Software Architecture Document V1.1
 CSM Enabling of SDK and Writable APIs for SDK

[image: image1.png]

Software Architecture Document
Version 1.1
May 27, 2005
Table of Contents
Table of Contents

iiTable of Contents

3Document Overview

3Change Record

3Reviewers

4Introduction

4Purpose

4Definitions, Acronyms, and Abbreviations

5caCORE SDK

5Background

5Problem Scenario

6Proposed Solution

9Session Management : Where is the User ?

12Step toward Write APIs and Transaction Management

12Simple Writable APIs (SWA)

13Putting it all Together

15Components

16Environment

17Scope

17In Scope

17Out of Scope

18SDK Intégration Design

18Changes to the OR Mapping file

18Changes to the OR Mapping file

Document Overview

Change Record

	Date
	Author(s)
	Document

Version
	Change Reference (Major Changes)

	
	Vinay Kumar
	0.1
	Initial draft

	5/17/05
	Eric Copen, Satish Patel
	1.0
	Text changes and formatting

	5/27/05
	Eric Copen
	1.1
	Conversion to NCICB template

	
	
	
	

	
	
	
	

Reviewers XE "Reviewers"
	Name
	Position
	Document

Version
	Date

Reviewed

	Satish Patel
	caMatch/Developer
	0.1
	5/17/05

	Eric Copen
	QA/Developer
	0.1, 1.0
	05/13/05, 5/17/05

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Introduction

caCORE SDK follows the Model Driven Architecture (MDA) approach. It automatically generates a set of APIs from the model defined in UML. This design document highlights some of the enhancements that should be introduced in SDK to make it more usable.

Purpose

The purpose of this document is to propose the design solution to introduce the writable APIs with CSM enabling of SDK.

Definitions, Acronyms, and Abbreviations

· AOP – Aspect Oriented Programming

· CSM – Common Security Module

· SDK – Software Development Kit

· API – Application Programming Interface

· EA – Enterprise Architect, a tool for UML modeling

· MVC – Model-View-Controller, a design pattern

· BO – Business Object

caCORE SDK
Background
Currently the caCORE SDK generates the set of APIs for the server and client side. The server side APIs run behind a HTTP server which has a proxy interface for querying the data. The proxy interface has only one method called “query”.

The “query” method takes a request as a parameter and sends the response with the result of the query.

[image: image2]
Figure 1 Existing Architecture

Problem Scenario

The present architecture supports only one method though a proxy interface, however more methods can be introduced. Therefore, the interface definition has to change. There might be different types of business requests sent to the HTTP server. Depending upon the type of business request, there could be number of methods introduced in the proxy interface. These methods can be processed by implementing a number of if/else statements or a command pattern for handling these requests.

Proposed Solution

There is a front controller pattern that can solve these kinds of problems. Please see the picture below:

[image: image3.png]Client

MainServiet

Wodel

Flow Manager

View Assembler

1: request

2: dispateh

3: solectview T

: present view 1|

E

Figure 2 Controller Pattern

1.1.1 Approach

There are two ways to implement the Front Controller Pattern. The first option is to create a self-developed implementation of this pattern. The advantage is no dependence on an external framework. The second, preferred option is to use an existing framework that provides the necessary capability – Struts. Struts is a framework based on the MVC pattern (Model-View-Controller). caCORE SDK can customize the Struts implementation to disregard the View layer since it is not needed, but use the Response layer. The Response layer will react dependent upon the incoming request.

1.1.2 Advantages

Using Struts we can gain central control of request handling. This is a crucial part of the design; where we can embed the user information for SECURITY CONTEXT in the current thread. This way at any point during method execution, we have access to the caller of the code. This will help us decide if the caller can perform that operation. Please refer to the figure below:

[image: image4]
Figure 3 Embedding of User Information

When the request comes from the client to the Controller, the user information which was stored in the Session earlier, can be embedded in the thread (LocalThread); it can be retrieved at a later stage without depending upon Request or Session. This will decouple the business layer from any HTTP-specific dependency.

Just before the business method is called, an interceptor will intercept the execution and first check if this method can be called by the caller. If the caller is authorized then it will execute the method, if not it will just return a security exception. This can be achieved with security Aspect. This way the business layer does not need to handle the security explicitly.

See the below diagram for more details:

[image: image5.emf]ad Activity Diagram

Start

�

User sends Request

�

Controller Intercepts the

�

request

�

Embed the user in Thread

�

just before some business

�

method is called

�

Check authorization for

�

this method

�

Retrieve user info from

�

Thread

Is Authorized

�

call business method

End

Name: Activity Diagram

Author: Vinay Kumar

Version: 1.0

Created: 3/5/2001 12:00:00 AM

Updated: 5/6/2005 2:04:01 PM

�

These activities

�

are performed by

�

security aspects

[Yes]

[NO]

Figure 4 Activity Diagram

Session Management : Where is the User ?

The generated APIs can be hosted in some web container, if not the application server because the entry point is a servlet. If you are using the servlet then we can make use of the HTTP session for session management. However, since the client is an application and not a browser, it becomes cumbersome to support the server-side sessions.

To resolve this problem, we can make use of HTTPClient project from Apache Software Foundation. This is an open-source project that provides very rich APIs to manage HTTP protocol from client-side. There are multiple ways to manage sessions on the server-side, including cookies, hidden fields, URL rewriting, etc. Since we are handling HTTP requests from an application, with the help of HTTPClient, we can make use of cookies to assist with session management. A unique session key can be generated from the Controller for each client when a request for login is made. The generated session key can be sent to the client in the form of a cookie or an object, and used in the subsequent calls to track user session.

But still the issue of user context propagation remains unsolved. The code below demonstrates how we will solve the problem of user context propagation:

Utility code:

Controller code:

Security Aspect code:

A proxy layer called Remote Service Layer will be provided to keep track of the user with every request coming in. This layer in turn will call the real application service layer.

Application service interface and RemoteService interface may look like this:

[image: image6]
Figure 5 Session Management Using Proxies

The client application and the server application should be independent of the protocol used for communication. To meet this requirement, the proxies will be required on the client and the server side, which know how to make remote calls and handle remote calls respectively. On one hand, the server side proxy will be exposed as ApplicationService to the client, while on the other hand the client proxy will be exposed as RemoteService which will know how to communicate with the server. Since the client proxy and the application service proxy manage the communication and the method call interaction, the underlying application will not be required to know the details of the wire protocol. However, one will eventually be free to replace one wire protocol with another with very little modification.

In order to achieve seamless integration of client and server-side applications, any call made by the client application for the server application will be wrapped inside the RemoteObject by the RemoteService or client proxy. The RemoteObject will contain information such as which method to call on the server-side, user session information, etc. The RemoteObject will be hidden from both the client application and server application. When the ApplicationService receives a request with RemoteObject, it unwraps all the parameters and makes a call to the appropriate method in the server-side application.

Step toward Write APIs and Transaction Management

At present, SDK generates query-only APIs for objects defined in the UML model. Writing to the persistence layer is one of the requirements that have arisen. The domain model is generated as POJO (Plain old java objects) or Java beans, which are not transaction aware. Handling the pure POJOs is easier for developers, however while persisting them, transaction management can prove a difficult challenge. Hibernate provides a wrapper around transaction management APIs but it might require coding from the developer. For generated code from SDK, we want to stay away from programmatic transaction management. The declarative transaction management is the preferred approach. One of the options to tackle this problem is to use Spring framework, which provides a transaction management abstraction layer. By using Spring, in the future a different underlying transaction management can be used simply by changing the configuration file.
Simple Writable APIs (SWA)

The first step toward Writable APIs and Transaction Management is creating a simple writable API which can perform simple CRUD operations. These CRUD operations can be exposed as a Persistence Manager service layer or any other business service. The idea behind this is to enable it for distributed computing.

The Persistence layer can have the following methods:

<<List>> has been shown above to indicate that a custom proxy List can be used if the result set is large.

Putting it all Together

caCORE SDK will generate the APIs from the model definition in XMI format. The generated APIs will consist of the following:
· Domain Objects

· Server-Side APIs

· Client-Side APIs

· Service Layer

· DAO Layer

· All configuration files

· CSM integration code
At present the service is exposed through a proxy interface using HTTP tunneling, which limits the client to be only a java-based HTTP client. Ideally the server-side application should be accessible by clients that use RMI, HTTP, or Web Service protocol. Depending upon the system requirement, one should be able to choose the preferred client. However, the nature of client should not affect the server-side application.

 ​​

Figure 6 Distributed Computing with Different Clients

The Security layer proposed here is security level 1 only.

Although we propose to support different types of clients, for the current release we would limit to HTTP Client only. Spring framework which uses HTTPClient will be used for remoting. Please see the diagram below:

Client

Web Server

Figure 7 HTTP Remoting
Components

The following diagram shows the different components involved in the architecture:

[image: image7.emf]id Component Model

APPClient.jar

HTTPClient3.0.jar

HTTPServer.jar

API.jar

SessionManagement.jar

CoreAPI.jar

SecurityAspects.jar

EAModel

XMI

SecurityTags

caCORESDK

CSM.jar

HTTP Tunneling (over SSL)

«derive»

«derive»

«use»

«use»

«use»

Environment

Following is the list of the environment components required for this architecture:

· JDK 1.4.2.x

· JBoss 4.x

· EA 4.5

· Spring 1.1.5

· HTTPClient 3.0

Scope

In Scope

· HTTPClient will be provided to access service interface

· CSM will be integrated for method level only (level 1 or level 0)

· Write API will be provided

· Session Management will be provided

Out of Scope

· AOP integration will not be provided in this release (No Aspects)

· RMI Client will not be provided

· Web services Client will not be provided
SDK Intégration Design

Changes to the OR Mapping file

The OR Mapping files generated from the new integrated SDK should not be “read-only” as before. In order to for writable APIs to work, these OR mapping files need to be made “read-write”. Also the mutable property should be changed from “false” to “true”. The code generator class “UML13HBMTransformer” needs to be modified for the same. Below are the changes that we need to make to this file
Before:

[image: image8]
After:

[image: image9]
Changes to the generated ApplicationServiceProvider Class

The auto generated ApplictionServiceProvider Class needs to be modified to be used effectively in the integrated environment. This class provides the correct instance of the ApplicationService Class based on the configuration made. The methods of this class should be made static thereby avoiding the need to instantiate it every time when called. Also this class needs to be enhanced to take care of providing a local instance on the server side when called. A new static method getLocalApplicationService needs to be added. This method will instantiate an instance of the ApplicationServiceImpl class and returns the same to the user. If unable to instantiate the local instance this method should throw an exception stating the same.
Changes to the generated Domain Objects

The caCORE SDK generated domain objects use the caCORE SDK client for the purpose of obtaining the subsequent children objects. However after integration a new common integrated client will be generated. The domain objects will need to be changed to start calling the new client to obtain the children objects. For this requirement the “BeanImpl.javajet” JET template requires an update. We need to modify the call to obtaining the handle to the ApplicationService to start using the ApplicationServiceProvider. Note that these needs to be change through out the template at multiple places. The ApplicationServiceProvider Class generation needs to be changed to make the getApplicationService method as a static method.
Before:

[image: image10]
After:

[image: image11]
Merging of the ListProxy and SDKListProxy
SDKListProxy was written as a wrapper over the existing caCORE ListProxy. Now with the integrated solution the SDKListProxy needs to be retired and the caCORE ListProxy to be modified to be able to use the new integrated client. For this purpose similar to the design above all the calls for obtaining the ApplicationService instance should be modified. Note that these changes need to be made through out the class.
Before:

[image: image12]
After:

[image: image13]
Merging of the ApplicationService and SDKApplicationService

SDKApplicationService was written as a wrapper over the existing caCORE ApplicationService. Now with the integrated solution the SDKApplicationService needs to be retired and the caCORE ListProxy to be enhanced to be able to integrate all the security features. The proposed design is to change the current ApplicationService Class from a class to an interface. There will be a new class ApplicationSericeImpl which will created this class will be similar to the SDKApplicationService. It will implement the ApplicationService Interface. The current ApplicationService Class will be renamed ApplicationServiceBusinessImpl and this would be managed by the caCORE Team. The ApplicationServiceImpl class will perform all the security and session checks before forwarding the call to the respective method of the ApplicationServiceBusinessImpl.
Also based on the Writable Flag the ApplicationService Interface will contain the methods for creating, updating and deleting the objects. This has to be generated at the runtime based on the input from the user.
[image: image14.emf]cd applicationservice

«interface»

ApplicationService

ApplicationServiceImpl

ApplicationServiceBusinessImpl

«realize»

«use»

Introducing a Writable Flag

SDKApplicationService was written as a wrapper over the existing caCORE ApplicationService. Now with the integrated solution the SDKApplicationService needs to be retired and the caCORE ListProxy to be enhanced to be able to integrate all the security features. The proposed design is to change the current ApplicationService Class from a class to an interface. There will be a new class ApplicationSericeImpl which will created this class will be similar to the SDKApplicationService
Response

Request

Client

HTTP Server

 API.jar

Client

Controller

Session

Request

getUser

Embed in Thread

:business_Object

CSM

Check authorization

public class MethodExecutor { � private static final ThreadLocal threadLocal = new ThreadLocal(); �� public static User getInstance() { � User identity = (User) threadLocal.get(); � } �� public static void init(User user) { � threadLocal.set(user); � } �� public static void release() { � threadLocal.set(null); � }

User user = (User) session.get("user"); �MethodExecutor.init(user); �

Call to the business object methods:

(This is called just before returning the response to the user)�

MethodExecutor.release();

User user = MethodExecutor.getInstance();

Public interface ApplicationService {

 Public Patient createPatient(Patient pt);

 Public void removePatient(Patient pt);

}

Public interface RemoteService{

 Public User login(String userId, String password);

 Public Patient createPatient(Patient pt, String sessionId);

 Public void removePatient(Patient pt, String sessionId);

}

Client Application

mgr.createPatient()

Client Proxy

makeRemoteObject()

sendRemoteObject()

getRemoteObject()

returnBusinessObject

Service Layer Proxy

getRemoteObject()

getBusinessObject

callBusinessMethod()

makeRemoteObject()

returnBusinessObject()

Server Application

mgr.createPatient()

1

2

3

4

5

6

 public Object createObject(Object obj) throws <<someException>>

 public Object updateObject (Object obj) throws <<someException>>

 public void removeObject(Object obj) throws <<someException>>

 public <<List>> getObjects(Object obj) throws <<someException>>

 public <<List>> getObjects(<<some Criteria>> sc) throws <<someException>>

 public void addChildren(Object parent, List children, String childrenPropName) throws <<someException>>

 public void removeChildren(Object parent, List children, String childrenPropName) throws <<someException>>

WEB SERVICE

CLIENT

HTTP CLIENT

RMI

CLIENT

LOCAL JAVA CLIENT

WEB CLIENT

BO

BO

S

E

R

V

I

C

E

L

A

Y

E

R

Domain objects

B

U

S

I

N

E

S

S

DELEGATE

S

ECUR

I

T

Y

L

A

Y

E

R

D

A

O

L�A�Y�E�R

HTTPClient Layer

HTTPSERVICE EXPORTER

HTTP INVOKER LAYER

SPRING Remoting

SERVICE INTERFACE

SERVICE INTERFACE

 Element classEl = new Element(classElName);

 mappingEl.addContent(classEl);

 classEl.setAttribute("name", klass.getName()+"Impl");

 classEl.setAttribute("table", table.getName());

 classEl.setAttribute("mutable","false");

 String cacheName = "cache";

 Element cache = new Element(cacheName);

 cache.setAttribute("usage", "read-only");

 classEl.addContent(0,cache);

 Element classEl = new Element(classElName);

 mappingEl.addContent(classEl);

 classEl.setAttribute("name", klass.getName()+"Impl");

 classEl.setAttribute("table", table.getName());

 classEl.setAttribute("mutable","true");

 String cacheName = "cache";

 Element cache = new Element(cacheName);

 cache.setAttribute("usage", "read-write");

 classEl.addContent(0,cache);

public java.util.Collection get<%=capFirst(otherEnd.getName())%>(){

try{

 if(<%=otherEnd.getName()%>.size() == 0) {}

 } catch(Exception e) {

 ApplicationService applicationService = ApplicationService.getApplicationService();

 try {

 <% if (!isAbstract.equals("abstract")) {%>

public java.util.Collection get<%=capFirst(otherEnd.getName())%>(){

try{

 if(<%=otherEnd.getName()%>.size() == 0) {}

 } catch(Exception e) {

 ApplicationService applicationService = ApplicationServiceProvider.getApplicationService();

 try {

 <% if (!isAbstract.equals("abstract")) {%>

public java.util.Collection get<%=capFirst(otherEnd.getName())%>(){

if (hasAllRecords_)

{

 realSize_=listChunk_.size();

} else

{

 ApplicationService appService = ApplicationService.getApplicationService();

 if(appService == null)

 {

 appService = ApplicationService.getRemoteInstance(getServerAddress());

 }

public java.util.Collection get<%=capFirst(otherEnd.getName())%>(){

if (hasAllRecords_)

{

 realSize_=listChunk_.size();

} else

{

 ApplicationService appService = ApplicationServiceProvider.getApplicationService();

 if(appService == null)

 {

 appService = ApplicationService.getRemoteInstance(getServerAddress());

 }

PAGE
May 27, 2005
 Page 21 of 21

