	[image: image4.jpg] NCICB
	[image: image1.png]

[image: image8.png]
Common Security Module

Object Instance Level Security

Version No: 0.1
Last Modified: 09/27/05
Author
:
Vinay Kumar

Team
:
Common Security Module (CSM)

Purchase Order# 34552

Client
:
National Cancer Institute - Center for Bioinformatics,

National Institutes of Health,

US Department of Health and Human Services

Document History

Document Location

The most current version of this document is located in CVS under security/docs.

Revision History
	Version Number
	Revision Date
	Author
	Summary of Changes

	0.1
	9/27/05
	Vinay Kumar
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Review

	Name
	Team/Role
	Version

	Date Reviewed
	Reviewer Comments

	Eric Copen
	QA
	0.1
	9/28/05
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Related Documents

More information can be found in the following related CSM documents:
	Document Name

	

	

	

	

	

	

	

Table of Contents

41.
Introduction

1.1
Purpose
4
2.
Problem Statement
4
3.
Analysis
4
4.
Design Approach
4

Object Instance Level Security

1. Introduction

The Common Security Module provides multiple levels of security including object level, object instance level, and attribute level security. This document details the design for object instance level security.
1.1 Purpose

The purpose of this document is to show the current problem as far as object instance level security is concerned and the design approach for the same.

2. Problem Statement

The Common Security Module currently provides object instance level security but it can only secure one object instance at a time. This can pose a serious problem when handling multiple instances concurrently. If the collections of the objects are to be secured then one has to iterate through the collection of the objects to secure them. Another problem is that in any situation, all objects have to be instantiated before they can be checked for secure access. This has resulted in significant performance problems for the applications where there is a need to secure a collection of objects.
3. Analysis

The Common Security Module has its own schema, which may or may not reside within an application schema. Either way the reference to the object instance is stored in the CSM schema in a table called “CSM_PROTECTION_ELEMENTS”. This table stores information about the object instance. Elements in this table are logically grouped and are associated with a protection group in the protection group table. A protection group is logical collection of the protection elements. A user can be granted different privileges for a protection group. Therefore a user will have those privileges on the protection elements belonging to the protection group. So if a user has a role having “READ” privilege on a certain protection group then it implies that the user will have “READ” permission on all the protection elements belonging to that protection group.

4. Design Approach

As mentioned above in the Problem Statement, performance is one of the key issues in the design approach for this problem. Currently a security call has to be made for each item in the collection. What is really needed is a variation of batch processing.

The reference to the object is stored in the protection elements table, whereas the actual object is stored in a table in the application schema. Therefore in order to obtain a collection of secure objects, the following three processes must occur:
1. Acquire collection of objects based on application-based filter criteria.

2. Acquire collection of protection elements from CSM Authorization Schema.
3. Make an intersection of these objects.

Let us say collection of objects from applications is called Set A and collection of objects from CSM is called Set B. Figure 1.1 shows the secured collection:

[image: image2]
Figure 1.1 The intersection of the two sets is the secured collection of objects
In CSM there is already a utility class called ObjectUtils, which has methods for “minus” and “intersection”.

These methods can be invoked on the two collection sets to reveal the secured collection of objects.

The first process will be to determine the collection of objects for which this user has “READ” access. An additional attribute named “object type” can be introduced in the protection element table. When the APIs attempt to obtain a collection of the objects from CSM, they search for objects of a certain type. The population of this column can easily be done at the time the protection element is created. Populating the column requires the following:
· Schema change.
· Protection element bean change.
· Protection element OR mapping file change.

· Creation of protection element method.
The CSM is then ready to store the protection elements as required.

Another change that is required is in “AuthorizationManager”. A new method must be introduced in Authorization Manager. This method…

The new method:
 Public Collection secureObjectInstanceCollection(String userId, Collection appCollection, String objectType)

The following diagram will explain the activities involved with Object Level Security.
[image: image3.wmf]ad Object_Instance_Le...

Start

Get a collection of ids

from application logic

Get a collection of ids

from CSM for the same

object type for that

user

pass both the

collection to

ObjectUtils

intersection method

collection of object

ids on which user

has access

End

Set A, Application Objects

Set B, Object References in CSM Authorization Schema

Collection of Secured Objects

�Expand upon this. How does it store and where?

�What does this method do??

[image: image4.jpg][image: image5.jpg][image: image6.png][image: image7.png]_1135871162.bin

