	[image: image9.jpg] NCICB
	[image: image1.png]



[image: image13.png]
Common Security Module
Performance Improvements Design
Version No: 0.1
Last Modified: 06/20/2006
Author
: 
Kunal Modi
Team
:  
Common Security Module (CSM)


Purchase Order# 34552
Client
:
National Cancer Institute - Center for Bioinformatics,



National Institutes of Health,



US Department of Health and Human Services 

Document History

Document Location
The most current version of this document is located in CVS under security/docs. 
Revision History
	Version Number
	Revision Date
	Author
	Summary of Changes

	0.1
	06/20/2006
	Kunal Modi
	Initial Draft

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	


Review

	Name
	Team/Role
	Version

	Date Reviewed
	Reviewer Comments 

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	


Related Documents
More information can be found in the following related CSM documents:
	Document Name

	CSM Scope/Vision Document for 3.2

	

	

	

	

	

	


Table of Contents

41.
Introduction

1.1
Purpose
4
1.2
Scope
4
1.3
Definitions
4
1.3.1
Privilege
4
2.
Scope Items
4
2.1
Enable Caching of the User’s Authorization Policy
4
2.2
Explore the usage of eh-cache for CSM Domain Objects
5
2.3
Design Automated Instance Level Security Mechanism for SDK Generated Application
5
3.
Design Specifications
5
3.1
Enable Caching of the User’s Authorization Policy
5



Performance Enhancements Design
1. Introduction

a.
1.1 Purpose

a
1.2 Scope

a
1.3 Definitions
1.3.1 None
2. Scope Items
The following pertain to requirements deemed necessary for improving performance for CSM APIs:

2.1 Enable Caching of the User’s Authorization Policy

Currently the CSM APIs have to make a database call every time the checkPermission method is invoked. This results in a network call as well as execution of a lengthy query to determine if the user has access or not. 

As part of the performance improvement CSM APIs will try to avoid the network call for each and every call of checkPermission. In order to achieve this, CSM will load the user’s Authorization Policy upfront and cache it for use whenever the check permission method is executed.

In order to enable caching of the user’s policy a new method needs to be added to the AuthorizationManager. This method will accept a user name as parameter and a timeout paramter and load the Authorization Policy for that user internally and store it in a HashMap with username as the key. Alternatively it can be part of the constructor too. The timeout duration would determine the time till which the policy should be cached. After the timeout the user’s cache policy should be removed. Also if possible then the user cache needs to be reloaded any subsequent check permission calls made. Similarly a method will be provided to remove the User’s Authorization Policy once the user has logged out of the system. 

Also the checkPermission methods will be updated to check if the policy for that user is loaded in the cache or not. If yes, then the checkPermission method will examine the cache and determine if the user has permission to perform the said operation on the specified resource or not. A “true” will be returned if the user has permission, and a “false” will be returned if they do not.  However if there is no policy found for that user indicating that the client application hasn’t cached the policy for that user yet, it will check the database to determine the access permission as before.

This way it will support both modes of using the AuthorizationManager, i.e. one instance per application or separate instances for each user.

2.2 Explore the usage of eh-cache for CSM Domain Objects 

Currently there is no external cache enabled for CSM Objects. The CSM Team will enhance the Hibernate configurations to use the eh-cache as external second tier caching solution. The team will make the appropriate changes to the code / configuration files to enable eh-cache and note down the performance improvements if any.

2.3 Design Automated Instance Level Security Mechanism for SDK Generated Application

CSM Team will under take of gathering requirements and designing a possible high level approach for providing automated instance level security for applications generated using SDK. The level of details of the design would be limited to the number of days allocated for it. The design would be delivered either in form of an Enterprise Architect Model or Word document.

3. Design Specifications
The following pertain to requirements deemed necessary for improving performance for CSM APIs:

3.1 Enable Caching of the User’s Authorization Policy

Loading of the Cache

The Authorization Manager is generally obtained only once per application and shared across all the users. However for the purpose of the caching each user’s individual policy we need the Authorization Manager to be created individually per the user. However since this activity would be done only once, generally at the start of user session at the time when the user logs in, it shouldn’t create a big performance impact. 
Also the authorization policy can be alternatively cached at a group level. This would require the group to which the user logged in belongs, to be passed as parameter.
It is up to the client application to determine whether they a going to use a user based or a group based authorization. Depending on that the client application can load either the user’s or group’s authorization policy.

In order to facilitate the caching of the policy at the time of the creation of the Authorization Manager the new overloaded method will be provided in the SecurityServiceProvider Class as shown below. This method would be in addition to the existing method. If the application developer chooses not to enable caching they can simply obtain the AuthorizationManager using the existing constructor and passing only the ApplicationContext as parameter. 

[image: image2]
Where

ApplicationContext – Is the name of the application for which the AuthorizationManager is obtained

userOrGroupName – Is either the user name or the group name for which the user wants to cache the authorization policy.

IsUserName – indicates whether the userOrGroupName parameter contains either the user name or the group name. A true would indicate that the passed parameter is user name and false would indicate it is a group name.
Inside the SecurityServiceProvider class this method would forward the call to a new method AuthorizationManagerFactory passing all the parameters to instantiate an instance of AuthorizationManager. In turn the AuthorizationMangerFactory tries to instantiate a new instance of the UserProvisioningManagerImpl passing all the parameters and return the newly created instance typecasted as AuthorizationManager.
The UserProvisioningManagerImpl would now have a new constructor which accepts the ApplicationContext, the userOrGroupName and IsUserName as parameter. Note that this is an overloaded constructor is in addition to the existing constructor which accepts only the ApplicationContext as parameter.
Now the UserProvisioningManagerImpl will in turn pass these parameters to a similar contructuctor in AuthorizationDAOImpl class along with the SessionFactory Object.
Similarly the AuthorizationDAOImpl would now have also new constructor which accepts the ApplicationContext, the userOrGroupName and IsUserName as parameter along with SessionFactory object. Note that this is an overloaded constructor is in addition to the existing constructor which accepts only the ApplicationContext and SessionFactory as parameter. Inside this constructor we would first call the existing constructor to construct the AuthorizationDAOImpl Object. The AuthorizationDAOImpl class will now contain three new additional attributes. A Hashmap attribute called AuthPolicyCache which would store the Authorization Policy for the passed user or group. A new internal attribute localUserOrGroupName would be created store the name of the user or the group for which the Authorization Policy is retrieved and cached. Also there would another int attribute called cacheLevel which describes the level of cache. It is defaulted to “0”
0 – Indicates that the cache is not used

1 – Indicates that the cache contains Authorization Policy for the passed user name
2 – Indicates that the cache contains Authorization Policy for the passed group name
Inside this new constructor call the existing constructor passing the ApplicationContext to obtain an instance of AuthorizationDAO for that particular application. If there are any exceptions they throw those back to the 

Also then the value of the userOrGroupName is stored in the localUserOrGroupName attribute. Based on the value of the isUserName flag either we need to retrieve the AuthorizationPolicy either for the User or for the Group based on the name passed.
If the isUserName is set to true, indicating that the passed UserOrGroupName parameter contains the user name we first need to set the cacheLevel object to 1 indicating that we are using the cache and it contains Authorization Policy retrieved for that particular user. We need to first obtain the User Object passing the userOrGroupName (which contains the name in this case) as parameter. This can be done by calling the getUser () method as shown below

[image: image3]
If you are unable to retrieve the user, throw an error saying that user not found 
Now call the getProtectionElementPrivilegeContextForUser method passing the userId retrieved from the User Object as parameter.

[image: image4]
If the isUserName is set to false, indicating that the passed UserOrGroupName parameter contains the group name we first need to set the cacheLevel object to 2 indicating that we are using the cache and it contains Authorization Policy retrieved for that particular group. We need to first obtain the Group Object by creating a GroupSearchCriteria object and populating the groupName attribute using the the userOrGroupName (which contains the name in this case). Now using the getObjects methods we can retrieve the group matching the group name shown below. This method should a list containing only single Group Object that matches the groupName provided in the GroupSearchCriteria

[image: image5]
If you are unable to retrieve the group, throw an error saying that group not found 

Now call the getProtectionElementPrivilegeContextForGroup method passing the groupId retrieved from the Group Object as parameter.


[image: image6]
Now based on either the getProtectionElementPrivilegeContextForUser or the getProtectionElementPrivilegeContextForGroup is called , we obtain a Set of ProtectionElementPrivilegeContext objects. These are the combinations of the ProtectionElement their corresponding Privileges on which the user has access. Each Individual object contains a single ProtectionElement object and a List of associated Privilege objects.
This returned set needs to be transformed into a cache that can be stored internally. Hence we need to iterate through this returned set and retrieve each of the ProtectionElementPrivilegeContext. Now we need to obtain the ProtectionElement Object from the ProtectionElementPrivilegeContext object and obtain the ProtectionElement’s “ObjectId” and the “Attribute” attributes. If there is value for the attribute field then we append the same to the retrieved ObjectId value using “#@#” as intermediate padding (there is a risk if the value of ObjectId or Attribute contain the padding string). Now we obtain the list of Privileges from the ProtectionElementPrivilegeContext object. Now we can retrieve individual PrivilegeName from each of the Privilege Object in the list and form a list of PrivilegeNames.
Using the key formed using the ProtectionElement’s ObjectId padded along with the Attribute value we make an entry into the AuthPolicyCache using the PrivilegeName list as value. We need to repeat this operation for each and every ProtectionElementPrivilegeContext Object retrieved.
Accessing the cache

A new private method called checkCachedPermission will be provided which the checkPermission methods will utilize to check whether the user has access levels or not. This method will accept a the following parameters 
ObjectId – the Object id of the protection element which the user is trying to access

Attribute – the value of the attribute for that protection element

Privilege – the name of the operation which the user is trying to perform.

This method will first determine if the attribute value is null or not. If it isn’t then it will pad the ObjectId value with the attribute value using “#@#” in between. Now using this value as key try to look up in the internal cache and retrieve the value matching the key. If you are unable to find the hashtable entry for the key, return a Boolean false indicating that the user has no access permissions on that ProtectionElement. However if a match is found, then retrieve the list of the Privilege for the corresponding key. Now if the Privilege list contains the actual privilege passed as a parameter or it contains the Privilege “OWNER”. If so return a Boolean true indicating that the user has corresponding Privilege on the Protection element else return a false.
Modifying the checkPermissions Method
Now we need to modify the checkPermissions method to use the internal cache whenever available to avoid the database round trip. Since we have enabled cache for both User and Group we need to modify both the checkPermission methods for user as well as group to make them cache enabled. 
For user we need to modify both the following methods

[image: image7]
These methods would first check if the cacheLevel is set to “1” and the localUserOrGroupName matches the userName passed as parameter. This indicates that the internal cache is loaded with AuthPolicy for the given user. Hence we would call the checkCachedPermission passing the ObjectId, Attribute, and Privilege. For the method which doesn’t have “Attribute” as a parameter we can pass in a null. Return the result provided by the checkCachedPermission method to the client.

However if the cachelevel is not set to 1 or the localUserorGroupName doesn’t not match the passed userName parameter it indicates that there is no Authorization Policy cached in for this user. So we should proceed with the traditional way of querying the database to obtain the results.

For Group we need to modify both the following methods


[image: image8]
These methods would first check if the cacheLevel is set to “2” and the localUserOrGroupName matches the groupName passed as parameter. This indicates that the internal cache is loaded with AuthPolicy for the given user. Hence we would call the checkCachedPermission passing the ObjectId, Attribute, and Privilege. For the method which doesn’t have “Attribute” as a parameter we can pass in a null. Return the result provided by the checkCachedPermission method to the client.

However if the cachelevel is not set to 2 or the localUserorGroupName doesn’t not match the passed groupName parameter it indicates that there is no Authorization Policy cached in for this group. So we should proceed with the traditional way of querying the database to obtain the results.

	public static AuthorizationManager getAuthorizationManager(String applicationContextName, String userOrGroupName, boolean isUserName)throws CSException



	public java.util.List getObjects(SearchCriteria groupSearchCriteria)



	public Set getProtectionElementPrivilegeContextForUser(String userId) throws CSObjectNotFoundException



	public User getUser(String userOrGroupName)



	public Set getProtectionElementPrivilegeContextForGroup(String groupId) throws CSObjectNotFoundException



	public boolean checkPermission(String userName, String objectId, String privilegeName) throws CSException



	public boolean checkPermission(String userName, String objectId, String attributeId, String privilegeName)throws CSException



	public boolean checkPermissionForGroup(String groupName, String objectId, String privilegeName) throws CSException



	public boolean checkPermissionForGroup(String groupName, String objectId, String attributeId, String privilegeName)throws CSException





[image: image9.jpg][image: image10.jpg][image: image11.png][image: image12.png]_1135871162.bin

