	[image: image2.jpg]

 NCICB
	[image: image1.png]

[image: image6.png](Ekagra

High impact - High Value - Businss Resuts

Common Security Module
Test Plan
Version No: 0.3
Last Modified: 2/23/05
Author
:
Kalpesh Patel, Eric Copen, Vinay Kumar
Team
:
Common Security Module (CSM)

Purchase Order# 34552
Client
:
Nation Cancer Institute - Center for Bioinformatics,

National Institutes of Health,

US Department of Health and Human Services

Document History

Document Location

The most current version of this document is located in CVS under security/docs.
Revision History

	Version Number
	Revision Date
	Author
	Summary of Changes

	0.1
	10/15
	Kalpesh Patel
	Initial Structure and draft

	0.2
	12/17
	Eric Copen
	Incorporating specifics

	0.3
	2/23
	Eric Copen, Vinay Kumar
	Apply template, refine details

	
	
	
	

	
	
	
	

	
	
	
	

Review

	Name
	Team/Role
	Version

	Date Reviewed
	Reviewer Comments

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Related Documents

More information can be found in the following related CSM documents:
	Document Name

	

	

	

	

	

	

	

Table of Contents
41.
Introduction

1.1
Purpose
4
1.2
Scope
4
1.3
Background
4
2.
Security Test Approach
5
2.1
Security Test Team
5
2.2
Testing Definitions
5
2.3
Resources
5
2.4
Test Execution
5
2.4.1
Unit Testing
5
2.4.2
Load Testing
6
2.4.3
Integration Testing
6
2.4.4
Acceptance Testing
6
2.5
Test Schedule
6
2.6
Requirements to Verify
6
2.6.1
Authentication
6
2.6.2
Authorization
7
2.6.3
Web Based User Provisioning
7
2.6.4
Availability
7
2.6.5
Performance and Scalability
7
2.6.6
Flexibility and Extendibility
7
2.6.7
Commitment to Open Standards
7
3.
Test Objectives
7
3.1
Configuration of the System
7
3.2
Computer Security
8
3.3
System Functional Interface
8
3.4
Stress Test Scenarios
8
4.
Evaluation Criteria
8

Test Plan
1. Introduction
This plan defines the approach, objectives, and procedures Ekagra will use to test the Common Security Module (CSM). The plan’s goal is to ensure the team thoroughly tests the system so that it meets functional and technical requirements, and accomplishes the project’s mission.

This plan combines with other project documentation such as Use Cases, SAD, Data Model, Class Diagram, Test Cases, Activity Diagram, etc., to form a complete development plan.

Ekagra’s CSM team prepares and maintains documentation. The team, including Program Manager Kalpesh Patel and Team Lead Vinay Kumar, is responsible for implementing the test plan and making modifications as necessary.

1.1 Purpose
The Common Security Module implementation provides authentication and authorization services for internal NCI web applications. The next phase will allow a user to access and navigate the trusted domain with a single login and a single ID.

From a development prospective, applications will be empowered to authenticate and authorize users as they arrive from multiple entry-points. In addition the team will provide a web-enabled application – User Provisioning Tool – that will empower administrators to add, modify, read or delete user authorization data.

This seamless security integration will prove beneficial to both users and NCI itself, as the easy access to applications will lead to greater utilization.

1.2 Scope
The Common Security Module will be developed in its entirety over several phases. This document covers the current phase, and does not cover testing for single-sign on, web services integration, and/or other functionality for which no formal requirements have been developed. See section 2.6, Requirements to Verify, for more details regarding the scope of this Test Plan.
1.3 Background

The objective of the NCICB Common Security Framework is to provide a common security architecture that will support the expanding security requirements of NCICB. The framework will provide solutions for the most common security requirements. More specifically, the framework will address inter-application integration and messaging (a rapidly growing priority), data and user provisioning, and single sign-on.

The intent of the product is to enable NCICB applications to operate in a HIPAA-compliant manner without stifling the appropriate use of patient data for research purposes. The resulting framework will provide NCICB a common application security infrastructure that leverages open standards and best practices.

2. Security Test Approach
2.1 Security Test Team

The following team members will conduct and monitor testing for Common Security:

· Vinay Kumar

· Brian Husted

· Kunal Modi

· Eric Copen

2.2 Testing Definitions
· Unit Testing - Controlled evaluation in the development step to ensure that one component of program code performs as defined in the specification.
· Integration Testing – Controlled evaluation performed to ensure that a collection of programmed units work together to produce expected results as defined in the functional requirements.
· Load Testing – Testing with a large amount of virtual users in order to better predict system behavior and performance under production conditions.

· Acceptance Testing – The process whereby end users performing final testing of an application prior to its release to production. The focus is on whether or not the application meets user requirements and produces correct results.
2.3 Resources
In order to conduct unit and integration tests, Ekagra must make us of the following resources:

· Software configurations

· JBOSS 3.2

· j2sdk1.4.x

· MySQL 4.1

· Java Virtual Machine

· Struts Framework 1.1

· Development Software

· Eclipse and myEclipse plug-in

· Test tools

· JUnit

· OpenSTA (Open System Testing Architecture)
· Possible Agitar – program that simulates multiple test scenarios quickly

· Documentation

· CSM Guide for Application Developers

2.4 Test Execution
Given that error-free functionality and ease of use are our top priorities, testing will play a substantial role. The team will perform testing at multiple stages with multiple means:

2.4.1 Unit Testing

During development, Ekagra will conduct testing on a daily basis using an integration of JUnit and Ant. As development progresses, new test scripts will be developed and added to JUnit. On a nightly basis Ant will create a build, and JUnit will run tests and issue reports. Each morning developers will receive an email indicating the results.

2.4.2 Load Testing

When creating the data and persistence layers, the team will use Hibernate to populate the database with many virtual users. This will allow the team to analyze performance at an early stage, and make modifications geared toward increasing transaction speed. This approach mitigates the need for future rework.

Ekagra will also perform load testing from a user prospective, using OpenSTA – an open-source application in which one can record internet activity and replay this activity using many virtual users.

2.4.3 Integration Testing

To perform integration tests developers will make use of two tools – the User Provisioning Tool (UPT) and the Reference Implementation (RI). The UPT is an end-user product used for manipulating the database. This tool can perform the majority of the use cases for this project, so this will serve as an integration test tool upon its construction. The RI, a separate web application, will allow complete testing of the use cases.

2.4.4 Acceptance Testing

Following internal testing, Ekagra will distribute both the UPT and RI to end-users for acceptance testing. Because of the tools’ importance and visibility, they will be designed with simplicity and ease of use in mind. caCORE developers will work to integrate the tools with their current architecture. Successful integration will signify acceptance.

2.5 Test Schedule
This section describes primary activities to be accomplished for testing including the following:

	Tested Item
	Activity
	Start Date
	End Date

	
	Develop test plan and procedures
	10/01
	10/15

	Authentication Modules
	Develop JUnit tests
	11/9
	11/12

	
	Evaluate Results
	11/16
	11/16

	
	Integration Testing
	11/17
	11/17

	AuthorizationManager Interface
	JUnit tests
	12/16
	12/22

	User Provisioning Tool (Authorization)
	Integration Testing
	1/21
	2/4

	Reference Implementation
	Integration Testing
	
	

	APIs
	Load Testing
	
	

	Comprehensive
	System Testing
	
	

2.6 Requirements to Verify

2.6.1 Authentication

Authentication refers to the validation and verification of a user’s credentials.

· Reliably and securely determine access to an application

· System to system authentication

2.6.2 Authorization

Authorization grants access to various protection elements (methods, objects and data).

· Protect privileged resources from unauthorized users

· Associate user roles with distinctly defined privileges

· Ability to set access control for datasets

2.6.3 Web Based User Provisioning

· Web enabled application

· Access to multiple user repositories

2.6.4 Availability

The system up time will be structured so that it is available on a 24x7 basis. The goal of the framework is to achieve 95% availability during a 2 hour cycle.

2.6.5 Performance and Scalability

The performance of the system must not impact the workflow of the applications utilizing the common security framework. A consensus among the NCICB application teams is that the phase one data model must be normalized to ensure the framework can deliver the appropriate performance and scalability. The ability to support a large volume of both user credentials and authorization data is critical to the success of the framework.

2.6.6 Flexibility and Extendibility

The system design should support a plug and play architecture so that interchanging implementation of system components does not require modifying source code. The security architecture will be exposed as both a pluggable module and a web service.

2.6.7 Commitment to Open Standards

All of the solutions that are being evaluated are primarily based on open standards, widely adopted practices, and open source software.
3. Test Objectives

3.1 Configuration of the System
This section specifies the test objectives for configuration of the system and its components.
· Component configuration: This section identifies the COMPONENT for which the following configuration test objectives are identified. This section and its subsections are repeated for each component.

· Component Documentation: This section provides the test objectives for verifying documentation of each component.
3.2 Computer Security
This section specifies the computer security-related test objectives for the system. These are based on the system requirements or testing requirements defined during inception and elaboration phases. Most of these criteria have to be tested at each tier of the architecture in a complete system test. These types of tests should be conducted on the servers that support the Common Security Service.
· Discretionary access control

· Mandatory access control

· Object reuse

· Identification and authentication

· Trusted path

· Audit

· System architecture

· System integrity

· Trusted recovery

· System start-up and shutdown

· Intrusion detection

3.3 System Functional Interface
This section identifies the interfaces to be tested. Each interface to be tested should contain subsections for operational validation testing and functional security mechanism testing as appropriate. These types of tests are closer to the traditional functional requirement testing using in most application testing.

Operational testing will ensure that the component works as intended on valid inputs. Functional security mechanism testing will verify that the functional security-relevant components perform as designed.

3.4 Stress Test Scenarios
This section specifies the scenarios for conducting system stress testing. The stress test scenarios attempt to stress the system’s security environment to better assess the overall security posture of the system.

· Denial of Service: This section lists the tests to be performed to ensure that a denial of service does not occur when the load on the Common Security Service increases.

· Memory load testing: Test if an intruder can penetrate when the system memory limits are reached.

· Failure to audit when stressed: Test if system is overwhelmed by the logging mechanism when the system is under load.

· Queue integrity in the service compromised: If the number of entries on the queue for service reaches a boundary, is the system mixing up or skipping requests?

4. Evaluation Criteria
This section identifies key issues and the general criteria for evaluating security test results. It provides a list of test results that must be demonstrated before the CSM system can be released.
Authentication
JUnit Tests performed and passed

Authorization

JUnit Tests performed and passed

UPT

Test cases performed and verified

Deployment and associated configuration files verified

UPT Distribution

Proper files included

War

Configuration xml files

Location identified

APIs

Load testing performed
Hibernate

Load Testing performed

RI

Functions correctly and supports use cases

Successfully integrates CSM, specifically Authorization

User Documentation
Complete and reviewed internally and by client

CSM Guide for Application Developers

UPT Deployment

System Documentation
Complete and reviewed internally and by client

Enterprise Architect Model

SAD

Java Doc

Data Dictionary
[image: image2.jpg][image: image3.jpg]

[image: image4.png]

[image: image5.png]

_1135871162.bin

