> sub-element describes an object to be mapped, and the <target> sub-element describes the target table that will be mapped to.

 <link type="dependency" parent="null">

 <source>Logical View.Logical Model.gov.nih.nci.cabio.domain.Gene</source>

 <target>Logical View.Data Model.GENE</target>

 </link>

If the type value is “attribute “, the <source> sub-element describes an attribute to be mapped, and the <target> sub-element describes the target table column that will be mapped to.

 <link type="attribute" datatype="String">

 <source>Logical View.Logical Model.gov.nih.nci.cabio.domain.Gene.locusLinkSummary</source>

 <target>Logical View.Data Model.GENE.LOCUS_LINK_SUMMARY</target>

 </link>
If type value is “association “, this section describes the one-to-one or one-to-many association, the <source> sub-element describes an association attribute to be mapped, and the <target> sub-element describes the target foreign key column that will be mapped to.
 <link type="association">

 <source>Logical View.Logical Model.gov.nih.nci.cabio.domain.Gene.chromosome</source>

 <target>Logical View.Data Model.GENE.CHROMOSOME_ID</target>

 </link>

If the type value is “manytomany “, the section describes the many-to-many association. The <source> sub-element describes an association attribute to be mapped, and the <target> sub-element describes the target foreign key column that will be mapped to.
 <link type="manytomany">

 <source>Logical View.Logical Model.gov.nih.nci.cabio.domain.Sequence.geneCollection</source>

 <target>Logical View.Data Model.GENE_SEQUENCE.GENE_ID</target>

 </link>

Following is a part of a xe "Map specification:example file"map specification file (example.map) xe "Example:map specification file"example. See the {home directory}\workingspace\xe "examples directory"examples\Object-2-DB-Example for the entire file.

<?xml version="1.0" encoding="UTF-8"?>

<mappings type="sdkintegration">

 <components>

 <component location="D:\projects\hl7sdk-new\workingspace\sample.xmi" />

 <component location="D:\projects\hl7sdk-new\workingspace\sample.xmi" />

 </components>

 <link type="dependency" parent="null">

 <source>Logical View.Logical Model.gov.nih.nci.cabio.domain.Gene</source>

 <target>Logical View.Data Model.GENE</target>

 </link>

 <link type="dependency" parent="null">

 <source>Logical View.Logical Model.gov.nih.nci.cabio.domain.Taxon</source>

 <target>Logical View.Data Model.TAXON</target>

 </link>

… …
 <link type="attribute" datatype="String">

 <source>Logical View.Logical Model.gov.nih.nci.cabio.domain.Gene.locusLinkSummary</source>

 <target>Logical View.Data Model.GENE.LOCUS_LINK_SUMMARY</target>

 </link>

 <link type="attribute" datatype="String">

 <source>Logical View.Logical Model.gov.nih.nci.cabio.domain.Gene.OMIMID</source>

 <target>Logical View.Data Model.GENE.OMIM_ID</target>

 </link>

……

 <link type="association">

 <source>Logical View.Logical Model.gov.nih.nci.cabio.domain.Gene.taxon</source>

 <target>Logical View.Data Model.GENE.TAXON_ID</target>

 </link>

 <link type="association">

 <source>Logical View.Logical Model.gov.nih.nci.cabio.domain.Gene.chromosome</source>

 <target>Logical View.Data Model.GENE.CHROMOSOME_ID</target>

 </link>

 <link type="manytomany">

 <source>Logical View.Logical Model.gov.nih.nci.cabio.domain.Sequence.geneCollection</source>

 <target>Logical View.Data Model.GENE_SEQUENCE.GENE_ID</target>

 </link>

 <link type="manytomany">

 <source>Logical View.Logical Model.gov.nih.nci.cabio.domain.Gene.libraryCollection</source>

 <target>Logical View.Data Model.LIBRARY_GENE.LIBRARY_ID</target>

 </link>

… …
</mappings>

This version of caAdapter, although still supports the map file, it no longer requires it. All mapping specifications are now stored in the xmi file as shown in Figure 11‑7.

[image: image143]
Figure 11‑7 Mapping Specifications in the xmi file

Appendix A caAdapter Example Data

Example data are included in the caAdapter distribution. You can use the example data to become acquainted with the mapping tool or APIs before using your own data. Example data are located at the {home directory}\workingspace\examples directoryexamples directory (for example, C:\caadapter\workingspace\examples). The example data directory structure is shown in Figure A-1.

[image: image144]
· Example data directory structure

The examples directory contains small (090102), medium (040002) and large (040001040011) sample HL7 v3 message files. The large HL7 v3 message example is an ICSR message. The other directories contain a subset of this data. For more information on mapping scenarios see the caAdapter Mapping Rules documentation.

The Object-2-DB-Example directory contains ‘sample.map’, ‘sample.xmi’, ‘sample_annotated.xmi’ files.

The ‘SDTM_Mapping Examples’ directory contains ‘define.xml’, ‘Demographics.CSV’, ‘Demographics.map’, ‘Demographics.scs ‘ and ‘SDTM_DM_Output.txt’ files.

The V2V3 Mapping Examples directory contains ‘ADT_A03_to_402003’, ‘HL7.Messages’, ‘version2.4’. The ‘version2.4’ contains ‘DataTypeSpec’, ‘DefinitionTable, ‘MessageStructure’ and ‘SegmentAttributeTable’.
Appendix B References

Articles

· Java Programming: http://java.sun.com/learning/new2java/index.html
· Extensible Markup Language: http://www.w3.org/TR/REC-xml/
· xml Metadata Interchange: http://www.omg.org/technology/documents/formal/xmi.htm
caBIG Material

· caBIG: http://cabig.nci.nih.gov/
· caBIG Compatibility Guidelines: http://cabig.nci.nih.gov/guidelines_documentation
caCORE Material

· NCI CBIIT: http://ncicb.nci.nih.gov
· caCORE: http://ncicb.nci.nih.gov/core
· caBIO: http://ncicb.nci.nih.gov/core/caBIO
· caDSR: http://ncicb.nci.nih.gov/core/caDSR
HL7 Concepts and Material

· HL7: http://www.hl7.org/

· HL7 Tutorial: http://trials.nci.nih.gov/projects/infrastructureProject/caAdapter/HL7_Tutorial

· caAdapter: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caadapter)
· HL7 Reference Information Model: https://www.hl7.org/library/data-model/RIM/C30202/rim.htm

· HL7 Vocabulary Domains: http://www.hl7.org/library/data-model/RIM/C30123/vocabulary.htm

· HL7 Version 3 Standard: http://www.hl7.org/v3ballot/html/welcome/environment/index.htm

· UCUM: http://aurora.regenstrief.org/UCUM/ucum.html
Software Products

· Java: http://java.sun.com
· Ant: http://ant.apache.org/
Study Data Tabulation Model (SDTM) Concepts and Material

· Java: http://www.cdisc.org/
Glossary

The following table contains a list of terms used in this document, with accompanying definitions.

	Term
	Definition

	CDMS
	Clinical Data Management System.xe "CDMS, operational scenario"

	CSV
	Comma Separated Value

	DMIM
	Domain Message Information Model. A subset of the RIM that includes RIM class clones, attributes, and associations that can be used to create messages for a particular domain (a particular area of interest in healthcare).xe "DMIM, defined"

	EA
	Enterprise Architect. UML Modeling Tool.

	HL7
	Health Level 7 (http://www.hl7.org/) is one of several American National Standards Institute (ANSI)-accredited Standards Developing Organizations (SDOs) operating in the healthcare arena.

	MIF
	Model Interchange Format. An xml representation of the information contained in an HL7 specification, and is the format that all HL7 v3 specification authoring and manipulation tools will be expected to use.

	MT
	Message Type. The specification of an individual message in a specific implementation technology.xe "MT, defined"

	OID
	HL7 v3 artifacts used to identify coding schemes and identifier namespaces.

	RIM
	Reference Information Model. The foundational Unified Modeling Language (UML) class diagram representing the universe of all healthcare data that may be exchanged between systems.xe "RIM:used in four pillars"

	RMIM
	Refined Message Information Model. A subset of a DMIM that is used to express the information content for an individual message or set of messages with annotations and refinements that are message specific.xe "RMIM:defined"

	SDK
	caCORE Software Development Kit or caCORE SDK, a data management framework designed for researchers who need to be able to navigate through a large number of data sources. caCORE SDK is NCI CBIIT's platform for data management and semantic integration, built using formal techniques from the software engineering and computer science communities.

	SDTM
	Study Data Tabulation Model. A set of standards developed by the Clinical Data Interchange Standards Consortium (CDISC).

	UCUM
	Unified Code for Units of Measurexe "UCUM, units of measure"

	UML
	Unified Modeling Language

	XML
	Extensible Markup Language

Index
.
.fls extension, 129

.h3s extension, 129

.map extension, 129

.scs extension, 129

.xml extension, 129

A
Abstract data types

updating, 38

Add Clone option, 33

Add Function option, 52

Add Multiple Clone option, 34

Adding

clones to HL7 v3 Specification, 33

fields in CSV, 25

function to map specification, 52

functions, 113, 144

functions to function library, 113, 144

input to a function, 52

multiple attributes on HL7 v3 specification, 35

multiple clones on HL7 v3 specification, 34

segments in CSV, 25

Adverse event

reporting, 14

ant compile, 11

ant launchui, 11

ANY label, 38

API, caAdapter, 116

Architecture

caAdapter core engine, 6

mapping tool, 7

Artifacts, HL7, 9

Attribute, HL7 v3 specification, 29

B
Binary distribution, starting, 11

build directory, 115

Building

object graph, 14

Business rules

CSV specification, 22

HL7 v3 message, 55

HL7 v3 specification, 27

map specification, 43

C
caAdapter

overview, 5

caAdapter

mapping tool architecture, 7

caAdapter

APIs, 14

caadapter.log file, 119

caadapter_ui.jar, 11

caBIG solution, 5

caCORE, caAdapter integrates, 5

Cardinality, 34

CDMS, operational scenario, 15

changeFormat date function, 53

Changing logging properties, 119

Choice

boxes, 38

selected, 38

unselected, 38

Clinical data, 5

Clone

adding, 33

Attribute Object Properties panel, 49

HL7 v3 specification, 29

Clone List dialog box, 33, 39

Close all files, 19

Close file, 19

codeSystem data type, 33

Component, defined, 145, 147

Components of caAdapter, 5

Constant function, 53

Converting data file into HL7 v3 message, 57, 60

Core engine architecture, 6

core.fls file, 113, 144

Creating

CSV Specification, 23

HL7 v3 message, 57, 60

HL7 v3 Specification, 30

map specification, 45

mapping link, 45

CSV data file format, 130

CSV Field Properties, 47

CSV specification

business rules, 22

file example, 131

format, 130

tab overview, 23

updating, 24

D
Data exchange specifications, 8

Data type

element, 29

field, 38

specification, 8

Date function, changeFormat, 53

Default values

defining, 31

Defining

default data, 31

mappings, 17

object identifiers, 32

units of measure, 31

Delete button, 26

Deleting

fields in CSV, 26

map lines, 47

segments in CSV, 25

DMIM, defined, 9

docs directory, 115

Dragging-and-dropping elements in CSV, 26

E
Edit Constant option, 53

Editing

constant function, 53

field name, 25

fields in CSV, 26

segment name, 25

segments in CSV, 25

Element

types of HL7 v3 specification, 29

ERROR message, 22

etc directory, 116

EVS, validation, 14

Example

CSV specification file, 131

data, 115, 116

function specification file, 103, 111, 142

HL7 v3 message file, 144

HL7 v3 specification, 132

map specification file, 146, 148

OIDs, 32

examples directory, 115, 116, 133, 146, 148

Excel spreadsheet, 55

Existing CSV specification, 24

Exit caAdapter, 19

Extensions, file descriptions, 129

F
FATAL message, 22

FDA, operational scenario, 15

Field properties, 25

File

New CSV Specification, 23

New HL7 v3 Message, 57, 60

New HL7 v3 Specification, 30

New Map Specification, 45

Open HL7 v3 Specification, 31

Open CSV Specification, 24

Open Map Specification, 45

Save, 27, 42, 54, 59, 61

Save As, 27, 42, 54, 59, 61

Validate, 26, 42, 54

File extensions, 129

File options, 18

File types, 101, 129

Format

CSV data file, 130

CSV specification, 130

function specification, 102, 142

HL7 v3 message, 129, 144

map specification, 145, 147

of files, 129

Four pillars of semantic interoperability, 8

Function

component, defined, 145

group properties panel, 50

library, 113, 144

panel, defined, 51

properties panel, 50, 51

requirements, 113, 144

specification format, 102, 110, 142

specification, example file, 103, 111, 142

G
Generating

CSV Report, 27

CSV specification, 17

HL7 specification, 17

HL7 v3 messages, 57, 60

Map Report, 55

Goal of HL7, 8

gov.nih.nci.hl7.map package, 117

H
Help option, 20

HL7

artifacts, 9

assigned OIDs, 32

choice boxes, 38, 39, 41

key goal, 8

overview, 7

HL7 v2 to HL7 v3 Mapping, 65

HL7 v3 message

business rules, 55

creating, 57, 60

defined, 55

dialog box, 57, 60

Example file, 144

format, 144

overview, 56, 60

tab features, 58

HL7 v3 specification

attribute properties panel, 49

data type field properties panel, 49

dialog box, 30

element options, 30

example file, 132

format, 137

tab overview, 28

validating, 42

I
ICSR

operational scenario, 15

INFO message, 22

inlineText data type field, 31

J
JdomMessageTypeLoader, 116

L
lib directory, 115, 116

Link

defined, 43

properties panel, 48

Log files, 119

logging.properties file, 119

M
Mandatory

values, 32

Map specification

business rules, 43

creating, 45

example file, 146, 148

format, 145, 147

internal reference, 130

opening, 45

status, 55

tab overview, 44

updating, 45

validating, 54

MapGenerateResult class, 117

Mapping

allowed symbol, 46

functions, 7

line, 46

Mapping tool

architecture, 7

basic steps, 17

defined, 5

interface, 18

Menu bar, 18

Message builder, 6

Message Level, 21

Message parser, 6

Message Service Integration, defined, 6

Message types, supported, 31

Messages, types of errors, 21

Meta Data Loader, 6, 116

MIF

defined, 9

file, 116

format, 116

HL7 file, 15

Move Down button, 24

Move Up button, 24

Moving a segment in CSV, 26

MT, defined, 9

Multiples in HL7 v3 specification, 34

N
NCI CBIIT, 5

training resources, 9

New CSV specification dialog, 23

New file, 19

Next button, 59, 61

O
OID

defining, 32

registry page, 32

Open CSV specification dialog, 24

Open Data File dialog box, 57, 61

Open HL7 v3 Specification File dialog box, 31

Open Map Specification dialog box, 57, 61

Open Source File dialog box, 45

Open Target File dialog box, 45

Opening
CSV specification, 24

file, 19

HL7 v3 specification, 31

map specification, 45

new file, 20

Optional associations, 33

P
Parsing

message, 14

Previous button, 59, 61

Printing, validation messages, 21

Properties

panel, 47

Q
QTY label, 38

R
Regenerate button, 59, 61

Registering custom function libraries, 113

Remove Clone option, 34

Remove Multiple Attribute option, 35, 36

Remove Multiple Clone option, 35

Removing, multiple attributes from HL7 v3 specification, 35, 36

Removing, multiple clones from HL7 v3 specification, 35

Report
CSV example, 27

generate map report, 55

generate report, 27

Map specification, 55

option, 20

Reset button, 26

Resizing panels, 18

RIM

defined, 9

used in four pillars, 8

RMIM

defined, 9

S
Save as file, 19

Save file, 19

Saving

CSV Specification, 27

HL7 v3 Message, 59, 61

HL7 v3 Specification, 42

map specification, 54

validation messages, 21

schema directory, 115

Scroll bars, 18

SDTM

Overview, 9

Segment

options, 25

properties, 24

Select Choice option, 39

Selected Choice for label, 39

Semantic interoperability, 8

SimpleDateFormat class, 53

Source distribution, starting, 11

Source specification, 22

Source specification, defined, 7

Starting, mapping tool, 11

T
Tab

CSV specification, 23

HL7 v3 message, 56, 60

HL7 v3 specification, 28

map specification, 44

open, 18

types of, 20

Target specification

types, 27

Target specification, defined, 7

Tool bar, 18, 20

Training, online tutorials, 9

Transformation Service, 117

Transformation Service, defined, 7

TransformationService class, 117

Transforming, into RIM object graph, 17

U
UCUM, units of measure, 31

Units of measure properties, 31

Updating

abstract data types, 38

CSV specification, 24

map specification, 45

User interface, defined, 7

User-defined default value, 31, 33

Using

date function, 53

Using functions in map specifications, 51

V
Validating

CSV, 26

CSV data against specialization, 27

CSV specification, 26

defined, 7

file option, 19

HL7 structural attributes, 118

HL7 v3 specification, 42

map specification, 54

purpose, 21

vocabulary using EVS, 14

Validation Messages dialog box, 54

Validation Messages panel, 21, 42

Validation services, defined, 6

Vocabulary domain, 8

Vocabulary validation, 118

W
WARNING message, 22

Windows distribution, starting, 11

Windows layout, mapping tool, 18

workingspace directory, 115, 116

Sn.scs

***.h3s

***.scs

***.map

transformationService(mappingName, csvString)

… …

� DATE \@ "MMMM d, yyyy" �November 7, 2007�

Mapping Scenario n

Sn.map

Sn.h3s

Mapping Scenario1

S1.h3s

S1.scs

S1.map

This is a U.S. Government Work

Application

Web Service

Interface

Web User Interface

Center for Biomedical Informatics and Information Technology

� EMBED Word.Document.8 \s ���

�

�

caAdapter 4.0

User’s Guide

v

[image: image161.png][image: image162.png][image: image163.jpg][image: image164.jpg][image: image165.jpg][image: image166.png][image: image167.png][image: image168.png][image: image169.png][image: image170.png][image: image171.png][image: image172.png][image: image173.jpg][image: image174.png]_1186325495.doc
[image: image1.png]

