	[image: image6.jpg] NCICB
	[image: image6.jpg]

Common Logging Module

Application Developers Guide

Version No: 1.0
Last Modified: 02/17/06
Author
:
Kunal Modi, Art Lian & Steve Hunter

Team
:
Common Logging Module (CLM)

Purchase Order# 34552

Client
:
National Cancer Institute - Center for Bioinformatics,

National Institutes of Health,

US Department of Health and Human Services

Document History

Document Location

The most current version of this document is located on the CLM website: http://ncicb.nci.nih.gov/core/CLM

Revision History

	Version Number
	Revision Date
	Author
	Summary of Changes

	0.1
	2/01/06
	Kunal Modi, Art Lian, Steve Hunter
	Draft

	
	
	
	

	
	
	
	

	
	
	
	

Review

	Name
	Team/Role
	Version
	Date Reviewed
	Reviewer Comments

	Steve Hunter
	Quality Assurance
	0.1
	3/02/06
	Edited

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Related Documents

More information can be found in the following related CLM documents:
	Document Name

	CLM’s Design Document

These and other documents can be found on the CLM website: http://ncicb.nci.nih.gov/core/CLM
Table of Contents

41.
Introduction to Common Logging Module (CLM)

1.1
Purpose
4
1.2
Scope
4
1.3
Using This Guide
4
2.
CLM Overview
5
2.1
Explanation
5
2.1.1
Event Logger
6
2.1.2
Object State Logger
6
2.1.3
User Information
6
2.1.4
Common Logging Database
7
2.1.5
JDBC Appender
7
2.2
Workflow for CSM Integration
8
3.
Deployment Models
9
3.1
CLM APIs
9
3.1.1
Introduction
9
3.1.2
Software Products
9
3.1.3
Configuration and SQL Files
9
3.1.4
Integrating CLM APIs – Overview
10
3.1.5
Deployment Steps
10
3.2
Log Locator Tool
13
3.2.1
Introduction
13
3.2.2
Log Locator Release Contents
13
3.2.3
Deployment Checklist
14
3.2.4
Deployment Steps
14
4.
Integrating with the CLM’s Audit Logging Services
16
4.1
Importing and Using the Audit Logging classes
16
4.2
Getting a Hibernate Session for Audit Logging
16
4.3
Setting user information for the client application
16
4.4
Obtaining the Event Logger
16
4.5
Logging from the client application
16
5.
Log Locator User Guide
17
5.1
Intended Audience
17
5.2
Components
17
5.2.1
Login
17
5.2.2
Search Criteria
18
5.2.3
Message
19

CLM Guide for Application Developers

1. Introduction to Common Logging Module (CLM)

1.1 Purpose

This document provides all the information application developers need to successfully integrate with NCICB’s Common Logging Module (CLM). The CLM was chartered to provide a comprehensive solution to Audit and Logging objectives and also to prevent the duplication of the effort and time involved in developing a logging solution. CLM is flexible enough to allow application developers to integrate audit logging into almost any code design with minimal coding effort. This phase of the Common Logging Module brings the NCICB team one step closer to the goal of CFR 21 / part 11 (FDA) compliance.

1.2 Scope

This document shows how to deploy and integrate the CLM services, including event logging and automated object state logging. It also shows how to deploy and configure the web locator tool for the purpose of browsing through the logs.
1.3 Using This Guide

Begin by reading the CLM Overview section to learn the CLM concepts and how they apply to your own application. Next read the Workflow for CLM Integration section to understand how to successfully integrate with CLM. Finally, the Deployment Models section describes how to deploy CLM services.

CLM Overview

1.4 Explanation

CLM is a powerful set of auditing and logging tools implemented in a flexible and comprehensive solution. CLM provides the following logging features:

1) Event Logging – This feature provides a log4j-based solution allowing users to log events. Since this feature provides the ability to propagate and store user information, it can be used for anything from auditing a user to detecting security breaches.

2) Automated Object State Logging – This tool provides an automated, hibernate based, object state logging mechanism used to log the changes to an object’s state.

3) Asynchronous Logging to database – This feature provides a log4j based JDBC appender that can log the messages to the database asynchronously. Asynchronous logging increases performance for applications that generate a high volume of log messages.

4) Web-based Log Locator tool – This tool is a web-based application that displays, searches, and filters log messages. The interface can be used to retrieve logs based on a timestamp, user ID, log level, etc.

Figure 2‑1 shows how CLM works with an application and independent entities, such as the credential providers and authorization schema, to perform authentication and authorization.

[image: image1]
Figure 2‑1 CLM interactions Audit Logging and Web Locator Tool (see text)

The CLM APIs provide the following major components of the Audit and Logging capabilities provided by CSM.

1.4.1 Event Logger

CLM APIs are based on log4j framework. To allow the client application to integrate easily, this framework provides its logging capabilities through the log4j logger.To log an event for the purpose of audit tracking, a client application must first obtain a logger using the log4j’s Logger class. Using this logger, the client class can log all the events. Obtaining this logger is similar to obtaining a logger for regular logging from log4j. It is advisable to maintain the same logger name while obtaining the logger in various classes. Also it is advisable to the keep the log level consistent. Keeping these elements consistent make configuring this logger easier in the log4j configuration file.

The events that an application can log for audit purposes include: logins, logouts, invalid login attempts, data manipulations actions triggered by the user etc. The event is actually passed as a string message to log4j. This message is persisted into a persistent store using a special appender provided by CLM. In order to enable this logger, it should be configured in the log4j.xml config file of JBoss.

1.4.2 Object State Logger

Along with the Event Logger, CLM provides an automated Object State Logger for Hibernate. This Logger automatically track changes in the object state whenever the object is updated, created or deleted using hibernate. It implements an interceptor which listens to the hibernate session. This logger is transaction aware and only logs the object state changes if the transaction is committed. However in case of a transaction rollback, the logs are discarded. Whenever the client application performs any create, update or delete operation on this session, the interceptor is invoked. This interceptor introspects the object and converts its contents into a message string. Finally, it logs it using log4j logger. When there is a create or delete operation, the current state of the object is logged. However, when there is an update operations both the previous object state and the current values are logged. However if any other operation is performed on the object within the context of the same transaction then the previous state of the object is lost, and hence unavailable for logging.

In order to use the object state logger, the client application needs to obtain the session using the help class provided by the CLM APIs. The session returned is a hibernate session with an attached interceptor to track all the object state changes. This is the only code specific to object state logger that is required to use this facility. The object state logger also needs to be configured in the ObjectStateLoggerConfig.xml file. Here the application needs to specify the logger name that it intends to use for the object state log4j logger. Also the log4j log level needs to be specified to set the corresponding log4j log level for all the object state logs. A list of objects that needs to be logged should also be added in this file. If no objects are specified then the object state loggers ignores all the object state changes and no logs are generated. In order to enable this object state logger, it should be configured in the log4j.xml config file of JBoss.
1.4.3 User Information

In order to track which user is performing the specific operation for the purpose of Audit Logging, CLM needs to know user information like user id and session id. Since these values are only available with the client application, they need to be passed to the CLM APIs. To accomplish this, the client application must use the utility class “UserInfoHelper” provided by the CLM APIs. This information needs to be set before any of the event logs or any hibernate actions. Also this information needs to be set only once throughout a thread of execution which caters to a client request. It means, in case of a web application, this information should be set only once during the start of the doPost method.

1.4.4 Common Logging Database

This is the persistence storage that the JDBC appender uses to store the Audit Logs. The Log Locator application of CLM connects to this database to allow the user to browse the logs. This database consists of two tables. One table stores the login information for the admins, and is used by log locator application to verify if the admin is a valid user or not. The second table consists of fields which are used to store the audit message. A common schema can be deployed and shared across applications. The application name is part of the log message and can be used to pull logs only for a particular application. Admin for a particular application can view logs only for that application.

1.4.5 JDBC Appender

To persist the generated audit logs the CLM provides an asynchronous JDBC Appender. This appender is asynchoronous and maintains a configurable internal buffer. This buffer is used to store the logs before a parallel thread is spawned which writes these logs into the database. This appender is also capable of extracting the user information set by the client application and uses it while writing the data into the database. Thus, an application that wants to enable the audit logging should also configure this Appender. A sample log4j entry for the CSM APIs is show below.

[image: image2]
Figure 2‑2 Example log4j.xml file

NOTE: CSM is capable of performing both event and object state audit logging only for the operations and data pertaining to CSM. In order to use the similar functionality, the client application can separately download and install CLM. In this case CLM can be used (even without using CSM) to provide event logging and automated object state logging capabilities using the special appender and schema. Also the log locator tool can be used for the purpose of viewing the logs.

1.5 Workflow for CSM Integration

This workflow section outlines the basic steps, both strategic and technical, for successful CLM integration.

1) Decide which services of CLM you would like to integrate with an application. If the application needs to maintain an audit log of each and every action that takes place then you can use the CLM’s Audit logging capabilities. If the application needs to log object state changes for audit purposes then use CLM’s automated object logger capabilities.

2) Read the CLM Guide for Application Developers (this document). It provides an overview, workflow, and specific deployment and integration steps.

3) Determine a logging strategy. Based on the logging mode selected configure the appropriate configuration files. Also set up the logging database to capture all the audit logs as discussed in Section 4.3.3.

6) Deploy the web-based tool for the purpose of browsing through the logs. Enter the configuration details to point to the database server that holds the logs

7) Integrate the application code using the integration steps for EventLogging, and/or ObjectStatelogging
9) Test and refine CLM integration with your application. Confirm that your audit logging implementation meets requirements.

Deployment Models

1.6 CLM APIs

1.6.1 Introduction

The logging API’s facilitate the audit and logging needs of a developer at run time. These APIs use Java and log4j for the purpose of logging, so it is assumed that developers are familiar with both.

1.6.2 Software Products

Table 4.2 displays descriptions of software products used for authorization.

	Software Product
	Description

	JBoss Server
	The JBoss/Server is the leading open-source, standards-compliant, J2EE-based application server implemented in 100% Pure Java. A majority of caCORE applications use this server to host their applications.

	MySQL Database
	MySQL is an open source database. Its speed, scalability and reliability make it a popular choice for Web developers. CLM recommends storing authorization data in a MySQL database because it is a light database, easy to manage and maintain.

	Hibernate
	Hibernate is an object/relational persistence and query service for Java. CLM requires developers to modify the provided Hibernate configuration file, hibernate.cfg.xml, in order to connect to the appropriate application authorization schema.

	Log4j
	Log4j is an open source logging framework. It aids in application logging by providing a configurable mechanism to persist logs onto different medias.

Table 4- 1 Logging software products

1.6.3 Configuration and SQL Files

	File
	Description

	ObjectStateLoggerConfig.xml
	The XML file containing the configuration data for the object state logger. This configuration data includes: the log level, the object for which the automated logging should be enabled, etc.

	log4j.xml
	The log4j configuration file provided by the JBoss server. It contains the details about the

	mysql_log_table.sql

OR

oracle_log_table.sql
	This Structured Query Language (SQL) script creates an instance of the logging database schema that is used to store log messages.

Table 4- 3 Logging configuration and SQL files

1.6.4 Integrating CLM APIs – Overview

This section provides instruction for integrating the CLM APIs with Jboss-based web application. The integration is flexible enough to meet the needs for other deployment scenarios such as stand alone or enterprise applications.

1.6.5 Deployment Steps

Step 1: Create and Prime MySQL or Oracle Database

1. Log into the database using an account id that has permission to create new databases.

2. Run the mysql_log_table.sql or oracle_log_table.sql script, on the database prompt. This will populate the database with the initial data. Verify the changes by querying the application table. It should contain only one record.

Step 2: Placing the CLM APIs Jar

1. The CLM Application APIs are available as a JAR that needs to be placed in the class-path of the application. Along with this JAR, there are many supporting JARs on which the CLM API depends. These extra JARs are supplied as part of the CLM distribution and should be added in the folder <application-web-root>\WEB-INF\lib.
Note: Based on the class loader used in JBoss, the clmwebapp.jar file might need to be placed in the WEB-INF/lib directory instead of the clm.jar. In this case the clm.jar should be placed in the lib directory of JBoss so that the JDBC appender is available to the log4j service of JBoss.

Step 3: Configure ObjectStateLoggerConfig.xml
If the application plans to use the Object State Logger provided by CLM then the ObjectStateLoggerConfig.xml file needs to be configured.

1. The following entries should be configured based on the application’s requirements

a. Logger-name:
This is the name of the logger for Object State Logging.

b. Logger-config-file: This is the log4j configuration file for Audit Logging. It can be configured to log messages either to a flat text file or to a database table via a JDBC Appender.

c. Log-level: This is the log level for Audit Logging. It can be one of those five levels provided by the log4j framework.

d. messageType:
This is the message format for the log messages. It can be configured to be String or XML. In the case of String, the log message will be in the string format. In the case of XML, the log message will be generated in xml files.

e. domainObjectList: This is the context to put a list of fully qualified classes names to be audited. Each fully qualified class needs to be placed within the object-name tag.

f. loggingEnabled: This flag indicates whether or not the audit logging is enabled for the client application. It works with the above domainObjectList context. This flag will take either TRUE or FALSE as input. If the value for this tag is FALSE, then it will disable the audit logging for all classes. If it is set to TRUE, then only those classes that are listed in the domainObjectList will be audited.

Shown in Figure 3‑1 is an example of the ObjectStateLoggerConfig.xml file for the CSM APIs integration with CLM.

[image: image7.jpg]
[image: image3]
Figure 3‑1 Example ObjectStateLoggerConfig.xml file

2. Place the ObjectStateLoggerConfig.xml in the class-path of the client application. In case of a web application, it would be the WEB-INF/classes folder.

Step 4: Configure log4j.xml

1. Modify the log4j configuration file to configure the JDBC Appender provided by the CLM APIs. If using Jboss, the log4j configuration file is called log4j.xml and can be found in the conf directory of JBoss server.

2. An entry for the appender should be made. Set the following properties for the appender entry:

a. name: The name of the appender

b. class : The fully qualified path of the CLM’s JDBC Appender “gov.nih.nci.logging.api.appender.jdbc.JDBCAppender”

c. application: The name of the application for which the logging is performed

d. server: The name of the server on which the application is hosted

e. maxBufferSize : The size of the asynchronous buffer before which the message would be logged into the database

f. dbDriverClass : The name of the jdbc driver to be used to connect to the database

g. dbUrl: The URL of the server where the server is hosted

h. dbUser : The user id to be used to connect to the database

i. dbPwd : The password to be used to connect to the database.

j. useFilter : Denotes whether the logger should use a filter or not.

3. Once the appender has been configured then the logger should be configured. Entries made in the log4j.xml file should be based on the logger name used in the ObjectStateLoggerConfig.xml file for the object state logger and the logger name used for event logging. For the logger entry in the log4j.xml file, set the following parameters:

a. name: The name of the logger

b. level : The minimum log level which this logger should log

c. appender-ref : The name of the appender it will invoke for logging. It should be same as the appender name used in the step before.

Shown in Figure 3‑1 is an example of the log4j.xml file for the CSM APIs integration with CLM.

[image: image4]
Figure 3‑2 Example log4j.xml file

1.7 Log Locator Tool

1.7.1 Introduction

Log Locator is a web application used to browse through the logs that were generated using the CLM APIs. This tool should be pointed to the same database used to store the log messages.

This section of the guide explains how to deploy the web locator from start to finish - from uploading the Web Application Archive (WAR) and editing configuration files, to synching the log locator tool with the application. This section also details the Log Locator release contents and outlines the steps that result in a successful deployment.

1.7.2 Log Locator Release Contents

The log locator tool is released as a compressed web application in the form of a WAR (Web Archive) File. Along with the WAR, the release includes sample configuration files that help developers configure the log locator with their application(s).

The release contents of the log locator can be found in the log-locator.zip file or on the NCICB download site(http://ncicb.nci.nih.gov/download/index.jsp). The log locator Release contents include the files in Table 4.4.

	File
	Description

	log-locator.war
	The Log Locator Web Application

	mysql-ds.xml

OR

oracle-ds.xml
	This file contains information for creating a datasource. One entry is required for each database connection. Place this file in the JBoss deploy directory.

Table 4- 4 Log Locator release contents

1.7.3 Deployment Checklist

Before deploying the Log Locator Tool, the following environment and configuration conditions are required.

· Environment

· JBoss 4.0 Application Server

· MySQL 4.0 OR Oracle 9i Database Server (with an account that can create databases)

· Log Locator Release Components

· log-locator.war

1.7.4 Deployment Steps

Step 1: Prime MySQL or Oracle Database

1. Log into the database using an account id that has permission to add data to the table.

2. If the log database is not already created then run the mysql_log_table.sql or oracle_log_table.sql script, on the database prompt. This will populate the database with the initial data. Verify the changes by querying the application table. It should contain only one record.
3. Insert a row into the signin_users to allow the admin to log in. The insert statement would be as shown below, but replace the <<user>> and <<password>>in the statement. In addition, <<application>> should be replaced with the same application name used in the JDBC appender configuration above.

INSERT INTO signin_users (username, password, application)

VALUES (‘<<user>>’,'password', '<<application>>');
Step 2: Configure Datasource
1. Modify the mysql-ds.xml or oracle-ds.xml file. These files contain information for creating a datasource. One entry is required for each database connection. Edit the file to provide the following values:

· The name of the Datasource should always be “LogLocatorDS”

· The <<database_url>> that is pointing to the same database as the JDBC Appender configured above.

· Provide the <<database_user_name>> and <<database_user_password>> used to connect to the database.

Shown in Figure 3‑3 is an example mysql-ds.xml file.

[image: image5]
Figure 3‑3 Example mysql-ds.xml file

2. Place the mysql-ds.xml or oracle-ds.xml file in the JBoss deploy directory.

Step 3: Deploy the Log Locator WAR

1. Copy the log-locator.war in the deployment directory of JBoss which can be found at {jboss-home}/server/default/deploy/ where {jboss-home} is the base directory where JBoss is installed on the server.

Step 4: Start JBoss

1. Once the deployment is completed, start JBoss. Check the logs to confirm there are no errors while the log-locator application is deployed on the server.

2. Once the JBoss server has completed deployment, open a browser to access the Log Locator. The URL will be http://<<jboss-server>>/log-locator, where the <<jboss-server>> is the IP or the DNS name of JBoss Server. The Log Locator’s Login Page will display.

3. Enter the username and password created in Step 1. Then select an Application and click the login button.4. You should be able to login successfully and the Log Locator Search Page should be displayed.

Note: In case of any errors, follow a debugging and trouble shooting procedure to diagnose and solve the issues.

Integrating with the CLM’s Audit Logging Services

1.8 Importing and Using the Audit Logging classes

To use the Audit Logging service, add the highlighted import statements as shown in the following.

import org.apache.log4j.Logger;

import org.hibernate.Session;

import org.hibernate.SessionFactory;

import org.hibernate.Transaction;

import gov.nih.nci.logging.api.logger.hibernate.HibernateSessionFactoryHelper;
import gov.nih.nci.logging.api.user.UserInfoHelper;
1.9 Getting a Hibernate Session for Audit Logging

First, obtain a Hibernate session using ONE of the following methods:

Session session = HibernateSessionFactoryHelper.getDefaultAuditSession();

Or

Session session = HibernateSessionFactoryHelper.getAuditSession(SessionFactory sessionFactory)

Use the first line of code if you want to obtain the session using the default session factory obtained from the default hibernate.cfg.xml file.

If there is already a session factory created in the application, use the existing session factory to obtain an audit session by using the second method listed above.

By obtaining the Audit Session, the automated object state logger is engaged and will track all the object state changes performed using this session.

NOTE: The CLM object state logger has issues logging if the transaction managers are set in the hibernate.cfg.xml file when deployed on JBoss server. In this case the transaction manager properties should be removed from the hibernate.cfg.xml file used for CSM APIs to connect to the common authorization schema.

1.10 Setting user information for the client application

The Audit Logging service has the capability to log messages that include user information and session id. The code to do this needs to be written only once per a client request thread in the client application as follows:

UserInfoHelper.setUserInfo(new String("NAME"), new String("sessionId"));

1.11 Obtaining the Event Logger

Obtain the event logger like you would obtain a regular log4j logger. The logger name passed would be used in the log4j configuration file to enable logging for these messages.

1.12 Logging from the client application

For event logging, use the log4j logger class in the normal way. Based on the log level configured in the log4j configuration for the appender these messages will be logged.

Log Locator User Guide

The Log Locator tool of CLM is a software package that allows users to view all of the events that occur within a program. It can be used to review changes made by users, reveal login date/times, expose malicious attempts at entering the system, audit a user, and identify and resolve production support issues. Users can filter the log messages by searching for content within any field of the message including: date and time that the event occurred, Log Level/Type, user, etc. By using these filters, users can view only the message relevant to their needs. The Log Locator can only be used by applications that use CLM APIs to look for audit and logging.

1.13 Intended Audience

Log Locator’s intended audience includes: system administrators, administrators, management, production support, and anyone else who needs to review the events that occurred within a given system.

1.14 Components

There are three visual components to the Log Locator:

· Login – Authenticates users and gathers necessary information before allowing the viewing of log messages

· Search Criteria – Filters the messages to be displayed

· Message – Displays the log messages that meet the given Search Criteria

1.14.1 Login

The login screen is where users identify themselves and select which application’s logs will display. Users must provide a valid username and password, select an application, and click the login button to view related log messages. All three of these fields (username, password, and application) are required. Assuming correct credentials were provided, the Search [image: image8.wmf]

Criteria and Message screens will display.

[image: image9.png]Search Criteria

The Search Criteria area is where you narrow down the search results to find the set of logs you are interested in viewing. Your username and application name that you provided at the login screen are displayed at the top. The next several fields can be used to filter logs to display only the logs you want to see. For every field of a log message, there is a search criteria that can be used to search that field. After providing the desired Search Criteria, click the Submit button. The logs that match ALL of the given criteria will display in the Message area. Below is a description of each field in the Search Criteria section. Searching is not case sensitive. In addition, any field labeled with the word “Contains” does NOT require an exact match to display a message.

Message Fields:

· LogLevel/Type – the severity or type of message (Debug, Info, Warn, Error, Fatal).
· Application – the application involved in the log message. This shows the application name that you provided at the login screen and can only be changed at the login screen.
· Server – the host that logged the message
· User – the user login name of the person that generated the log message. The entire username must be provided.
· SessionID - the session ID of the user that generated the message. Searching in this field require the user to enter the entire session ID exactly (no partial-string searches).

· Message Contains – the actual log message. If something is created, modified, or deleted, the message will contain information about the object that was changed. For example, if searching for something that has been deleted, then type, “Delete” in the search field. This means any message containing the word “delete” anywhere within the message field of the log will display after clicking Submit.
· NDC Contains – the Nested Diagnostic Context of the message. This field is not implemented, but can be configured.
· Thread Contains- the name of the execute thread that logged the message
· Start Date/Time – all messages that have a “Created On” date/time that is between the Start Date/Time and End Date/Time will be displayed in the message area. The default time is one hour from the current date/time.

· End Date/Time – displayed messages will be prior to this date/time. If no date/time is provided, the current date/time is assumed.

· Maximum Number of Results – because some search results may number in the thousands, users can keep the maximum number of results low by providing a smaller number. The most current messages will always display at the top, and older messages that exceed the Maximum Number of Results become unattainable.

1.14.2 Message

After clicking the Search button, the Message area will display all of the log messages that match all of the provided criteria. Below is a description of each of the fields in a log message.

Message Fields:

· Server – the host that logged the message
· Thread - the name of the execute thread that logged the message
· Message – the actual log message. If something is created, modified, or deleted, the message will contain information about the object state before and after the altercation.
· Throwable – the associated stack trace message logged with throwable objects. . This field is not implemented, but can be configured.
· Application – the application involved in the log message. This shows the application name that you provided at the login screen.
· NDC – the Nested Diagnostic Context of the message. This field is not implemented, but can be configured.
· LogLevel/Type – the severity or type of message (Debug, Info, Warn, Error, Fatal)
· Username – the user who generated the log message
· Created On – the date and time that the message was generated
· SessionID - the session ID of the user that generated the message.
 [image: image10.jpg]
Application server

 Log4J

CLM’s Log4j

JDBC APPENDER

CLM API

Common

Authorization

Schema

Client Application

Webserver

server

CLM’s Log Locator Web Tool

Log Message

<?xml version="1.0" encoding="UTF-8"?>

<logging-config>

 <logger-name>CSM.Audit.Logging.ObjectState.Authorization</logger-name>

 <logger-config-file>log4jConfig.xml</logger-config-file>

 <log-level>info</log-level>

 <messageType>string</messageType>

 <domainObjectList>

 <object-name>gov.nih.nci.security.authorization.domainobjects.Application</object-name>

 <object-name>gov.nih.nci.security.authorization.domainobjects.ApplicationContext</object-name>

 <object-name>gov.nih.nci.security.authorization.domainobjects.Group</object-name>

 <object-name>gov.nih.nci.security.authorization.domainobjects.GroupRoleContext</object-name>

 <object-name>gov.nih.nci.security.authorization.domainobjects.Privilege</object-name>

 <object-name>gov.nih.nci.security.authorization.domainobjects.ProtectionElement</object-name>

 <object-name>gov.nih.nci.security.authorization.domainobjects.ProtectionElementPrivilegeCtx</object-name>

 <object-name>gov.nih.nci.security.authorization.domainobjects.ProtectionGroup</object-name>

 <object-name>gov.nih.nci.security.authorization.domainobjects.ProtectionGroupRoleContext</object-name>

 <object-name>gov.nih.nci.security.authorization.domainobjects.Role</object-name>

 <object-name>gov.nih.nci.security.authorization.domainobjects.User</object-name>

 <object-name>gov.nih.nci.security.authorization.domainobjects.UserGroupRoleProtectonGroup</object-name>

 <object-name>gov.nih.nci.security.authorization.domainobjects.UserProtectionElement</object-name>

 <object-name>gov.nih.nci.security.authorization.domainobjects.UserRoleContext</object-name>

 <object-name>gov.nih.nci.security.authorization.dao.hibernate.ProtectionGroupProtectionElemet</object-name>

 <object-name>gov.nih.nci.security.authorization.dao.hibernate.RolePrivilege</object-name>

 <object-name>gov.nih.nci.security.authorization.dao.hibernate.UserGroup</object-name>

 </domainObjectList>

 <loggingEnabled>true</loggingEnabled>

</logging-config>

<appender name="JDBC_MySql" class="gov.nih.nci.logging.api.appender.jdbc.JDBCAppender">

 <param name="application" value="csm" />

 <param name="server" value="default" />

 <param name="maxBufferSize" value="1" />

 <param name="dbDriverClass" value="com.mysql.jdbc.Driver" />

 <param name="dbUrl" value="jdbc:mysql://<<Database URL>>" />

 <param name="dbUser" value="<<userID>>" />

 <param name="dbPwd" value="<<Password>>" />

 <param name="useFilter" value="true" />

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value=":: [%d{ISO8601}] %-5p %c{1}.%M() %x - %m%n" />

 </layout>

</appender>

<logger name="CSM.Audit.Logging.Event.Authentication">

 <level value="info" />

 <appender-ref ref="JDBC_MySql" />

</logger>

<logger name="CSM.Audit.Logging.Event.Authorization">

 <level value="info" />

 <appender-ref ref="JDBC_MySql" />

</logger>

<logger name="CSM.Audit.Logging.ObjectState.Authoriaztion">

 <level value="info" />

 <appender-ref ref="JDBC_MySql" />

</logger>

<?xml version="1.0" encoding="UTF-8"?>

<datasources>

 <local-tx-datasource>

 <jndi-name>LogLocatorDS</jndi-name>

 <connection-url><<database_url>></connection-url>

 <driver-class>org.gjt.mm.mysql.Driver</driver-class>

 <user-name><<database_user_name>></user-name>

 <password><<database_user_password>></password>

 </local-tx-datasource>

</datasources>

� EMBED Word.Picture.8 ���

<appender name="JDBC_MySql" class="gov.nih.nci.logging.api.appender.jdbc.JDBCAppender">

	<param name="application" value="csm" />

	<param name="server" value="default" />

	<param name="maxBufferSize" value="1" />

	<param name="dbDriverClass" value="com.mysql.jdbc.Driver" />

	<param name="dbUrl" value=":mysql://cbiodev104.nci.nih.gov:3306/clmlog" />

	<param name="dbUser" value="user" />

	<param name="dbPwd" value="password" />

	<param name="useFilter" value="true" />

	<layout class="org.apache.log4j.PatternLayout">

		<param name="ConversionPattern" value=":: [%d{ISO8601}] %-5p %c{1}.%M() %x - %m%n" />

	</layout>

</appender>

<logger name="CSM.Audit.Logging.Event.Authentication">

	<level value="info" />

	<appender-ref ref="JDBC_MySql" />

</logger>

<logger name="CSM.Audit.Logging.Event.Authorization">

	<level value="info" />

	<appender-ref ref="JDBC_MySql" />

</logger>

<logger name="CSM.Audit.Logging.ObjectState.Authoriaztion">

	<level value="info" />

	<appender-ref ref="JDBC_MySql" />

</logger>

[image: image11.jpg][image: image12.wmf]

[image: image13.png][image: image14.png]_1202059717.doc
[image: image1.png]

_1135871162.bin

