Conceptual Functional

Service Specification

Orders Request Management

Version 0.0.1

August 31, 2009

	Architecture Inception Team
	caEHR

	Editor
	John Koisch, Guidewire Architecture

	Authors
	John Koisch

Paul Boyes

	Document Version
	Author
	Changes

	Initial
	JKoisch
	

	
	
	

Table of Contents

1 Executive Summary:
4
1.1 Service Description and Purpose
4
1.2 Scope
4
1.3 The reason why the service is necessary
4
2 Business Storyboards
4
3 Structure of the Service
5
3.1 Organization
6
3.2 Assumptions and Dependencies
6
3.3 Implementation Considerations
7
4 Detailed Functional Model for each Operation
8
4.1 Create Order
8
4.2 Revise Order
8
4.3 Replace Order
9
4.4 Update Order Status
9
4.5 Query Order
10
4.6 Create or Update Fulfillment Status
11
5 Profiles
12
5.1 Introduction
12
5.2 Information Profiles
13
5.3 Functional Profiles
13
5.3.1 Order Management Functional Profile
13
5.3.2 Fulfillment Status Management Functional Profile
13
5.3.3 The Fulfillment Pattern
13
6 System Interaction Details
14
7 Recommendations for Conformance and Compliance
15
7.1 Conformance Assertions
15
7.2 Recommendations for NCI Core Specification
16
8 Appendix A - Relevant Standards
17
9 Appendix B - Glossary
18
10 Appendix C - Conceptual Functional Models and Service Specification
19
10.1 Introduction
19
10.1.1 Service Definition Principles
19
10.1.2 Source Documents
21
10.1.3 Stakeholders
21
11 Appendix
22
11.1 Conformance Assertions
22
11.1.1 Enterprise
22
11.1.2 Informational
22
11.1.3 Computational
22
11.1.4 Engineering (Optional)
22

1 Executive Summary:

1.1 Service Description and Purpose

The Orders Request Management (ORM) Service provides function to manage requests for clinical services and access to the results of their fulfillment. It offers a clear distinction in capability from both Order Fulfillment (a service in its own right) and the actual capability services that support clinical orders (including but not necessarily limited to Labs, Images, and Consults). It is a key structural component in the common pattern of ordering and fulfillment, establishing a boundary for handling the obligations of order management within the context. In summary, it provides a consistent means of integrating between the components of a dispersed healthcare team working with different infrastructures, systems, standards, and business processes.

1.2 Scope

The ORM Service describes a number of discrete steps in communicating between members of a healthcare team that support request and fulfillment. Since these steps are common regardless of clinical service offered, they form a consistent pattern of behavior that may be applied in many situations. In so doing, the ORM Service distinguishes between the order for a lab test, the promise of fulfillment, and the lab test itself
, which
 may
 have a different lifecycle or which may serve a broader audience. More specifically, ORM is explicitly built to provide services for the initiators of the request and fulfillment pattern.
1.3 The reason why the service is necessary

The ORM Service provides a key integrating component between systems involved in the distributed practice of patient-centric clinical care. It allows these various systems tied to clinical services to be decoupled from the requests for fulfillment that come from healthcare practitioners. Organizations engaged across organizational boundaries that need to share the business processes around request and fulfillment can benefit from this boundary, as well as more centrally controlled systems within a single jurisdiction. For example, the ORM Service enables a lab to operate completely independently from the Order Entry system, and for the clinical process to be managed completely separately from the financial management process that may happen in parallel. Additionally, this separation can happen at an institution or across several.

[image: image1.png]. Order

Management Request DB

=
- - Fulfillment Services

Figure 1: Order Request Management Separates concerns between systems
In practice, this separation of concerns provides a clear boundary for ORM’s own capabilities. An order is typically accompanied by a set of expectations around the fulfillment of that order, the least of which may be that the requester can expect the order management system to reliably capture the status of the eventual fulfillment. The ORM Service provides a specification of how this order request can be handled and several different configurations that support different means of systems communicating regarding the status of that request.
Note here that this service establishes expectations around the management of the order requests, and hides the details of the fulfillments of that request. Thus, a single order may generate multiple requests
 for promises of fulfillment, or one, or the ORM Service implementation may return a business error (“Request cannot be handled”).

By the same token, fulfillment is managed separately as detailed in the Fulfillment Management (FM) Service (TODO Link). A complicated use case serves to demonstrate the flexibility of separating concerns in this way. A promise of fulfillment may be generated without an initiating order. These services support those sorts of behavioral patterns, but also allow policies to be enforced
such that the promise of fulfillment requires an explicit order to be generated. In other words, these services support various policies and means of implementation without unduly binding them all together.
2 Business Storyboards

STAKEHOLDER RESPONSIBILITIES

	Stakeholder
	Responsibility

	Executive/Business Representative
	· Inform

· Review

	Subject Matter Expert
	· Inform

· Review

	Analyst
	· Write

· Edit

· Review

	Architect
	· Review

	Project Team Member
	· Review

Potential Source:

· Use Case Model

· Storyboard Document

· Include a prioritized list of storyboards illustrating the service and how it will be used

· These should be based upon genuine business need from a stakeholder or reference source (e.g., not “made up”).

· These should be sufficient to illustrate the main uses of the Service, but not exhaustive.

· Keep the storyboard as informative and unchanged from the business context as possible. Do not imply process change or introduce solution.

· Operations in section 5 should be tied directly to these storyboards.

· Tie them to conformance profiles where possible

· Elaborate each storyboard with an activity diagram.

3 Structure of the Service

3.1 Organization

The service is organized around the separation of custody that takes place during an order fulfillment process. First and foremost, there is the management and ownership of the order for fulfillment
itself. This involves the ability to submit and manage orders, change their state, and query for results.

Separately, promises to fulfill these orders must be made and managed. The custodianship of these promises often resides with other systems or organizations, such that the fulfillment of an order is frequently not managed by the same system that is managing the order.

The Orders Request Service comprises several parts:

· A Functional Profile for making Order Requests and querying regarding their statuses. This Functional Profile is intended to be implemented as a Process Service. For more information on Process Services, see [TODO]. This details the operations by which orders are submitted and subsequently managed. In short, it provides a simple boundary between the arbitrary event of a clinical order being initiated and its subsequent steps towards ultimate fulfillment.

· A profile for managing Order Requests with more fine grained control.

· A profile for updating the Order status

· A profile for notifying interested parties of an Order status

These components serve to clearly delineate responsibility in a deployed environment, yet allow a number of different deployments to be managed.

The ORM Service exposes the following state model for order requests. Note that the state of these order requests is only partially dependent on the conceptual operations this service exposes, and that there is therefore a dependency on other processes and communications.
[image: image2.jpg]‘stm Request and Fulfll ment

Tinios Report

® Crsted

stant

Pending =

provisional relezse

approved 35 eliable

eror discovered

approved a5 reliable

changes

L

ithdravn

3.2 Assumptions and Dependencies

The ORM is a part of a Fulfillment Pattern that describes the contracts that must be implemented by all parties in order to manage the complex business process that underlie Orders and Observations. The Fulfillment Pattern is a choreographed behavioral specification that utilizes these profiles to provide support for key use cases in the Orders and Observations Process provisioned across multiple interfaces. The Fulfillment Pattern has the following components:

· The ORM Service, with its Order Request State Machine

· The Fulfillment Management (FM) Service

· The Fulfillment Behavioral Model, including Fulfillment Pattern’s State Machine
ORM, while deployed separately from these other components, fits within the Fulfillment Behavioral Model. In addition, it likely requires the following components in a deployed architecture:

· A unique identification scheme for requestors and trackers. For example, the requestor of an order will require identification for security and auditing concerns, and the order tracker will need a unique address for communication, such as email, application proxy, etc.

· A shared identification scheme for patients about whom orders are written. This shared scheme should be manifest to all clinical service components as well (labs, images, consults, etc.).

· [Optional] A Provider Service Registry would provide authoritative listings of potential types of orders

3.3 Implementation Considerations
· Relevant and representative examples of deployment scenarios

· Consider representation formalism and the intended audience, not necessarily rigorously expressing the content in UML

· This specification in the real world (e.g., relationships to existing infrastructure, other deployed services, dependencies, etc.)

· Consider the ways that information bindings will be realized through the operations. If necessary, outline a strategy for this binding.

The ORM Service

3.3.1.1 Relationship to HL7 V3

The Order Cancel Filler Request is an operation that should be communicated out of band, as it is not functionally different than Cancel Order. [TODO]

4 Detailed Functional Model for each Operation

4.1 Create Order

	Description [M]
	Allows the client to create an order for a service

	Pre-Conditions [M]
	Commissioning Party has sufficient need and information to request an order be fulfilled.

	Inputs [M]
	Order Request

	Outputs [M]
	Order Confirmation

	Post-Conditions [O]
	The Order Request is active
The shared business process state has moved from null to Ordered

	Exception Conditions [M]
	The Order Request (input) is invalid

	Aspects left for Technical Bindings [O]
	

	Reference to Functional Profiles [O]
	

	Notes [O]
	

	Links to Requirements [O]
	[Reference Requirement Document in the appendices by URI. Reference individual requirements here]

4.2 Revise Order

	Description [M]
	Allows a client to revise
 an existing order

	Pre-Conditions [M]
	An active order exists <note – this presumes you cannot revise an order that has already been fulfilled>

	Inputs [M]
	An order identifier

	Outputs [M]
	Order Confirmation

	Post-Conditions [O]
	

	Exception Conditions [M]
	

	Aspects left for Technical Bindings [O]
	

	Reference to Functional Profiles [O]
	

	Notes [O]
	

	Links to Requirements [O]
	[Reference Requirement Document in the appendices by URI. Reference individual requirements here]

4.3 Replace Order

	Description [M]
	Allows a client to replace an existing order with a new order

	Pre-Conditions [M]
	An active order exists (see note on revise above)

	Inputs [M]
	An order identifier

	Outputs [M]
	Order Confirmation

	Post-Conditions [O]
	Previous order is now inactive and is replaced with a new active
order

	Exception Conditions [M]
	

	Aspects left for Technical Bindings [O]
	

	Reference to Functional Profiles [O]
	

	Notes [O]
	

	Links to Requirements [O]
	[Reference Requirement Document in the appendices by URI. Reference individual requirements here]

4.4 Update Order Status

	Description [M]
	Allows a client to update the status of an existing order

	Pre-Conditions [M]
	An order already exists

	Inputs [M]
	· Order identifier

· Status

	Outputs [M]
	Status Confirmation

	Post-Conditions [O]
	

	Exception Conditions [M]
	

	Aspects left for Technical Bindings [O]
	

	Reference to Functional Profiles [O]
	

	Notes [O]
	

	Links to Requirements [O]
	[Reference Requirement Document in the appendices by URI. Reference individual requirements here]

4.5 Query Order

	Description [M]
	

	Pre-Conditions [M]
	

	Inputs [M]
	

	Outputs [M]
	List of Orders

List of Fulfillments (O)

	Post-Conditions [O]
	

	Exception Conditions [M]
	

	Aspects left for Technical Bindings [O]
	

	Reference to Functional Profiles [O]
	

	Notes [O]
	

	Links to Requirements [O]
	[Reference Requirement Document in the appendices by URI. Reference individual requirements here]

4.6 Create or Update Fulfillment Status

	Description [M]
	Allows a service consumer to indicate the status of an order fulfillment request

	Pre-Conditions [M]
	A promise of fulfillment exists

	Inputs [M]
	

	Outputs [M]
	An indication of the success of the operation

	Post-Conditions [O]
	

	Exception Conditions [M]
	

	Aspects left for Technical Bindings [O]
	

	Reference to Functional Profiles [O]
	

	Notes [O]
	

	Links to Requirements [O]
	[Reference Requirement Document in the appendices by URI. Reference individual requirements here]

5 Profiles

5.1 Introduction

A profile is a named set of cohesive capabilities. A profile enables a service to be used at different levels and allows implementers to provide different levels of capabilities in differing contexts. Service-to-service interoperability will be judged at the profile level and not the service level. Note that through the use of profiles, there are no “optional” operations. Conditions that might otherwise merit this optionality should be addressed via a dedicated profile.

Include the following three components in each profile:

· Operational List: a named list of a subset of the operations defined within this specification which must be supported in order to claim conformance to the profile.

· Semantic Signifiers: identification of a named set of information descriptions that are supported by one or more operations.

· Conformance Profile: this is a combination of a set of functional list and semantic signifiers taken together to give a complete coherent set of capabilities against which conformance can be claimed. They also include usage context and business workflow context (sample choreography). This may optionally include additional constraints where relevant.

Fully define the profile being defined by this version of the service.

When appropriate, a minimum profile should be defined. For example, if a service is data-oriented, a minimum semantic signifiers supporting HL7 data (with the relevant data cited) should be included.

Each operation list must identify which interfaces are supported, and where relevant where specific data groupings are covered etc.

When creating a profile, consider the use of your service in:

· Differing business contexts

· Different localizations

· Different information models

· Partner-to-Partner Interoperability contexts

· Product packaging and offerings

5.2 Information Profiles

5.3 Functional Profiles

There are three functional profiles that are part of the OR Service.

5.3.1 Order Management Functional Profile

This details the operations by which orders are submitted and subsequently managed. These include:

· Create Order

· Revise Order

· Replace Order

· Update Order Status

· Query Order

5.3.2 Fulfillment Status Management Functional Profile

This details the operations necessary to interact with the order fulfillment service. This includes:

· Create or Update Fulfillment Status

5.3.3 The Fulfillment Pattern

This Pattern is a choreographed behavioral specification that utilizes these profiles to provide support for key use cases in the Orders and Observations Process provisioned across multiple interfaces.

6 System Interaction Details

STAKEHOLDER RESPONSIBILITIES

	Stakeholder
	Responsibility

	Executive/Business Representative
	· Review

	Subject Matter Expert
	· Review

	Analyst
	· Review

	Architect
	· Write

· Edit

· Review

	Project Team Member
	· Review

Potential Source:

· Architectural Documents/Diagrams

· Business Case Document

· Analysis Model

· Other Conceptual Models

· Information Model

· Use Case Model

· Standards Documents

· Conformance Statements

· Describe the dynamics of the service from a requirement-level architectural view and its interactions with anticipated (services/components/applications, etc.)

· High-level description, illustrating the storyboards, elaborated for each storyboard in Chapter 3.

· May use any well known, reasonable mechanism for communicating the information, (e.g. UML Activity Diagrams or Sequence Diagrams)

7 Recommendations for Conformance and Compliance

STAKEHOLDER RESPONSIBILITIES

	Stakeholder
	Responsibility

	Executive/Business Representative
	· Review

	Subject Matter Expert
	· Review

	Analyst
	· Review

	Architect
	· Write

· Edit

· Review

	Project Team Member
	· Review

Potential Source:

· Architectural Documents/Diagrams

· Business Case Document

· Analysis Model

· Other Conceptual Models

· Information Model

· Use Case Model

· Standards Documents

· Conformance Statements

· Enumerate conformance assertions that can be stated from this document

· Attempt to tie these conformance assertions with FIT Metrics – verifiable criteria that can be tested.

· If necessary, create a layered model for conformance.

7.1 Conformance Assertions

· List any Conformance Assertions that emerge from this specification

7.2 Recommendations for NCI Core Specification

· Enumeration of the elements and reasoning that makes this specification a candidate for inclusion within the NCI’s core specification. Be sure to include the layers of conformance assertions that would be required in this core specification.

8 Appendix A - Relevant Standards

STAKEHOLDER RESPONSIBILITIES

	Stakeholder
	Responsibility

	Executive/Business Representative
	· Review

	Subject Matter Expert
	· Review

	Analyst
	· Review

	Architect
	· Write

· Edit

· Review

	Project Team Member
	· Review

Potential Source:

· Standards Documents

· Review of potentially relevant standards, including a short-list of applicable standards.

· For each applicable standard (this may include citations to standards themselves, information content, portions of standards, etc. Demonstrate that “you are not re-inventing the wheel”):

· A short review that explains its intended relationship to this specification

· What are the relevant parts that are being re-used, extended, etc.

· Include context of how the service relates to the existing standard.

· How does this work relate to similar work;

· What are the implications if this service is used in an environment that has already adopted a competing or closely related standard

· If there is relevant realm work, a traceability matrix would be useful here {for instance, U.S. Federal Enterprise Architecture/Service Reference Model}

9 Appendix B - Glossary

Citation of terms specific to this functional specification and not included in the overall caBIG Glossary

10 Appendix C - Conceptual Functional Models and Service Specification

10.1 Introduction

The Conceptual Model is intended to provide a means for the project team to focus the enterprise on what it is doing and why it is doing it. All concepts for the related project or projects will flow from/through the Conceptual Model. The Conceptual Model includes the following:

· Vision

· Scope

· Business Context

· Storyboards

· Use Case Specifications (Activity Diagrams)

· Use Case Realizations

· Business Operations, including traceability

· Profiles

· Implementable Information Model

· Architectural Proof-Of-Concept/Mockup

· Wire Frame Diagrams

· Dependencies

· Glossary

The CBIIT Development Framework Methodology is the methodology followed to define specifications for services and applications for the National Cancer Institute (NCI) under the auspices of the Center for Biomedical Informatics and Information Technology (CBIIT). The methodology sets out an overall process, and also defines the responsibilities of the Conceptual Functional Service Specification(CFSS). The CFSS is the formal specification of the Conceptual Functional Model for CBIIT.

10.1.1 Service Definition Principles

The high level principles regarding service definition are as follows:

· Service Specifications shall be well defined and clearly scoped and with well understood requirements and responsibilities.

· Services should have a unity of purpose (e.g., fulfilling one domain or area) but services themselves may be aggregated.

· Services will be specified sufficiently to address functional, semantic, and structural interoperability.

· It must be possible to replace one conformant service implementation with another meeting the same service specification while maintaining functionality of the system.

A Service at the CFSS level is regarded as a system component; the meaning of the term “(system) component” in this context is consistent with UML usage
.A component is a modular unit with well-defined interfaces that is replaceable within its environment. A component can always be considered an autonomous unit within a system or subsystem. It has one or more provided and/or required interfaces, and its internals are hidden and inaccessible other than as provided by its interfaces.

Each CFSS defines the interfaces that the service exposes to its environment, bindings to information models relevant to the domain, extension points for choreographies to reference and use the service, and finally the service’s dependencies on capabilities provided by other components in its environment. Dependencies in the CFSS relate to services that have or may in future have a CFSS at a similar level; detailed dependencies on low-level utility services or on technology bindings should not be included, as that level of design is not in scope for the CFSS.

The manner in which services and interfaces are deployed, discovered, and so forth is outside the scope of the CFSS. However, a CFSS may reference content from other areas of architectural work that deal with architecture, deployment, naming and so forth. Except where explicitly specified, these references are to be considered informative only. All other interactions within the scope of the scenarios identified above are in the scope of the CFSS.

Reference may be made to other specifications for interface descriptions, for example where an interface is governed by an existing standard.

10.1.2 Source Documents

It is intended that the CFSS is created from and kept up to date with other standard project artifacts/work products. For example the vision for the service could be pulled from the project vision document.

Below is a lost of artifacts/work products that could be used as sources for the CFSS. Note: The list of documents a project might have and use is not to be constrained by this list.

· Vision/Scope Document

· Business Case Document

· Use Case Model

· Analysis Model

· Design Model

· Information Model

· Architectural Diagrams/Document/Models

· User Interface Model

· Conformance Statements

· Standards Documents

· Glossaries

10.1.3 Stakeholders

The following is an enumeration of stakeholders types that responsible for the creation, review, and acceptance of the CFSS.

	Stakeholder
	Description
	Job
	Perspective

	Executive/Business Representative
	Representative who holds the businesses interest from a management perspective.
	Inform
	Enterprise, Informational

	Subject Matter Expert
	Expert in the subject area of the addressed by the service.
	Inform
	Enterprise, Informational

	Analyst
	Those responsible for interacting with Executives, Business Representatives, and Subject Matter Experts in order to break the business cases into requirements and storyboards.
	Inform, Write, Edit, Review
	Enterprise, Informational

	Architect
	Those responsible for the overall service design including: structure, decomposition, profiles, and system interaction details.
	Inform, Write, Edit, Review
	Computational, Engineering, Technical

	Project Team Member
	Responsible for some part of service implementation.
	Inform, Write, Edit, Review
	Computational, Engineering, Technical

11 Appendix

11.1 Conformance Assertions

Conformance Assertions are testable, verifiable statements made in the context of a single RM-ODP Viewpoint (ISO Standard Reference Model for Open Distributed Processing, ISO/IEC IS 10746|ITU-T X.900). They may be made in four of the five RM-ODP Viewpoints, i.e. Enterprise, Information, Computational, and/or Engineering. The Technology Viewpoint specifies a particular implementation /technology binding that is run within a ‘test harness’ to establish the degree to which the implementation is conformant with a given set of Conformance Assertions made in the other RM-ODP Viewpoints. Conformance Assertions are conceptually non-hierarchical. However, Conformance Assertions may have hierarchical relationships to other Conformance Assertions within the same Viewpoint (i.e. be increasingly specific). They are not, however, extensible in and of themselves.

11.1.1 Enterprise

11.1.2 Informational

11.1.3 Computational

11.1.4 Engineering (Optional)

�	 It is expected that services will be defined, in response to the OMG RFP process, as UML components, however that level of design is outside the scope of the Functional Model.

�I think a piece is missing here, if you’re trying to describe the ‘whole’ cycle. The ORM Service distinguishes between the order (or requiest for fulfillment), the promise of fulfillment, the lab test itself, and the result of the lab test. OO, Austin and myself have always said the ‘request for fulfillment’ isn’t ‘complete’ (or done) until the results are received by the placer and the placer is satisfied.�I think it’s best here to describe the ‘whole ‘cycle and then what the scope of this service is within that cycle.

�I’ll withhold further comment on this point until I read the promise fulfillment.

�One main point about promise fulfillment, that’s usually only communicated in acute care, not in ambulatory care. The fulfillment (other doc) needs to update this.

�Using words order and request interchangeably?�Also, do we need a special process to handle repeating orders?�Does LDM support parent/child order relationships?

�At what granularity? There are some lab tests which are never ordered by the placer and are only ‘reflexed’

�Lets standardize the words used in these sections. Order, request, request for fulfillment, order for fulfillment

�describe

�This state machine came from discussion pre-OO and based on Australian use cases/storyboard narratives. This isn’t correct for US.

�the word service is too overloaded at this point (in my opinion). Would rather we found another word here or added a word. Add healthcare before service, or remove word, replace with diagnostic testing, treatments, etc.

�We need to talk about this … 1) what is the difference between Create Order and Request Order for Fulfillment? The latter could be the business capable function, which may obviate the former.

The best use case that I see for a Create Order is for the case of the implicit order with the explicit promise ….

Finally, does Create Order belong on the Fulfillment Notificaiton Profile?

The question of return value is the same for revise / replace …

�What type of confirmation is this? Confirm receipt? Because confirmation of activity is the promise itself.

�Does revise include cancel, nullify?

�What is the state on the state machine for this?�Also, what about orders which get fulfilled multiple times?

�Uh. Where did these new ‘states’ come from?

�This should reference the appropriate state machine

�I need to discuss this with JK and understand (which I don’t currently)

