caB2B Milestone 3 design document

Table Of Contents
3Querying caArray using caB2B

3Scope

3Prerequisite

3Supporting caArray in caB2B

3Overview

3Why customize IRecord for caArray?

3Steps in customizing IRecord for caArray

3IRecord and its extensions for caArray

4Query Result Transformers

5Inbuilt implementations of IQueryResultTransformer

6Customization for caArray

6Result Configuration XML

8Path Curation Design

8Class Structure

8Interface diagram

8Class Diagram

9Database schema

10User interface

12Querying secure data services

12Overview

12APIs to use

13Implementation

15Loading Models

15Overview

16Implementation

16Process of loading models

16Classes involved

17Sequence Diagram

17Fetch All Available Models

18Load Model

19Configure Service Instances

19Overview

19APIs Used

19Application flow

20Database schema

Querying caArray using caB2B

Scope
Querying the caArray data service requires extensions to the default caB2B querying mechanism. This document first explains the reason why these extensions are required. It then explains the design of the relevant portions of caB2B query module, and the actual extensions implemented to support querying caArray.

Note that the content of this document is an edited extract of Chapter 13 “Record Customization” of the caB2B 1.0 design document.

Prerequisite

Any application that is to be supported by caB2B has to be registered with the metadata repository of caB2B. So, the caArray domain model xml has to be loaded to the caB2B metadata repository.

Supporting caArray in caB2B

Overview

In caB2B, the user defines a query on the DAG. This user-defined query is transformed to appropriate DCQL. The DCQLQueryResults obtained by executing this DCQL is then transformed into an IQueryResult.
The IQueryResult is a caB2B-specific representation of the results. Logically, IQueryResult is a collection of records (represented by IRecord’s). This chapter explains how this caB2B-specific representation (i.e. IRecord) is customized to support querying the caArray data service.

The IRecord IRecord is a map from an attribute to its value.

Why customize IRecord for caArray?

The default IRecord represents the record of a UML class, as obtained from a data service that uses the default (de)serialization mechanisms of caGrid. A custom subtype of IRecord would be defined to add more information to such a record.

The caArray data service provides custom (de)serialization. It returns more information than can be represented by IRecord; it returns identifiers of classes associated to the target class. To store this information, a custom record has to be defined.

Steps in customizing IRecord for caArray

1. Define appropriate subtype of IRecord; this is ICaArrayRecord.
2. Implement a query result transformer. This will be responsible for transforming CQLResults into ICaArrayRecord.

3. Register the custom implementation in the configuration xml “ResultConfiguration.xml”.

The following sections explain the above steps in detail.

IRecord and its extensions for caArray

Following are the basic interfaces; the other interfaces are either markers or mixins to represent the records from caArray data service.

· IRecord: The most basic interface; it represents a record as a set of attribute-value pairs.

· IRecordWithAssociatedIdentifiers: Represents a record that can provide identifiers of associated classes as well.

· ICategorialClassRecord: Represents the records of a category. The records form a tree; the structure of the tree corresponds to the tree of classes in the category.

[image: image1.emf]cd Logical Model

Serializable«interface»IRecord~ getRecordId() : RecordId~ putValueForAttribute(AttributeInterface, Object) : void~ putStringValueForAttribute(AttributeInterface, String) : void~ getValueForAttribute(AttributeInterface) : Object~ getAttributes() : Set<AttributeInterface>~ copyValuesFrom(IRecord) : void«interface»IRecordWithAssociatedIds~ getAssociatedClassesIdentifiers() : Map<AssociationInterface, List<String>>«interface»ICategorialClassRecord~ getChildrenCategorialClassRecords() : Map<CategorialClass, List<ICategorialClassRecord>>~ getCategorialClass() : CategorialClass~ addCategorialClassRecords(CategorialClass, List<ICategorialClassRecord>) : void«interface»ICaArrayRecord«interface»ICaArrayCategoryRecord

IRecord and its caArray extensions

Query Result Transformers

A query result transformer is defined by the interface edu.wustl.cab2b.server.queryengine.resulttransformers.IQueryResultTransfomer<R extends IRecord, C extends ICategorialClassRecord> and is responsible for executing a DCQL and transforming the results into an appropriate IQueryResult. Following are the methods in IQueryResultTransformer:

· IQueryResult<R> getResults(DCQLQuery query, EntityInterface targetEntity);
<R> the type of records created when executing a query for a class.
· query the DCQL.

· targetEntity the target entity (corresponds to the target object of the dcql).

· IQueryResult<C> getCategoryResults(DCQLQuery query, CategorialClass categorialClass);

 <C> the type of records created when executing a query for a category.
· query the DCQL whose target object corresponds to the actual UML class represented by the categorial class.

· categorialClass the categorial class.

Class diagrams for query result transformers are shown below.

[image: image2.jpg]
Query Result Transformers
Note: The text on the generalization links refers to type parameters e.g. declaration of DefaultQueryResultTransformer is class DefaultQueryResultTransformer extends AbstractQueryResultTransformer<IRecord, ICategorialClassRecord>

QueryResultTransformerFactory refers ResultConfiguration.xml to obtain the appropriate transformer.

Inbuilt implementations of IQueryResultTransformer

· AbstractQueryResultTransformer This abstract class provides a skeletal implementation of a query result transformer. Concrete implementations need only implement the createRecords() and createCategoryRecords() methods. Additional hooks are provided and can be used to customize the creation and population of the records in the result.

· DefaultQueryResultTransformer This is the caB2B default query result transformer. It parses the gov.nih.nci.cagrid.cqlresultset.CQLQueryResults xml and extracts the values for the attributes of the target entity. The records in the results are of the basic types IRecord and ICategorialClassRecord.

Customization for caArray

The interface cab2b.server.caarray.resulttransformer.ICaArrayRecord is used to represent a record of the caArray application. As explained previously, the caArray service returns identifiers of classes associated to the target class. Thus, an application-level transformer is defined for caArray that uses the caArray deserializers and reads this information.

· AbstractCaArrayResultTransfomer: Provides an implementation of the method createRecords() of AbstractQueryResultTransformer. It also handles the deserialization of the caArray results xml into objects and transforms these objects to ICaArrayRecord using reflection.

· DefaultCaArrayResultTransformer: This is the transformer for classes in the caArray application. It provides an implementation of the createCaArrayRecord() method of AbstractCaArrayResultTransfomer.
 [image: image3.png]
caArray Query Result transformer

Result Configuration XML

The query result transformer defined for caArray has to be registered with the caB2B application in the ResultConfiguration.xml file as shown below. Refer the first entry <application name=”caArray” >.

[image: image4.png]
Path Curation Design
Class Structure

Refer to the requirement document to understand the expected functionality of path curation. IAssociation represents a direct linkage between two classes. There are two extensions of IAssociation. IIntraModelAssociation represent the link between two classes from the same model. IInterModelAssociation represent the link between two classes from different models.
An IPath represents a navigable way between a source and a destination class. It is composted list of IAssociation. It will have at least one

ICuratedPath is defined for set of entities (classes), it is composed of one or many IPath which form a non-cyclic graph between given set of entities.
The implementing classes of these interfaces are hibernate objects. Save-Update-delete operations will be performed using DAO pattern. The interface structure will be as follows
Interface diagram
[image: image5.emf]class Path Curation

Serializable«interface»IAssociation+ getSourceEntity() : EntityInterface+ getTargetEntity() : EntityInterface+ isBidirectional() : boolean+ reverse() : IAssociation

«interface»IInterModelAssociation+ getSourceAttribute() : AttributeInterface+ getSourceServiceUrl() : String+ getTargetAttribute() : AttributeInterface+ getTargetServiceUrl() : String+ reverse() : IInterModelAssociation+ setSourceServiceUrl(String) : void+ setTargetServiceUrl(String) : void

Serializable«interface»ICuratedPath+ getCuratedPathId() : long+ getEntitySet() : Set<EntityInterface>+ getPaths() : Set<IPath>+ isSelected() : boolean

Serializable«interface»IPath+ getIntermediateAssociations() : List<IAssociation>+ getPathId() : long+ getSourceEntity() : EntityInterface+ getTargetEntity() : EntityInterface+ isBidirectional() : boolean+ reverse() : IPath

«interface»IIntraModelAssociation+ getDynamicExtensionsAssociation() : AssociationInterface+ reverse() : IIntraModelAssociation1..*1..*

Figure 1 Path Curation Interfaces
Class Diagram

The classes involved in the path curation will be as follows
ModelAssociation implements IAssociation

InterModelAssociation implements IInterModelAssociation extends ModelAssociation
IntraModelAssociation implements IIntraModelAssociation extends ModelAssociation

Path implements IPath

CuratedPath implements ICuratedPath

[image: image6.emf]class Path Curation Impl

impl::InterModelAssociation- sourceAttribute: AttributeInterface- sourceAttributeId: Long- sourceServiceUrl: String- targetAttribute: AttributeInterface- targetAttributeId: Long- targetServiceUrl: String

impl::IntraModelAssociation- dynamicExtensionsAssociation: AssociationInterface- dynamicExtensionsAssociationId: Long

impl::ModelAssociation# id: Long

path::CuratedPath- curatedPathId: long- entitySet: Set<EntityInterface>- paths: Set<IPath>- selected: boolean

path::Path- intermediateAssociations: List<IAssociation>- pathId: long- sourceEntity: EntityInterface- targetEntity: EntityInterface+paths1..*+intermediateAssociations1..* {ordered}

Figure 2 Path Curation Java beans
Database schema

The DDL of the tables will be

/*INTERMEDIATE_PATH contains ASSOCIATION(ASSOCIATION_ID) connected by underscore */
create table PATH(
 PATH_ID bigint not null,
 FIRST_ENTITY_ID bigint null,
 INTERMEDIATE_PATH varchar(1000) null,
 LAST_ENTITY_ID bigint null,
 primary key (PATH_ID),
 index INDEX1 (FIRST_ENTITY_ID,LAST_ENTITY_ID)
);
/*
Possible values for ASSOCIATION_TYPE are 1 and 2
ASSOCIATION_TYPE = 1 represents INTER_MODEL_ASSOCIATION.
ASSOCIATION_TYPE = 2 represents INTRA_MODEL_ASSOCIATION.
*/
create table ASSOCIATION(
 ASSOCIATION_ID bigint not null,
 ASSOCIATION_TYPE INT(8) not null ,
 primary key (ASSOCIATION_ID)
);
create table INTER_MODEL_ASSOCIATION(
 ASSOCIATION_ID bigint not null references ASSOCIATION(ASSOCIATION_ID),
 LEFT_ENTITY_ID bigint not null,
 LEFT_ATTRIBUTE_ID bigint not null,
 RIGHT_ENTITY_ID bigint not null,
 RIGHT_ATTRIBUTE_ID bigint not null,
 primary key (ASSOCIATION_ID)
);
create table INTRA_MODEL_ASSOCIATION(
 ASSOCIATION_ID bigint not null references ASSOCIATION(ASSOCIATION_ID),
 DE_ASSOCIATION_ID bigint not null,
 primary key (ASSOCIATION_ID)
);
create table CURATED_PATH (

curated_path_Id BIGINT,

entity_ids VARCHAR(1000),

selected boolean,

primary key (curated_path_Id)
);
/*this is mapping table for many-to-many relationship between tables PATH and CURATED_PATH */
create table CURATED_PATH_TO_PATH (

curated_path_Id BIGINT references CURATED_PATH (curated_path_Id),

path_id BIGINT references PATH (path_id),

primary key (curated_path_Id,path_id)
);

User interface

The user interface of the path curation will be created using Flex. The communication between Flex and java will happen as shown in the diagram below.
[image: image7.png]
DAGObject: It is a java bean, which is base class for all the components that can be displayed in

AmbiguityPanel.mxml: Flex component to show all the paths and allows admin to choose one which will be part of curated path.

DAGNode.mxml: Flex component to represent a link between two nodes. The java representation of this is DAGNode

DAGPath.mxml: Flex component to represent a link between two nodes. The java representation of this is DAGLink

DAG.mxml: Main flex component which displays all other components. This is the class which will get called from java script. This is flex side of the component
FlexConnector: This class is java side of the UI component. All communication from java to flex will be handled by HTTPSevice calls between DAG.mxml and FlexConnector
CategoryDAGpanel: This extends DAGPanel
DAGPanel: It contains all the business logic needed for path curation.
[image: image8.emf]class System

DAGObject- id: int- name: String+ getTooltip() : String+ readExternal(ObjectInput) : void+ writeExternal(ObjectOutput) : void

«property get»+ getid() : int+ getname() : String

«property set»+ setid(int) : void+ setname(String) : void

DAGNode- xCordinate: int- yCordinate: int+ getTooltip() : String

«property get»+ getxCordinate() : int+ getyCordinate() : int

«property set»+ setxCordinate(int) : void+ setyCordinate(int) : void

DAGLink- condition: String- destinationNodeId: int- sourceNodeId: int+ getTooltip() : String

«property get»+ getcondition() : String+ getdestinationNodeId() : int+ getsourceNodeId() : int

«property set»+ setcondition(String) : void+ setdestinationNodeId(int) : void+ setsourceNodeId(int) : void

DAGPanel+ createNode(String, long, String) : DAGNode+ deleteNode(int) : boolean+ linkNodes(List, DAGNode, DAGNode) : void+ repaint() : void

Querying secure data services

Overview

To query to a secure data service we need to pass GlobusCredential to the Fedrated Query Engine (FQP). GlobusCredential (also called as grid proxy) is a short term certificate created based on the user’s grid credentials. Getting this certificate is a two step process

1. Authenticating user on an authentication service
Authentication service is a grid service which accepts user name and password, checks for the validation, and if the user is a valid grid user then passes by a SAMLAssertion (a SAML certificate) back to user as a result of successful authentication.
2. Obtaining grid proxy
The SAML certificate is passed to another grid service called dorian which returns a proxy certificate. As mentioned earlier, proxy is a short term certificate, with a life span of maximum 12 hours. After completion of a lifetime, it has to be renewed using the SAML.

At times a dorian service can work as authentication service but it is not the case always. In order to be able to get SAML assertion from authentication service, we need to have the certification authorities (CA) certificates in the USER_HOME/.globus directory. The certificates in this directory correspond to certificate authorities that you trust for issuing credentials. Absence of these certificates will not allow you to complete the authentication process. How to get these certificates is explained on caGrid wiki. http://www.cagrid.org/wiki/GTS:1.2:Administrators_Guide:Syncing_With_the_Trust_Fabric

In our current implementation, authentication is done at server side. At client side, a login frame is presented to user asking for grid user name and password. These credentials are then passed to server for authentication. Current design assumes that the authentication service is a dorian itself.

APIs to use
CaGrid provides following APIs to allow user to authenticate and get grid proxy.
Following classes are used.

	
[image: image9.png]

Create authentication credentials

	
[image: image10.png]

Authenticating user on authentication service
	
[image: image11.png]

Getting proxy from dorian

	
[image: image12.png]

Implementation

Following are the classes used in implementation:
1. LoginFrame is the entry point of the application. When user launches the application, a frame pops up asking user to enter grid username, grid password and name of the authentication service to check the credentials on (e.g. if user has created an account on production service, production option from the dropdown is selected). The proposed screen for login is given below

[image: image13.jpg]
2. UserValidator is a client side class that gives the bean call for authentication. It is also contains the proxy certificate once received after its validation.
3. UserBean is a class that UserValidator calls to pass validation request to server side.
4. UserOperations caters to all the bean methods of UserBean. validateUser() method of this class takes username, password and the authentication URL and returns the proxy after validation.
5. getDorianUrl(String idP) method of PropertyLoader returns the authentication service URL based on the grid name passed.
6. CommonUtils class has a method executeQuery() which is used by query API to fire a query. This method internally calls getProxy() method of UserValidator class to fire a query on secure data service.
[image: image14.emf]class mainframe

AbstractStatelessSessionBeanUserBusinessInterfaceuser::UserBean+ validateUser(String, String, String) : GlobusCredential

DefaultBizLogicuser::UserOperations- createCredentials(String, String) : Credential- getGlobusCredentials(String, SAMLAssertion) : GlobusCredential+ validateUser(String, String, String) : GlobusCredential

util::PropertyLoader- propertyfile: String = "cab2b.properties" {readOnly}- props: Properties = Utility.getProp...+ getDorianUrl(String) : String

UserValidator- dorianUrl: String- proxy: GlobusCredential- userName: String+ getProxy() : GlobusCredential+ getUserName() : String+ setUserName(String) : void+ validateUser(String, String, String) : boolean

JXFrameLoginFrame- idProvider: Cab2bComboBox- login: Cab2bButton- passText: JPasswordField+ selfReference: LoginFrame = this- usrNameText: Cab2bTextField- validateCredentials(String, String, String) : boolean

Sequence diagram:

[image: image15.emf]sd Logical View

LoginFrame

UserValidator

PropertyLoader

UserBean

UserOperationsvalidateUser(userName, password, idPName)getDorianUrl(idPName)authUrl()validateUser(userName, password, authUrl)validateUser(userName, password, authUrl)GlobusCredential(proxy)GlobusCredential(proxy)

Loading Models

Overview

One of the basic requirements of caB2B is to be able to fetch models from the caDSR and populate metadata repository (MDR) from that. It will be used to build metadata based queries to fetch data from data services. In order to understand the design of load model in cab2b admin it is necessary to first understand the design and concept of MDR.

MDR stores the metadata for an UML model including its semantic annotations such as all CDEs including permissible values by decomposing the annotated UML model obtained from caDSR.

It also contains all-to-all paths between every two classes. Given the amount of information it stores, it is also possible to get all the paths between two classes across two different UML models based on semantic interoperability.

The design of MDR is the basic foundation for caB2B backend. It enables the caB2B query engine to provide the following functionalities:

· Metadata search

· Auto generation of user interface for entering predicates

· Automatic path resolution between two query predicates

· Category support

· Inter model queries based on semantic joins
APIs Used
Following APIs are used to fetch the DomainModel from caDSR.

Classes used are
	[image: image16.png]

To get projects from caDSR
	[image: image17.png]

To generate models from projects
	[image: image18.png]

Implementation
Process of loading models

Process of loading models can be divided into two steps

1. Fetching all the available models to load
In the first step all the models available for the loading are fetched. Only the models which are not present in the local database are shown to the user for selection.

2. Loading the user selected models
In this step user selects the models to be loaded from UI. These user selected models are then loaded into the MDR.

Classes involved

SearchDataHeader.jsp is the starting point for the Load Model functionality where user selects the Load Model link from the popup menu list.

CaDSRLoadModel.java is the struts action called by the Load Model button; this class is a controller used to control the flow of the request.

CaDSRLoadModelBizLogic.java is used to get all the model names available for loading. This class uses CaDSRServiceClient to fetch all the models for loading. All these models are then filtered so as to choose only models that not already present in the local database. This class is also responsible for loading user selected models into the MDR using PathBuilder.

PathBuilder.java class is responsible for loading the model into MDR
LoadModel.jsp is the UI page which displays the model names and description for that model. It also allows user to select the multiple models to load.

LoadModel.java is the struts action which is called by the LoadModel.jsp page.

Sequence Diagram
Fetch All Available Models

[image: image19.emf]sd Fetch All ModelAdminSearchDataHeader.jspCaDSRLoadModelCaDSRModelBizLogicLoadModel.jspCaDSRServiceClient.javaLoad Model Linkexecute()getProjectsDisplayDetails()getCaDSRServiceClient()newfindAllProjects()Project[]List<CaDSRModelDetailsBean>List<CaDSRModelDetailsBean>avaliablemodels toload

Load Model
[image: image20.emf]sd Load ModelAdminLoadModel.jspLoadModel.javaCaDSRModelBizLogic.javaCaDSRServiceClient.javaPathBuilderselects modelto loadexecute()getAllModelNames()persistDomainModel(ListOfModelsToLoad)getDomainModel(projectLongName)getCaDSRServiceClient()generateDomainModelForProject(project)DomainModelloadSingleModelFromParserObject()Map<String, String>StringStatus of theload Models

Configure Service Instances
Overview

Service instance configuration from admin module involves configuring the URLs of the different services for which the models are already loaded in the application. One model can have multiple service instances configured for it. This involves two stages:
· Fetching the list of all the services available for a certain model
· Saving the selected instances’ URLs into database.

APIs Used
Following are the APIs used for service instance configuration functionality

 Classes used are
	[image: image21.png]

Fetching service instances:
	[image: image22.png]

Fetching metadata for each instance:

	[image: image23.png]

Application flow

1. Under Search Data menu, administrator selects “Service Instance”. The admin will be shown models currently present in MDR.
2. User clicks on the model name to see running services which are using that model Name of the selected model is passed to DiscoveryClient ‘s discoverDataServicesByDomainModel(String modelName). It returns EndPointReferenceType[].
3. Metadata for each of the EndPointReferenceType is fetched using methods on MetadataUtils class.
4. Using this metadata, an object of ServiceMetadata class is created for each of the EndPointReferenceType.
5. The ServiceMetadata objects are used to display hosting center’s information.
6. User selects the instances that are to be saved. These are saved through saveServiceInstances(Collection<AdminServiceMetadata> serviceMetadataObjects, String userName) in ServiceInstanceBizLogic class.
Database schema

The DDL of the tables will be

	
[image: image24.png]

_1272366688

_1272366741

_1273344885

_1272366715

_1272366658

