2TRANSCEND

Authentication and Authorization

Architecture

Version 0.6
May 07, 2012

	Author
	Kunal Modi

	Reviewers
	Santosh Joshi, Harsh Marwaha

Document History

	Document Version
	Date
	Author
	Changes

	0.1
	02/03/2012
	Kunal Modi
	Initial Draft

	0.2
	03/05/2012
	Kunal Modi
	Incorporated internal review comments

	0.3
	03/05/2012
	Santosh Joshi
	Made additional changes to the Executive Summary, updated the diagram in section 3.1

	0.4
	03/05/2012
	Kunal Modi
	Added a new section 4.2.1 describing application level role checking details

	0.5
	03/09/2012
	Kunal Modi
	Added new section 6 to add security architecture for other integrations within 2TRANSCEND

	0.6
	05/07/2012
	Kunal Modi
	Made changes to the iHub Security mechanism to accommodate restrictions due to Mirth Connect setup

Table of Contents

3Table of Contents

1
Executive Summary
5
2
Overview of Single Sign On
6
2.1
Overview of Central Authentication Service (CAS)
7
2.2
Evaluation of caGrid’s 1.x Web Single Sign On (WebSSO)
8
3
2TRANSCEND’s Single Sign On Authentication Architecture
9
3.1
Overall Architecture
9
3.1.1
Components of the Architecture
9
3.1.1.1
Client Browser
9
3.1.1.2
CAS Single Sign On Server
9
3.1.1.3
Tolven’s OpenDS Identity Provider
10
3.1.1.4
Target Web Application
10
3.1.1.5
CAS Agent / Client
10
3.2
Implications of the Architecture
10
3.3
Scope of the Architecture
11
4
2TRANSCEND’s SSO Enabled Authorization Architecture
12
4.1
Overall Approach
12
4.2
Integration with the Single Sign On Framework
12
4.2.1
Using Application-Level Role
12
4.3
Future Authorization Architecture
13
4.3.1
Common Authorization Policy
13
5
2TRANSCEND’s SSO Enabled Service Interface Security Architecture
14
5.1
Overall Approach
14
5.2
Using Proxy Tickets to Secure TRANSCEND’s Service Interfaces
14
6
2TRANSCEND’s Non-SSO Integration Security Architecture
15
6.1
Tolven – iHub Integration Security Architecture
15
6.2
iHub – caAERS Integration Security Architecture
16
6.3
iHub – caTissue Integration Security Architecture
16

1 Executive Summary

2TRANSCEND Architecture comprises of many individual applications which are inter-connected to cohesively fulfill several business use cases. The following applications will be part of the overall 2TRANSCEND architecture: Tolven, caAERS, caTissue, NBIA, caArray and caIntegrator

Since these applications will be exchanging data, they will often require a user to switch from one application to another to complete remaining steps in a business process e.g. researchers using caIntegrator, to analyze assay data for a patient, may want to get more details for a specific tissue sample record, by pulling it up in caArray.

Currently all applications within 2TRANSCEND architecture have their own login security. This causes the following issues:
1. Requires administrators to provision users separately within each application

2. Requires users to have separate login credentials for all applications
3. Breaks the continuity of a use case by requiring users to log in to each application

4. Doesn’t allow for a seamless transition or linking from one application to the other for the user

A Single Sign On (SSO) solution is proposed to allow users to be able to seamlessly navigate from one application to another without requiring re-login. Users will be able to log into any application with a single set of credentials that are common to all applications participating in the SSO solution.
Apart from SSO Integration, 2TRANSCEND Architecture also proposed integration between various applications for the purpose of data transfer. Since the data transferred is PHI it needs to be transmitted in a secured and confidential manner. As a result of this, these integration needs to be secured as well.
This document describes the
1. Overall design for such Single Sign On mechanism and also provides details about how authorization will work in a single sign on framework.

2. High level security architecture for other integrations which are part of 2TRANSCEND Architecture

Overview of Single Sign On

In order to implement a single sign on (SSO) framework, an SSO server needs to be installed which will act as the central authentication server for all the applications participating in the SSO framework. All of the participating applications need to incorporate a single sign on client which detects if the user’s single sign on session is established and appropriately routes the users to the central server for authentication.

There are many open source products available which provide the single sign on capability. Following are the most important criteria for such a single sign on system from a 2TRANSCEND perspective:

· Java implementation: Since most of the applications which will be part of the single sign on are written in Java, selecting a product which aligns with Java technologies will allow for an easy integration.
· Easy to implement: Single Sign On server and client should not result in extensive modification to the infrastructure or existing applications.

· LDAP-compatible: Since TRANSCEND already uses LDAP to store credentials for Tolven users, Single Sign on server should be able to easily authenticate a user against this LDAP server.

Following are some of the available open source SSO frameworks:
1. Internet 2's Shibboleth

2. JA-SIG CAS (Central Authentication Service)

3. JOSSO (Java Open Single Sign On)

4. Sun's OpenSSO (Open Single Sign On)

Based on an earlier assessment done by the caGrid Security Team, Central Authentication Service (CAS) was selected as the product of choice for developing caGrid’s Web Single Sign On (WebSSO) framework because of the following reasons:

1. Provides a simple, spring-based, pluggable approach to extend and customize CAS to add functionality

2. Simple, non-intrusive, filter-based integration with the target web applications

3. Extensible client server protocol; provides capability of returning signed SAML assertions back to client from the server, thus providing a higher level of security

4. Extensive documentation, user base and a bigger development team.

Because of these reasons as well as existing expertise in implementing and integrating CAS based SSO solution, CAS is recommended for use in 2TRANSCEND SSO framework.

1.1 Overview of Central Authentication Service (CAS)

CAS, or Central Authentication Service, is a Single Sign On system from Yale University. It is Java-based and the source code is available as open source. It can be implemented in Java application environments with relative ease through the use of JSP tags and servlet filters. It is also built in an extensible manner such that the actual authentication mechanism, whether it is a lookup of a username and password in a database or LDAP server, can be easily changed or extended. The following diagram demonstrates the authentication flow path of a system that has a CAS server integrated:

[image: image1.png]1. htplocalhostimyapp.

2 htpsilosakosticastogin.

6. ntps locahostcasnalidae?ickel.

5 htpocalrostimyapp?ticket.

Application/

The following are the main steps in the authentication protocol:

1. The user attempts to access an application using its URL. The user is redirected to the CAS login URL over an HTTPS connection, passing the name of the requested service as a parameter. The user is presented with a username/password dialog box.

2. The user enters ID and password details and CAS attempts to authenticate the user. If authentication fails, the user’s request is terminated (with appropriate authentication failure response) and they are not redirected back to the target application.
3. If authentication succeeds, then CAS redirects the user back to the target application, appending a parameter called a ticket to the URL. CAS then attempts to create an in-memory cookie called a ticket-granting cookie. This is done to allow for automatic re-authentication later -- if present, it indicates that the user has already successfully logged in and the user avoids having to re-enter his username and password.

4. The application then validates that this is a correct ticket and represents a valid user by calling the CASserviceValidate URL by opening an HTTPS connection and passing the ticket and service name as parameters. CAS checks that the supplied ticket is valid and is associated with the requested service. If validation is successful, CAS returns the username to the application.

The latest version of CAS, v3.4.11 released in November 2011, will be used within 2TRANSCEND.

1.2 Evaluation of caGrid’s 1.x Web Single Sign On (WebSSO)

The caGrid's WebSSO project uses CAS as the core component for providing the Single Sign On framework. CAS Server was enhanced to use the caGrid's GAARDS authentication framework in back-end to authenticate the user. CAS was also enhanced to obtain user's grid credentials on the client side and provide it to the target web application.

The reasons why caGrid’s WebSSO is not leveraged within 2TRANSCEND architecture are as below:

1. Apart from establishing a web Single Sign On session, WebSSO also establishes a grid session for the user. This can be useful in scenarios where a user is logging into applications which require their grid credentials, to make further calls to the grid services. In 2TRANSCEND architecture, all integration will be based on non-grid interfaces according to the integration scenarios identified so far.

2. Installation of WebSSO server requires standing up (or pointing to) caGrid’s security services such as Authentication Service (which will wrap the LDAP Identity Provider), Dorian (Certificate Authority), Trust Service, and Delegation Service. This significantly increases the number of components and the software footprint of the solution.
3. All of the single sign on capabilities at the web tier provided by WebSSO are already available as part of CAS.
2TRANSCEND’s Single Sign On Authentication Architecture

1.3 Overall Architecture

The following diagram provides high level overview of the 2TRANSCEND Authentication Architecture. Within this architecture, CAS will act as the Single Sign On server which provides capabilities to authenticate the user. All applications participating in this authentication framework will integrate the CAS Client to allow them to participate with in the Single Sign On framework.

[image: image2.png]1.RequestLogin

Client
Browser

SsO
Client

Target Web
App

7.LogUserin
6. Present SSO Ticket

r
5.Issue SSO Ticket | | 2.Redirect Login Request

SSO (CAS)
Server

3. Provide Credentials 4. Validate Credentials

1.3.1 Components of the Architecture

1.3.1.1 Client Browser

The Client is the end user trying to access a target web application using a browser. Hence the browser is generally referred to as the user agent or just the client in most of the cases. The client browser is also useful for persisting the Single Sign On session in form of a cookie there by allowing the SSO Server to identify the user and not challenge him for credentials when he is redirected from another application for validation.

1.3.1.2 CAS Single Sign On Server

This is the central authentication server which controls the entire Single Sign On framework. This component is provided by CAS. It also provides a login page which will be configured to adapt the look and feel for TRANSCEND. It will be configured to connect to Tolven’s OpenDS server to authenticate the user using their credentials configured within the server. Once the user is authenticated, it generates a service ticket which is transferred back to the client. It then uses this ticket to confirm that the SSO session has been established and retrieve user's attributes from the SSO Server.

1.3.1.3 Tolven’s OpenDS Identity Provider

This is the OpenDS server which will house all users of Tolven Application within TRANSCEND. The CAS server will be configured to connect to this LDAP server in the back end. All the existing user provisioning policies, regarding creation and maintenance of accounts within this LDAP server for TRANSCEND will still be used.

NOTE: This architecture assumes that the users who require access to the participating web application already have or can be provisioned an account within this LDAP server.

1.3.1.4 Target Web Application

These are the web applications (such as caTissue, caAERS, caArray, caIntegrator, NBIA, Tolven etc.) which are part of the TRANSCEND Architecture and require single sign on capabilities. These applications will have to integrate CAS Agent / Client which checks whether a single sign on session has been established. If it has not, the users will be routed to a CAS server for authentication. These web applications will relinquish their authentication mechanisms and rely on the Single Sign On mechanism for ensuring the users are authenticated.

1.3.1.5 CAS Agent / Client

This is the client component of the CAS Single Sign On framework which will be deployed and configured as part of the target web application. It is a standard client which all applications can just integrate through the web.xml. It intercepts all client requests to check if the single sign on session is established. If not, it routes the user's request to the central CAS server allowing the user to authenticate himself and establish the SSO Session. On return from the central server, the client intercepts the user's request and validates the user's session against the server.

1.4 Implications of the Architecture

The above architecture will result in the following implications to existing 2TRANSCEND applications:
1. Since a single source of identity is required, this architecture will leverage Tolven’s OpenDS instance as the identity provider for all applications. This means that every user of any of the applications within 2TRANSCEND SSO will have an account on that LDAP server. Besides adding users and their credentials in the OpenDS LDAP tree, an appropriate application-level role associated with the user within OpenDS would indicate the application the user has access to.
2. All web applications within 2TRANSCEND which want to participate in single sign on will have to modify their authentication mechanism to integrate with the CAS Agent / Client. The modification should be made such that the application can switch the authentication mechanism as required. This is to allow the application to be deployed in a stand-alone mode where their own login screen and mechanism will be used to enforce authentication, or to be deployed as part of 2TRANSCEND where they will disable their authentication mechanism and rely on the single sign on framework.

3. Since the user’s identity (and in future even roles) will be provided by the Single Sign on framework, the application should be capable of accepting and using them for the purpose of Authorization as logged-in user’s identity

1.5 Scope of the Architecture

For 2TRANSCEND, the Single Sign on Framework will be limited to the following two applications

1. caIntegrator

2. caArray

However, the architecture is extensible to allow single sign on framework to include all the web applications within TRANSCEND.

2TRANSCEND’s SSO Enabled Authorization Architecture

1.6 Overall Approach

This solution proposes the applications within TRANSCEND to continue using their current authorization mechanisms. This means that each of the applications will house their own authorization policies and enforce them locally. Also users will need to be provisioned within each application as they are provisioned today. These user records are created purely for authorization purposes and don’t contain any user credentials required for authentication. The administrators will be required to log into each application’s provisioning mechanism to provision the users. The onus of ensuring that the access privileges of the user are consistent across all the applications will be on the administrators.
1.7 Integration with the Single Sign On Framework

Since the Authentication is now provided by the CAS SSO framework, the framework is also responsible for providing user's identity. Upon Successful login, the CAS Client can obtain an assertion representing the user, from the server. It is a SAML assertion containing the principal which identifies the user. This principal contains the logged in user's Identity and should be used henceforth within the application for the purpose of identifying the user, in cases such as authorization calls.

The following code snippet shows how principal can be obtained from the CAS assertions:
final HttpSession session = request.getSession(false);

final Assertion assertion = (Assertion) (session == null ? request.getAttribute(AbstractCasFilter.CONST_CAS_ASSERTION) : session.getAttribute(AbstractCasFilter.CONST_CAS_ASSERTION));

if(assertion!=null)

{

 AttributePrincipal ap = assertion.getPrincipal();

 String userId = ap.getName();

}
1.7.1 Using Application-Level Role

As part of the SSO integration, CAS server also will return the application level role which is associated with the role within OpenDS LDAP. This application level role is used to determine if the user is granted access to a particular application or not. Once the user is authenticated via SSO, each application will need to check whether the user has application level role which corresponds to it. This way the application can restrict access to only the users who have been granted access.

NOTE: This application-level authorization check can be made into a generic HTTP Filter which can be plugged in just like the CAS filter. It can take the application-level role as an initialization parameter and will allow access only to the users who have been granted that role.
1.8 Future Authorization Architecture

1.8.1 Common Authorization Policy

Each 2TRANSCEND application houses its own authorization policy and provisioning mechanism. This will require TRANSCEND administrators to log into each application’s authorization provisioning mechanism and provision the user’s authorization policy. This can be tedious and prone to error. This is because if two applications are to provide same level of access (e.g. study level access or administrative privileges) to a certain user, then it would require the administrator to ensure that the access control is set up consistently within these two applications. Also, the administrator will need to have access credentials for each application’s provisioning mechanism. For the above reasons, the following features are desirable:
1. A common authorization policy which can be provisioned for the user across all applications within TRANSCEND

2. This authorization policy to be stored centrally and enforced by all participating applications within TRANSCEND

3. A common provisioning mechanism (user interface) which will allow the users a single place to provision user’s authorization policies

At some point in future, a detailed analysis will need to be performed to identify detailed requirements for implementing a common authorization policy across TRANSCEND applications. Following are the key considerations for such an effort:

1. Harmonizing a set of users which will have access across all applications. Currently each application within TRANSCEND has its own group of users. These user groups do not overlap with each other for the most part. The authorization policy should be capable of handling this; so as to allow provisioning all users in one place without such overlaps.

2. Business roles need to be harmonized across the applications. This would mean coming up with common harmonized business roles which are consistent across all the applications.
3. Role-based access provisioning needs to be performed. Currently most of the applications are performing user-level authorization. They need to change their entire policy to role-based access control.
4. Authorization Policy should be scalable to include new applications and business areas which can be added in future without requiring a complete overhaul.

2 2TRANSCEND’s SSO Enabled Service Interface Security Architecture

2.1 Overall Approach

2TRANSCEND is an integration project where many applications are interconnected to transfer data between themselves. Each application has its own set of service interfaces which are already available for integration. These interfaces range from Java APIs to EJB Interfaces to web services.

In many of these applications, the security enforced at the Web GUI is also enforced at the service interface level. The users have the same set of credentials at the service interface as they use at the GUI. Also once the user is logged in, the same authorization policy is enforced to determine user’s privileges both at the GUI or the service interface.

Since in the proposed SSO solution, the GUI security is taken over by the SSO, it also needs to provide similar capabilities at the service interface level. CAS provides various mechanisms to enforce service interface security.

CAS allows non-web components to participate within an SSO realm. They will be required to have the same authentication capabilities as the web components. CAS facilitates this by providing a proxy ticket mechanism which allows for the following:
1. Proxying application to obtain a proxy ticket for the logged in user to be able to invoke a non- web resource

2. Proxied application to be able to verify the proxy ticket to ensure that the user is logged in and has an SSO session established.

2.2 Using Proxy Tickets to Secure TRANSCEND’s Service Interfaces

In case of TRANSCEND, caIntegrator invokes caArray’s EJB interface to load the array data. Currently, it requires the user to enter username and password again and then connects to caArray’s EJB service using the credentials provided. This user is already provisioned in caArray and hence caArray’s JAAS login module is able to verify the credentials and log the user in. However, with CAS playing the role of authentication, there is no local user created any more within caArray. As a result, the service interface must be enhanced to participate in the same single sign on as the web interface. Also the calling application i.e. caIntegrator will need to leverage SSO to connect to caArray. The following workflow describes how this will be achieved:
1. The user logs into caIntegrator. Since no SSO is established, he is routed to the CAS server to authenticate and establish an SSO session
2. CAS Server establishes the SSO session and returns a service ticket which signifies that the user has an SSO Session established

3. The CAS client on caIntegrator retrieves the ticket and proceeds to validate it to ensure that the user is signed in. However, besides validating the ticket, the CAS Client will also request a Proxy Granting Ticket (PGT) from the CAS Server. This is established by configuring the pgtUrl within the CAS Client. The pgtUrl is the Proxy Callback URL which will be used to validate the proxy tickets.

4. Once caIntegrator has the PGT from the CAS Server,iIt will use it when it has to connect to caArray to obtain the actual proxy ticket. This is done by passing the PGT to the CAS server along with the unique URL which identifies the proxied service (in this case the caArray EJB Interface)

5. Once it obtains the proxy ticket, caIntegrator invokes the caArray interface using the proxy ticket as the credential identifying the user.

6. caArray EJB interface will configure the CAS client using JAAS. This client will enforce CAS Ticket validation. It will retrieve the Proxy Ticket and validate it by connecting to the CAS Server.

7. caArray will receive an "authentication successful" message back indicating that the user is signed in and has a valid SSO session.

8. It can retrieve the user id by retrieving the principal from the JAAS Subject and use it for further authorization.

NOTE: In this approach, caArray interface is invoked using the SSO session of the logged-in caIntegrator user.
3 2TRANSCEND’s Non-SSO Integration Security Architecture

3.1 Tolven – iHub Integration Security Architecture

Tolven currently interacts to iHub using a Web Service. As part of 2TRANSCEND Architecture, this integration is going to remain unchanged. As a result of which the existing security mechanism is also retained as part of 2TRANSCEND Architecture.

Currently iHub’s inbound Web Services are secured using WS-Security and use the Username Password Token to authenticate the client. This username and password can be configured within iHub through a credentials file or database or even LDAP. WS-Security provides handler mechanism which is leveraged to authenticate the user credentials against any of these identity sources. However, because of limitations due to the Mirth Connect Platform on which iHub is implemented, WS-Security based authentication is not possible. Instead, iHub will be using the username password fields within the message itself for authenticating the user. Tolven will now have to pass the username and password as part of the iHub message.
Apart from this, the Tolven to iHub interface will also user Transport level Security such as SSL. Mutual authentication will be established between Tolven and iHub to ensure secure and encrypted communication between them. Both iHub and Tolven will need to trust each other’s public certificates which needs to be exchanged and configured manually before the actual flow of information can occur.
3.2 iHub – caAERS Integration Security Architecture

As part of 2TRANSCEND Architecture, Tolven will need to communicate with caAERS Web Services. caAERS Web Services are secured using WS-Security and use the Username Password Token to authenticate the client. iHub will have to provide the username and password as part of each request.

 Apart from this, the iHub to caAERS interface will also use Transport level Security such as SSL. Mutual authentication will be established between Tolven and iHub to ensure secure and encrypted communication between them. Both iHub and caAERS will need to trust each other’s public certificates which needs to be exchanged and configured manually before the actual flow of information can occur.

iHub’s outbound connectors for caAERS will have to cater to these security considerations

3.3 iHub – caTissue Integration Security Architecture

iHub currently interacts to caTissue using its Java APIs. As part of 2TRANSCEND Architecture, this integration is going to remain unchanged. As a result of which the existing security mechanism is also retained as part of 2TRANSCEND Architecture.

caTissue’s Java APIs will be secured using Username Password. iHub will have to procure one such user id and password from caTissue and use it for each request to connect to caTissue securely.

iHub’s outbound connector for caTissue will have to cater to these security considerations

