	[image: image2.jpg] NCICB
	[image: image1.png]

[image: image6.png]
Common Security Module
Test Plan
Version No: 0.1
Last Modified: 06/23/06
Author
:
Steve Hunter
Team
:
Common Security Module (CSM)

Purchase Order# 34552
Client
:
Nation Cancer Institute - Center for Bioinformatics,

National Institutes of Health,

US Department of Health and Human Services

Document History

Document Location

The most current version of this document is located in CVS under security/docs.
Revision History

	Version Number
	Revision Date
	Author
	Summary of Changes

	0.1
	06/23/06
	Steve Hunter
	Initial Structure of Document

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Review

	Name
	Team/Role
	Version

	Date Reviewed
	Reviewer Comments

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Related Documents

More information can be found in the following related CSM documents:
	Document Name

	

	

	

	

	

	

	

Table of Contents
41.
Introduction

2.
References
4
3.
Scope
4
4.
Approach
5
5.
Features to be Tested
6
6.
Features not to be Tested
9
7.
Testing Environment / Resources
9
7.1
Testing Environments
9
7.2
Resources
9
8.
Test Deliverables
10
9.
Test Schedule
10
10.
Risk Issues
10
11.
Roles and Responsibilities
10
12.
Glossary of Terms
11

Test Plan
1. Introduction
This plan defines the approach, objectives, and procedures Ekagra will use to test the Common Security Module (CSM) in the coming 3.2 release. The plan’s goal is to ensure the team thoroughly tests the system so that it meets functional and technical requirements, and accomplishes the project’s mission.
To improve efficiency and avoid duplication of effort, the Test Plan will reference documents that contain the content for a given section.

2. References

This plan combines with other project documentation such as the Scope/Vision, Use Cases, SAD, Data Models, Test Cases, Traceability Matrix, etc., to form a complete development plan.

Some of the information contained in this document was derived from the following documents:

· Test Cases_CSM_v3.2.xls

· Requirement Testability_CSM_v3.2.xls
· UPT Full Regression Test_CSM_v3.2.xls

· Scope_CSM_v3.2.doc
3. Scope
Though all of the requirements and their corresponding tests are represented in this document, a detailed list of requirements for the 3.2 release can be found in the Scope document in CVS. This document will not cover the testing that is done during development (Unit Testing) or the testing of requirements of previous versions.
4. Approach
· As each unit of work is completed, it will be tested as soon as possible (within the next day or two). If time does not permit immediate testing, the test cases will be executed in iterations that are outlined in the Project Plan.
· Full Regression Tests will be done before pushing the product to the Staging or production tier. The Full Regression Test involves executing all of the test cases for v3.2, the automated regression test, and the UPT full regression test.
· Configuration of the DEV, QA, Staging, and Production test environment is controlled by NCICB and will remained fixed (see Environment section of this document). Any special environment configurations that need to be tested will be done on a local machine.
· All requirements that deal with a configuration change, like “Upgrade to MySQL 4.1.19” or “Ensure compatibility with SQL Sever” will be brush tested with UPT and tested with the auto-regression test.
· Execution of test cases will be recorded in the Test Case_CSM_v3.2 document. This document tracks everything involving test cases including: the pass/fail status, execution date, environment test case was executed, etc. . It will only keep a record of the last time the test was executed.
· CSM will be tested using NCICB’s standard operating procedures (SOP). This includes accepting a build revision label from the development team, re-building the software using the revision label, and deploying and testing the changes on the QA Server. For more details on the QA SOPs, refer to NCICB’s SOPs documents.

· Acceptance Testing will be done prior to the push to staging.
5. Features to be Tested

The “Test Cases_CSM_c3.2.xls” document contains a detailed list of all the 3.2 test cases. A high-level QA response to v3.2 requirements is thoroughly covered by the Testability of Requirements_CSM_v3.2 spreadsheet. Below is a copy of this document.
	Scope ID
	Scope Sub-ID
	Description
	Update AutoRegT
	Use Auto-RegTest
	System Test
	New Integration Test
	Comments

	4.1
	
	Regression Test against Latest Version of MySQL
	
	Y
	Y
	
	UPT Brush Test

	4.2
	
	JDK 1.4 Backward Compatibility
	
	Y
	Y
	
	UPT Brush Test, Scope items 4.1 and 4.2 will be completed. Then the items will be tested. They will not be tested independently because the changes involve the same tests and are not expected to produce any defects

	4.3
	
	Migration to Hibernate 3.1.13
	
	Y
	Y
	
	UPT Brush Test

	4.4
	
	Supporting Open LDAP as credential provider
	
	Y
	Y
	
	Integration tests that test the login APIs directly (extend auto-reg test to authentication). Perform the usual login tests – see UPT Full Regression test for ideas on tests to write. Also run the login related tests on UPT. We’ll need access to the open LDAP with one user to test the actual login (super admin). Database and application server will be local.

	4.5
	
	Performance Enhancements to CSM APIs
	
	
	
	
	

	
	4.5.1
	Enable Caching of the User’s Authorization Policy
	Y
	Y
	Y
	
	Two ways to test this, both are integration (use both):
1. Start user session, get cache, change database, do checkpermission() on changed item – permission should remain the same as the time the policy was cached.
2. Setup user session and get cached policy, do a checkpermission(), sleep the code, shutdown the database, do checkpermission() again – should not matter that the database has been shut down.

	
	4.5.2
	Explore the usage of eh-cache for CSM Domain Objects
	
	
	Y
	Y
	Write an integration test that shows if there is a performance improvement on the hibernate related calls (read, create, etc.).

	
	4.5.3
	Design Automated Instance Level Security Mechanism for SDK Generated Application
	
	
	
	
	No testing required

	4.6
	
	Improve the Exception Handling
	
	
	
	
	

	
	4.6.1
	Get methods to throw exception instead of returning a null
	
	
	Y
	
	This will involve UPT changes, so API changes can be tested via the UPT

	
	4.6.2
	Add methods to throw exception if the object exists
	
	
	Y
	
	UPT Tested

	
	4.6.3
	Configuration Errors should throw appropriate exceptions
	
	
	Y
	Y
	The tests for this requirement must be done entirely locally so we have easy control over all of the configuration options

	
	4.6.4
	General Error Enhancements for CSM APIs and UPT
	
	
	Y
	
	UPT Tested

	4.7
	
	Linking a User to an Application Context
	Y
	Y
	Y
	
	UPT Test and
Updated database scripts require review and run them with auto-regTest

	4.8
	
	Adding a new “Type” attribute to Protection Element
	Y
	Y
	Y
	
	Largely UPT Tested, test database scripts with auto-regTest

	4.9
	
	Bug Fixes and Enhancements
	
	
	
	
	

	
	4.9.1
	Focus on Load
	
	
	Y
	
	UPT Tested

	
	4.9.2
	Alphabetize the search results
	
	
	Y
	
	UPT Tested

	
	4.9.3
	Hashing of the Password
	
	
	Y
	
	UPT Tested

	
	4.9.4
	Cannot Deassign Child Protection Group
	Y?
	Y?
	Y
	
	May involve API change (decided during design phase), otherwise just UPT Test

	
	4.9.5
	Associating Users to a Group
	Y
	Y
	Y
	
	Largely UPT Tested, update and use auto-regTest due to API change

	
	4.9.6
	Having Group Based Check Permissions
	Y
	Y
	Y
	Y
	Assuming we cache the group-based checkpermission, it will involve the same integration tests used for user caching, and UPT Tests

	
	4.9.7
	Login Name of a User is non editable once created
	
	
	Y
	
	UPT Tested

	
	4.9.8
	Code Cleanup
	
	Y
	Y
	
	UPT Brush Test

	
	4.9.9
	UPT Usability Enhancements
	
	
	Y
	
	UPT Tested

	
	4.10
	CSM SDK Integration
	N/A
	N/A
	N/A
	N/A
	N/A

	
	4.10.1
	 Securing all the Interfaces
	
	
	
	Y
	New Integration tests are required, use the unit test's code to write portions of this test

	
	4.10.2
	Changing the incorrect error messages
	
	
	
	Y
	New Integration tests are required, use the unit test's code to write portions of this test

	4.11
	
	BMS Integration
	
	
	
	
	

	
	4.11.1
	Authentication as a Web Service (Integrating BMS Code into the CSM Code Base)
	
	
	
	Y
	New Integration test is required, use the unit test's code to write portions of this test

	
	4.11.2
	Integration of other BMS Enhancements
	Y
	Y
	Y
	Y
	Almost all changes are UPT Testable, only slight API change that needs testing with auto-regTest.
Integration of changes to the LDAP will require the writing of an integration test

	4.12
	
	Improve the Deployment of CSM & Integration with Other Applications
	
	
	Y
	Y
	Involve deployment to local box and creation of applications in UPT

	4.13
	
	Expose Core Authorization Services as a Web Service
	
	
	
	Y
	New Integration tests are required

	4.14
	
	CSM caGrid Integration
	
	
	
	
	Not decided yet

	4.15
	
	Common Logging Module Requirement Gathering
	
	
	
	
	No testing required

6. Features not to be Tested
The following CSM v3.2 requirements will not be tested because they are not a deliverable to our user base and do not require testing:
· Design Automated Instance Level Security Mechanism for SDK Generated Application
· Common Logging Module Requirement Gathering

7. Testing Environment / Resources
7.1 Testing Environments
· QA, Staging, and Production Servers
· OS: Development tier - Solaris (Unix)
· Application Server: JBoss 4.0.2

· Database: MySQL v4.1.19, Oracle
· Java Technologies: Hibernate 3.0.5, Log4j 1.2.8

· Web Browser: IE 5.0+, Mozilla 1.0

· Local – everything is done on one machine, so we have complete control over environment
· OS: Windows 2000

· Application Server: JBoss 4.0.2

· Database: MySQL v4.1.19, SQL Server 2000, Tomcat
· Java Technologies: Hibernate 3.0.5, Log4j 1.2.8

· Web Browser: IE 5.0+, Mozilla 1.0

7.2 Resources
The following resources will be used to conduct the testing of CSM.

· Software configurations

· JBOSS 4.0.1
· j2sdk1.4

· MySQL 4.1

· Java Virtual Machine

· Struts Framework 1.1

· Oracle 9i

· Tomcat web container
· Development Software

· Eclipse and myEclipse plug-in

· Test tools

· JUnit

· OpenSTA (Open System Testing Architecture) REMOVE ME?!

· Documentation

· CSM Scope/Vision 3.1

· Relevant design documents

· Test Plan_CSM_v3.2 (this document)

· Test Cases_CSM_v3.2

· CSM Guide for Application Developers

· SDK Programmer’s Guide

· User Interface

· Web interface (IE Explorer, Mozilla Firefox)

· Web Server

· Apache web server
· Operating system

· Windows 2000,NT,XP

· Unix (Sun Solaris)

8. Test Deliverables
The following QA related documents will be delivered to NCICB management for review:
· Test Plan_CSM_v3.2 – this document

· Test Cases_CSM_v3.2 – provides a detailed list of the test cases that will be done to test the new 3.2 functionality.
· Test Summary Report_CSM_v3.2 – summarizes the results of testing

9. Test Schedule

Other than a few requirements that will be grouped and tested simultaneously, each requirement will be tested as soon as it is completed. Since some of these requirements will be completed at varying times, detailed testing dates will not be provided. For a comprehensive schedule of projected milestone testing activities, refer to the Project Plan in CVS. Below is a summary of requirements for each iteration, testing dates for that iteration, and schedule related comments.
Construction

· Iteration 1
· Requirements

· Hibernate 3.1 Upgrade/JDK Backwards Compatibility/MySQL Upgrade Test
· Open LDAP/Active Directory Authorization
· Auth Policy Caching
· BMS Web Service Integration
· Regression Test Complete Code Coverage
· Testing Dates – 07/20/2006 – 07/30/2006

· Comments - The testing for this iteration is unique. All requirements for this iteration will be completed, and only then will the testing of those requirements begin. Since these requirements can be tested with a brush test and are not likely to cause errors, they will be tested together.

· Iteration 2

· Requirements

· Application Specific UPT and APIs
· Improve Exception Handling
· Performance Enhancements
· Grid SAML Assertion Support
· Secure SDK interfaces
· BMS Code Integration
· Defect Fixes
· Testing Dates 08/01/2006 – 10/12/2006
· Comments – Testing occurs as each requirement is completed
· Iteration 3 – Pushing to Staging
· Requirements – no functional requirements

· Testing Dates – 10/13/2006 – 11/26/2006

· Comments – Before pushing to staging on 11/29/2006, we will resolve issues and regression test everything.

10. Risk Issues

	Risk
	Potential effects
	Mitigation
	Status

	Configuration of databases and usernames is not in our direct control and may therefore cause unscheduled delays.

	Unable to have proper environment to test compatibility with various environments
	We have emailed the appropriate people to give them as much warning as possible
	Pending

11. Roles and Responsibilities

The Team’s Testing Responsibilities:
	Name
	Job Title
	Role in Testing

	Charles Griffin
	Project Manager
	Ensure QA related deadlines are met

	Kunal Modi
	Team Lead
	Aid in development of integration tests

	Orlando Roebuck
	Developer
	Aid in development of integration tests

	Steve Hunter
	Quality Assurance
	Plan, write, and execute test cases, post defects, ensure quality in deliverables

12. Glossary of Terms
· Unit Testing - Controlled evaluation in the development step to ensure that one component of program code performs as defined in the specification. This type of testing is normally completed by the development team and will always involve writing test scripts that test the low level classes.
· Integration Testing – Controlled evaluation performed to ensure that a collection of programmed units work together to produce expected results as defined in the functional requirements. This type of testing is normally completed by the QA Engineer. It will almost always involve code that executes high level wrappers that combine functionality from various modules.
· Systems Testing – Controlled evaluation of an application in the context of a system to ensure that the application works within the system environment. This type of test will almost always involve a black box test that tests a GUI interface.
· Load Testing – Testing with a large amount of virtual users and/or data in order to better predict system behavior and performance under extreme production conditions.

· Acceptance Testing – The process whereby end users performing final testing of an application prior to its release to production. The focus is on whether or not the application meets user requirements and produces correct results.
· White Box – Tests that are written and executed with knowledge of the code or inner workings of the software.
· Black Box – Tests written and executed without knowledge of the code or inner workings of the software
· Acceptance Criteria - Any objective quality standards that the software must meet, in order to be considered ready for release. This may include things like stakeholder sign-off and consensus, requirements that the software must have been tested under certain environments, minimum defect counts at various priority and severity levels, minimum test coverage numbers, etc.

[image: image2.jpg][image: image3.jpg][image: image4.png][image: image5.png]_1135871162.bin

