	[image: image6.png]
	CSM-SDK Adapter
Installation and Usage
(For applications generated using the caCORE SDK)

	[image: image7.png]

General Workflow
Follow these steps when installing the CSM-SDK Adapter. Each is described in detail in the following subsections.

· Complete the prerequisites.

· Complete all preliminary SDK steps (described in chapters 4-8 of the SDK Programmer’s Guide; ftp://ftp1.nci.nih.gov/pub/cacore/SDK/caCORE_SDK1.0.3_Programmers_Guide.pdf)
· Download the CSM_SDK_rel_1.0.3.zip file, available from the NCICB download site, http://ncicb.nci.nih.gov/core/CSM
· Acquire the Application Service Interface and Implementation.

· Build the remoting components.

· Build the server and client components.

· Download and install CSM. Use the CSM Guide for Application Developers (ftp://ftp1.nci.nih.gov/pub/cacore/ CSM/CSM_Guide_ApplicationDevelopers.pdf) to install and configure CSM for your application.

· Configure the application’s authorization policy using the User Provisioning Tool (UPT) component of CSM.

· Configure the client.
· Use CSM SDK Adapter Client in your application.
INSTALLATION
Release Contents

Download the release contents from the caCORE CSM download site (http://ncicb.nci.nih.gov/download/downloadcsm.jsp). The release contents come in the form of a CSM_SDK_rel_1.0.3.zip file. This file contains all that is needed to enable CSM security and session management on an SDK-generated server and client.

The following subsections explain how to build the components that are needed for this service to function.

Deployment
1) Application Service Interface and Implementation

The caCORE SDK generates a fixed interface for the client applications to use. This interface has a predefined set of methods that are created in the Application Service Interface (the client interface generated by the caCORE SDK) regardless of the application you are building. Since the signature of these methods is known, an implementation of the Application Service Interface as well as an implementation class for it is provided. As a result, there is no need to create the Application Service Interface and its Implementation Class.

The print utility methods, however, are not exposed as part of the newly generated Application Service Interface. The newly created Application Service Interface is shown in Figure 1 below:

[image: image1]
Figure 1 Generated SDKApplicationService Interface
The name for the class which implements the SDKApplicationService is

gov.nci.nih.system.applicationservice.SDKApplicationService.

2) Build the Remoting Components

Copy the .war file and the client .zip file created using the caCORE Toolkit into the folder to which the CSM_SDK_rel_1.0.3.zip file is extracted.
3) Build the Server and Client Components

Use the sdkbuild.xml file provided in the CSM_SDK_rel_1.0.3.zip folder for building the application generated using the caCORE SDK. The following entries need to be updated in the sdkbuild.xml file before running it.

[image: image2]
Figure 2 Entry in the sdkbuild.xml file
Update the values for the above mentioned variables based on the application.

1. The value for warFileName is the name of the war file name which is generated by the caCORE toolkit and copied in the folder where CSM_SDK_rel_1.0.3.zip is extracted as mentioned in the previous step.
2. The value for clientFileName is the name of the client zip file name which is generated by the caCORE toolkit and copied in the folder where CSM_SDK_rel_1.0.3.zip is extracted as mentioned in the previous step

3. The value for arg4 is the web context root name for the HTTPService, for example, sdkremoting or your application name.

4. The value for arg6 is the unique name for the application. This name is used for configuring the CSM with the application, for example, “sdk”.
At the end of the step, you will have the following artifacts (all of these are generated by the build process):

· A directory named release.
· A directory named client in the release directory. This directory contains all the files which are need by the client application to access and execute the remote service on the server.

· A directory named server in release directory. This directory contains a .war file which contains the server component. For example, sdkremoting.war.
4) Deploy CSM on JBoss

1. Copy the war file from the server directory, which is in the release directory of the previous step. Place this file in the deploy directory that applies to your JBoss server's configuration, for example, default/deploy).

2. Modify the properties-service.xml in JBoss to include the following properties in this file. This file is located in the deploy directory:

[image: image3]
Figure 3 Entry in the properties-service.xml file

3. Replace the applicationContextName with arg6 which was used in step 4 in the previous section. If the value of that argument was “sdk,” then it would be: gov.nih.nci.sdk.remote.sdk.securityLevel=1

· This property is used to determine if the security is on or off for this service.

· If you don’t want to use the security, then set the value to 0.

· If you want to use security, set the value to 1.

· The gov.nih.nci.sdk.applications.session.timeout property is used to set the session time out. The value is in milliseconds, so a value of 3000 for this property is equivalent to 3 seconds before the session times out.

5) Configure the CSM for the Service

Instructions for the CSM configuration can be found in the CSM Guide for Application

Developers (ftp://ftp1.nci.nih.gov/pub/cacore/CSM/UPT_User_Guide.pdf).

· This service uses the Authentication and Authorization service provided by CSM. For this configuration, follow the Authentication and Authorization Deployment sections of the CSM Guide.

· The application context name should be the same as that used in the build file in prior steps.

6) Configure the Application’s Authorization Data Using UPT

· The domain objects in your application and business methods in the Application Service Interface should be created as protection elements in the UPT for the application. The fully qualified class name of the domain object as well as the fully qualified name of the methods should be used as the object ID for the protection elements.

· The application administrators will be aware of the authorization policy for these protection elements. Application administrators will be able to grant appropriate privileges.

The UPT User Guide describes in detail how to use and configure authorization data using the UPT.

7) Configure the Client Side

1. Obtain the files from the client directory which is in the release directory.

2. Put these files in the classpath of the application which will be using this service.

3. Edit the remoteService.xml file found in the client directory. In this file replace {Host} with the host address of the server where you deployed the war file. If you are using the local host, the value is: http://localhost:8080/sdkremoting/http/remoteService.

[image: image4]
Figure 4 Entry in the remoteService.xml file

USAGE

Using the CSM-SDK Adapter Client
Figure 5 below demonstrates how to use the SDKApplicationService in the application generated using the caCORE Toolkit.

The code example assumes that you wish to query a caDSR domain object called “DataElement” and shows how to query that object.

1. To start the client session, enter the userId and password.

2. Obtain a reference to the application service. This reference is provided by ApplicationServiceProvider class.

3. Once you have a reference to the service, you can call all the methods on the service.

4. Once you are finished, call terminateSession() so that the server ends your session.

[image: image5]
Figure 5 Using the SDKApplicationService in an application
package gov.nih.nci.system.applicationservice;

import gov.nih.nci.evs.query.EVSQuery;

import gov.nih.nci.sdk.common.ApplicationException;

import java.util.List;

public interface SDKApplicationService {

public Object createObject(Object obj) throws

ApplicationException;

public Object updateObject(Object obj) throws

ApplicationException;

public void removeObject(Object obj) throws

ApplicationException;

public List getObjects(Object obj) throws

ApplicationException;

public abstract int getQueryRowCount(Object criteria,

String targetClassName) throws ApplicationException;

public abstract List query(Object criteria, String

targetClassName)throws ApplicationException;

public abstract List query(Object criteria, int firstRow,

int resultsPerQuery, String targetClassName) throws

ApplicationException;

public abstract List evsSearch(EVSQuery evsCriterion)

throws ApplicationException;

public abstract List search(Class targetClass, Object obj)

throws ApplicationException;

public abstract List search(Class targetClass, List

objList) throws ApplicationException;

public abstract List search(String path, Object obj)

throws ApplicationException;

public abstract List search(String path, List objList)

throws ApplicationException;

public String getTimeStamp() throws ApplicationException;

}

<property name="warFileName" value="cacore30.war" />

<property name="clientFileName" value="client.zip" />

<property name="arg4" value="sdkremoting" />

<property name="arg6" value="sdk" />

<attribute name="Properties">

:

gov.nih.nci.sdk.remote.<<applicationContextName>>.securityLevel=1

gov.nih.nci.sdk.applications.session.timeout=30000

</attribute>

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

 <beanid="remoteService"class="org.springframework.remoting.httpinvoker.HttpInvokerProxyFactoryBean">

 <property name="serviceUrl">

 <value>http://localhost:8080/sdkremoting/http/remoteService</value>

 </property>

 <property name="srviceInterface">

 <value>com.codegen.application.common.RemoteSDKApplicationService</value>

 </property>

 </bean>

</beans>

package gov.nih.nci.csm.sdk.test;

import java.util.Date;

import java.util.List;

import gov.nih.nci.cadsr.domain.impl.DataElementImpl;

import

gov.nih.nci.csm.sdk.application.client.ApplicationServiceProvider;

import gov.nih.nci.system.applicationservice.SDKApplicationService;

import org.hibernate.criterion.DetachedCriteria;

import org.hibernate.criterion.Expression;

public class TestClient {

 public static void main(String[] args) {

 ApplicationServiceProvider asp = new

 ApplicationServiceProvider();

 SDKApplicationService appService =

 asp.getApplicationService();

 ClientSession cs = ClientSession.getInstance();

 try{

 cs.startSession("userId","password");

 }catch(Exception ex){

 System.out.println(ex.getMessage());

 }

 try{

 DetachedCriteria deCrit =

 DetachedCriteria.forClass(DataElementImpl.class);

 deCrit.add(Expression.eq("publicID", new

 Long(2199715)));

 int count = appService.getQueryRowCount(deCrit,DataElementImpl.class.getName());

 val = String.valueOf(count);

 System.out.println("The size of the records is " + val);

 List listR = appService.query(deCrit,DataElementImpl.class.getName());

 System.out.println("The size of the records is second time is " + listR.size());

 cs.terminateSession();

 }

 catch(Exception e) {

 e.printStackTrace();

 }

 }

}

5

