[image: image6.png][image: image7.png]Component Test Plan Document- caEHR

High Impact – High Value – Business Results

[image: image8.jpg]

Author
:
Brian Bell

Ekagra Software Technologies, Ltd
Team
:
caEHR QA

Subcontract :
29XS223STO1

Document Change History
	Version Number
	Date
	Contributor
	Description

	V0.1
	3/25/2010
	Brian Bell
	Initial outline

	V0.2
	3/25/2010
	Brian Bell
	Added Referral component

	V0.3
	4/07/2010
	Kevin Gann
	Added Referral test cases

	V0.4
	4/09/2010
	Brian Bell
	Input from Amrut and finalize for I1S2

	V0.5
	4/12/2010
	Brian Bell
	Separate docs for Test Cases

	V0.6
	4/19/2010
	Brian Bell
	Updates from review session

	V0.7
	4/19/2010
	Brian Bell
	Updates for the end of R1-I3S2

	V0.8
	6/29/2010
	Brian Bell
	Updates from SAIC-F review

	V0.9
	8/10/2010
	Brian Bell
	Added Operations & updated HP QC

Table of Contents
21
Introduction

1.1
Component Testing Approach
2
1.2
Relationship to Other Documents/Plans
2
1.3
Scope
2
1.3.1
In Scope
2
1.3.2
Out of Scope
3
1.4
Roles and Responsibilities
3
1.4.1
Development DSL/Stream
3
1.4.2
QA DSL/Stream
3
1.4.3
Architecture DSL/Stream
3
1.4.4
Requirements DSL/Stream
3
1.4.5
Continuous Delivery Operations (CDO) Stream
3
1.5
Assumptions
4
1.6
Constraints
4
2
Component to be Tested
4
2.1
Component Operations
5
2.1.1
Referral Component Operations
5
2.2
Architecture Artifacts for Test Case Preparation
5
2.2.1
Review the PIM
5
2.2.2
Review Design Model
5
2.2.3
Check ISO 21090 HealthCare Datatypes
6
2.2.4
Check the Terminology Worksheet for Data Values
6
2.2.5
Web Services Definition Language (WSDL) File
6
2.3
Test Case Creation Process
6
2.3.1
Spreadsheets Used to Create Test Case Scenarios
6
2.3.2
XML Test Script Creation
8
3
ISO 21090 Datatype
9
4
Automated Test Tools
9
4.1
Automated Testing
9
4.2
Requirements Traceability
10
4.3
Metrics and Defect Tracking
10
Appendix A – Example HP QC Component Test Report
11

1 Introduction

This Component Test document describes the methods, tools and components component-level Quality Assurance aspects of the caEHR project.

1.1 Component Testing Approach
Component Testing refers to the functional testing of each webservice independently to assure that it meets the requirements, adheres to the design specification and provides the correct expected results when exercised using set of test cases that test all of the requirements.

caEHR uses a Continuous Integration, or Continuous Delivery, approach to development and testing. Test automation will be used to the greatest extent possible. The goal is to automate all test cases within an iteration so that the subsequent iteration will have a 100% automated regression test suite. Test cases will be clearly documented so that they can be executed either manually or automatically.
1.2 Relationship to Other Documents/Plans
Component testing is the second in the series of: unit, component, system, regression, integration, performance and deployment testing required for verification of the caEHR system.

The caEHR Master QA Plan describes testing terminology definitions and overall scope and approach to Quality Assurance on the project.

Directly related to this document:

· Unit tests are fast running tests that typically test individual classes that don’t have heavy external dependencies like databases. Unit tests are exclusively created and executed by the Development team.

· Component tests are focused on web services, generally verify more than one class and, typically, rely on external dependencies such as a database. Component Testing is performed by the QA team.

1.3 Scope
1.3.1 In Scope

The Component Test scope includes the following:
· Testing of functional requirements on a component by component basis

· Limited testing of non-functional requirements (performance, scalability, security etc.), where applicable at the component level.

1.3.2 Out of Scope

The following are considered out of scope for caEHR Component Testing:

· Complete testing of all non-functional requirements (performance, scalability, security etc.)
· End-to-end testing and testing of interfaces of all systems that interact with the caEHR.

1.4 Roles and Responsibilities
The following teams have roles associated with component testing:

1.4.1 Development DSL/Stream
Responsible for:

· Develop the system/application

· Conduct Unit, system, regression and integration testing

1.4.2 QA DSL/Stream

Responsible for:

· Develop the Component Test Plan

· Develop test cases
· Conduct Component, system, regression, performance, deployment testing
1.4.3 Architecture DSL/Stream

Responsible for:

· SAD

· CFSS, PIM

· Non-functional requirements
1.4.4 Requirements DSL/Stream

Responsible for:

· Develop Use cases and requirements in collaboration with the Adopters. This forms the basis for test case development.
1.4.5 Continuous Delivery Operations (CDO) Stream

Responsible for:

· Support of the Continuous Delivery environment

1.5 Assumptions
· Requirements baseline has been established for a given cycle (sprint/iteration/release).
· Architecture baseline has been established for a given cycle (sprint/iteration/release).
· For software to pass Test Readiness Review (TRR) milestone, the Developer team has completed unit, system and integration testing and met the entire baseline Requirements for that cycle.
· Test scripts are developed, reviewed and approved.
1.6 Constraints
· QA team must work from a baseline set of artifacts.
· Test scripts must be approved by Test Lead prior test execution
2 Component to be Tested

Operations as defined in the Referral Consult Service Platform Independent Model and Service Specification (PIM document) Version 0.0.5, June 22, 2010.

For each operation:

· Set the pre-conditions of the object definitions

· Execute the operation

· Verify the post-conditions of the objects.
Component tests will be divided into the following categories:

· Valid Value tests

· Invalid Value tests

· Cardinality tests

· Does Not Exist tests

· Null Value tests

· Multiple Value tests

Not all of these test categories are valid for all XML elements/attributes.

A test case template is located in a separate document “Component_Test_Case_Template- caEHR.doc” in the subversion repository:

https://gforge.nci.nih.gov/svnroot/ent-services/trunk/documents/caEHR/QA/
The test case template will be used to create test cases for each of the components.

Interim Test Tracking Capability

As noted in Section 4, HP Quality Center is used for test execution. In the interim (from April through July 2010), until HP Quality Center was fully installed, a test execution spreadsheet was maintained to track tests executed, who completed, and when tests are performed. An example of the I3S2 test cases spreadsheet is located at:

http://spreadsheets.google.com/ccc?key=0AskpIrrhG15KdFlmNmJlUlpFSzFBYU9OTUt3UVJRZ2c&hl=en

While this spreadsheet is in use snapshots will be posted in the Subversion repository at the end of each sprint.

2.1 Component Operations

2.1.1 Referral Component Operations

· createReferralOrder
· reviseReferralOrder

· withdrawReferralOrder

· queryReferralResult
· queryReferralOrder

· queryReferralOrderStatus
· acceptReferralOrder
· rejectReferralOrder
· queryClinicalDocuments
2.2 Architecture Artifacts for Test Case Preparation

The following summary steps are recommended for creating test cases and their associated XML payloads:

· Review the Platform Independent Model and Service Specification (PIM) document
· Review the design model

· Check data type details in the ISO 21090 HealthCare Datatypes Standard

· Check the Terminology Worksheet for data values

2.2.1 Review the PIM

The PIM is delivered by the Architecture Team and is located at:

 http://gforge.nci.nih.gov/svnroot/ent-services/tags/caEHR/Iteration2/Sprint2/Architect/specifications/

2.2.2 Review Design Model

Enterprise Architect is the caEHR standard modeling tool, however, to enable teams downstream from the Architecture team to interpret the model with less architectural expertise a series of informational artifacts are produced by the Architecture team in each iteration.

The RMIM (Refined Message Information Model) is the normative representation (i.e. it is the definitive specification model). The RMIM is created in Visio with a specific HL7 Visio plug-in. For caEHR teams downstream from the architecture team the RMIM generated documents will be used to interpret the specification. Specifically these documents are, in order of importance:

· Visio JPEGs

· Terminology Worksheet (Excel)

· ExcelFiles

· TableViews (html)

· BusinessHTML

The JPEG images are located at:

 http://gforge.nci.nih.gov/svnroot/ent-services/tags/caEHR/Iteration2/Sprint2/Architect/models/Informational/Models/

2.2.3 Check ISO 21090 HealthCare Datatypes

See the ISO standard document for understanding the data types and enumeration (list of values) for common data elements. The ISO standards document and other NCI information on ISO 21090 is located here: http://docs.google.com/fileview?id=0B4kfacwnGiBlZmNhYjc1ZTAtMTc1NS00OWNmLThmNTgtMmJiNzdiODM1NTIw&hl=en
2.2.4 Check the Terminology Worksheet for Data Values

The Terminology Worksheet lists each of the Concept Domains and Value Sets used in the Information Models and Datatypes. It includes formal and business names, descriptions, rationale and usage notes. The worksheet helps reviewers quickly review, understand and navigate the vocabulary artifacts used by the in-scope domain areas. It provides high-level information for mapping and, also identifies relationships between vocabulary artifacts. The Terminology Worksheet is located here:

http://gforge.nci.nih.gov/svnroot/ent-services/tags/caEHR/Iteration2/Sprint2/Architect/specifications/
2.2.5 Web Services Definition Language (WSDL) File

For each service the Architecture Team will deliver a WSDL file from which test case XML can be derived. For example the R1-I2S2 WSDL file is located here:

https://gforge.nci.nih.gov/svnroot/ent-services/tags/caEHR/Iteration2/Sprint2/Architect/models/Informational/Schemas/

2.3 Test Case Creation Process

2.3.1 Spreadsheets Used to Create Test Case Scenarios

Based on the architecture artifacts described in the previous section component test cases will be developed for each operation. Using the “ExcelFiles” artifact (see sub-section 2.2.2) QA test engineers will create a test case scenario spreadsheet to outline the test cases required for an operation. An example of a test case scenario spreadsheet appears below:

[image: image1.jpg]
For each data attribute the following tests are identified, as applicable to the type of data:

· Attribute has a valid value

· Attribute has an invalid value

· Attribute does not exist

· Attribute has a null value (includes nullFlavor)
· Multiple values tests

· The maximum number of repeated “enum” entries is tested

· Cardinality tests
· The maximum number of attribute entries is tested

To aid in the creation of test cases exercising a variety of data values the following spreadsheet can be created based on searching the Architecture artifacts:

[image: image2.jpg]
This spreadsheet lists the values for each attribute, or identifies the Terminology Worksheet tab to be consulted to find the valid values.

Once test case scenarios are created, XML test scripts are developed and executed in SOAPUI. Examples of test case scenarios are located at:

http://spreadsheets.google.com/ccc?key=0AskpIrrhG15KdFlmNmJlUlpFSzFBYU9OTUt3UVJRZ2c&hl=en

2.3.2 XML Test Script Creation

Test scripts consisting of XML message payloads are developed based on the test scenarios as follows:

· In SOAP UI create a new project and associate the build WSDL with the project. Save it as a local project on your personal computer.

· In the “Test Properties” section of SOAP UI set the project to be a Composite Project (“true”). This saves each test case as a separate file.

· In the Project create a new “TestSuite”. Generally the team sets up one test suite per tester. For example, separate team members may test the Patient, Provider, Referral Order, and Treatment Plan parts of the createReferral service. Separate test suites would be created for each tester’s suite of tests.

· Under the TestSuite create a “TestCase” for each test to be performed. Name the TestCase by the Test Case ID (e.g. EHR-PAT-001).

· Double click the test case entry and, under the “Test Steps” tab, click the “Create a new Test Request TestStep” button. Name the test step by the Test Title given in the Test Scenarios spreadsheet.

· Copy a minimum XML message into the test step and tailor it as required to meet the test case requirements.

· Once all of the test cases are successfully created on the local computer, copy the test case files to the appropriate folder in the SVN directory and commit to the SVN repository. This will allow other members of the team to access each tester’s TestSuite.

The image below shows an example of test case EHR-RO-001 in the ReferralOrder test suite:

[image: image3.jpg]
3 ISO 21090 Datatype

This project has determined that the ISO 21090 NCI localization to be used is leveraged from previous NCI projects, which have a high level of testing and are now in production.
4 Automated Test Tools

In this section we provide an overview of the key tools required for Component Testing.

4.1 Automated Testing
· Developer unit tests will be created in jUnit 4.8.

· HP Quality Center will be used to plan and execute tests and initial recording of defects.

· SoapUI will be used as an interim test submission tool until HP Quality Center is fully configured for test execution.

4.2 Requirements Traceability
· Requirements traceability will be used throughout the analysis-design-development-testing process. QA plans to use a tool like IBM Rational DOORS to track unique identification of requirements from the analysis team through to QA verification of each requirement in the completed component.

· The development team must show that all of the requirements are captured in the PIM.

· QA must show that all requirements in the PIM have been tested.

4.3 Metrics and Defect Tracking
· JIRA will be the central caEHR location for all defects. JIRA Studio is the hosted software development suite used by caEHR to support the Agile development process.

· HP Quality Center (QC) will be used for test case management, which includes a defect tracking tool as well. See the example screenshot below. Defects will be entered by QA into the QC defect tracker, and a synchronizer called JIRA Bridge will be used to create corresponding JIRA issues that are synchronized both ways as updates are made.

· Monitoring Continuous Integration environment code quality: The caEHR Continuous Integration environment will use Sonar, an aggregate code analysis tool, to provide dashboard reporting on source code quality. Sonar reporting for the caEHR project can be found at http://ci.caehr.net:48080/sonar/
Example of HP QC Test Tracking

[image: image4.png]
Appendix A – Example HP QC Component Test Report

[image: image5.png]
Updated � DATE \@ "MMMM d, yyyy" �August 19, 2010�

Component Test Plan (Referrals)

caEHR

7

_1135871162.bin

