 Getting started with Build and Deployment Automation - DRAFT

April 2008
	 National Cancer Institute | Build and Deployment Automation Team

[image: image1.wmf]

Checklist
	Item
	Description

	Are you/will you be using Subversion?
	It’s highly recommended teams use Subversion

	List of property values
	For DEV and QA. Work with the Systems team in determining DEV hostname, database hostname, authentication hostname.

	Meet w/ Systems team
	Ask systems team to setup virtual machine for CI environment. Request setup for DEV, QA, and STAGE environments.

	Create text-based Systems request documents
	See NCIA and caArray for an example. https://gforge.nci.nih.gov/svnroot/scm-private/trunk/caarray2/deployment/*.txt for an example.

	Create tier-specific .properties files
	All property names are the same. Values are different. See https://gforge.nci.nih.gov/svnroot/scm-private/trunk/caarray2/properties/*.properties for an example

	Which Automated Build Script (ABS) language do you use?
	Ant, Maven, Gant?

	Do you have a Continuous Integration system in place?
	It’s highly recommended teams use CI to build and deploy.

	What’s the current phase in the lifecycle of your project? What’s the pace of development and what’s the potential impact of large-scale changes in the build process?
	RUP-Inception/Transition

Key Practices
	Practice
	Description

	Use Continuous Integration
	Build software with every change applied to version control repository

	Commit code often (each developer at least once a day)
	Task-level commits are preferred

	Prevent Broken Builds
	Run private builds prior to checking in code

	Fix Broken Builds Immediately
	Developer(s) responsible for breakage should be responsible for fixing it

	Capable of delivering to DEV, QA, STAGE every day
	It’s very likely you won’t be delivering to QA or STAGE everyday, but you should be capable of delivering every day. It is recommended you deliver to DEV everyday.

	Capable of scorching DEV, QA, STAGE environment and rebuilding in automated fashion
	Anyone on the team should be capable of standing up a target environment in less than one hour

	Separate all tier-specific values into tier-specific .properties files
	These files should be committed to a protected directory in SVN project repository

	Same build run from AntHill Pro should be run the command line and vice-versa
	Nothing in the build should be tier-specific.

	No tier-specific build functionality
	Although different targets may run in different environments, the build should not have any functionality that is not capable of running in any target environment.

	Use a separate machine to run CI
	Systems team will provision a virtual machine for this purpose

	DEV, QA, STAGE environments should be similar

	There should be no marked configuration differences between DEV, QA and STAGE environments. Full automation can assist in verifying this is the case

	Use template property checker
	See https://gforge.nci.nih.gov/svnroot/scm-private/trunk/ant/custom/ncicb

	Promote binaries through tiers
	Build in DEV, promote EAR/WAR from DEV to QA, QA to STAGE, etc.

	Checkin all files necessary to run a complete build into Subversion repository
	See Repository pattern at http://www.scmpatterns.com/book/pattern-summary.html

	All values that vary between target environments must be tokenized in source/configuration files
	There must not be in hard-coded values that vary between environments

Build Functionality
A build is much more than compilation and packaging. This table describes the functionality we recommend adding to your build scripts.
	Function
	Description

	Compilation
	Compile and package the Java source code

	Dependency Management
	Use a common repository to manage JAR and tool dependencies. An Ivy repository has been established at CBIIT

	Database Integration
	Execute DDL and DML as part of build process. Provide capability to rebuild database and test data automatically.

	Database Migration/Incremental Database Modifications
	Changing attributes/data for an existing database

	Automated Tests
	Unit, Component, System, Functional, Load & Performance, Security

	Automated Inspections
	Coding standards, Dependency Analysis, Cyclomatic Complexity, Duplication, Code Coverage

	Deployment
	Deploy/Configure to web container, grid service, etc.

	Installation
	Similar to Deployment, but creating installers for installation in user’s environment

	Documentation
	JavaDocs, Doxygen (UML models, etc.), ER diagrams, build diagrams

	Tool installation and configuration

	Download, install and configure tools such as JBoss, MySQL and Globus in each target environment

Tools

Here are some of the tools your team can use to implement the practices identified above.
	Tool
	Description

	Maven, Ant
	Building the software

	AntUnit
	Write unit tests for Ant code using Ant

	Ivy
	Dependency management of JARs and other files

	BDA macros

· Database Integration/Migration

· Local/Remote Deployment

· Pre/Post-installation checks

	Common framework of build, installation and deployment scripts for CBIIT

	JUnit
	Write automated unit and component tests in Java using JUnit

	Eclipse
	IDE. BDA has a common project file that can be utilized

	DbUnit
	Framework for writing component tests – specifically for seeding test data

	Selenium
	Framework for running automated web-based cross-browser functional tests

	JMeter
	Load testing tool

	Fitnesse
	Acceptance-testing tool

	CheckStyle/PMD
	Coding standards

	Simian
	Code duplication checker

	JavaNCSS/Source Monitor
	Check for cyclomatic complexity

	JDepend
	Tool for dependency analysis

	Cobertura
	Open source code coverage tool

	JSch (for deployments)
	Java Secure Channel is used for SCP and SSH commands

	AntHill Pro
	CBIIT build management team for promotion between target environments (DEV, QA, STAGE and PROD)

	Hudson
	Open-source Continuous Integration server used in CI environment

Procedures

An initial list of recommend procedures for your project.
	Procedure
	Description

	Checkin procedures
	Communicate the codeline policy for developers when checking in code

	Build Promotion procedures
	The steps for promoting from one environment to the next

Resources
	NCI Common Library (Ivy repository of JARs and tools)
	https://gforge.nci.nih.gov/projects/commonlibrary/

	Build and Deployment handbook (see Docs|Policy Documents|Build and Deployment Handbook
	https://gforge.nci.nih.gov/projects/scmapilot/

	caArray2 SVN repo (BDA-enabled project)
	https://gforge.nci.nih.gov/svnroot/caarray2

	NCIA SVN repo (BDA-enabled project)
	https://gforge.nci.nih.gov/svnroot/ncia

	Template property checker (Check with BDA team on usage)
	https://gforge.nci.nih.gov/svnroot/scm-private/trunk/ant/custom/ncicb

Target Environments
	Target Environment
	Description

	Developer Workstation(s)
	Each developer will manage his developer workstation environment. Each developer should be capable of running a full integration build on his machine with only an SVN client and JDK. Builds will occur very frequently in this environment.

	Continuous Integration environment
	Manage by each development team. Provisioned by the Systems team. A virtual machine will be established for each team and provide unfettered access. Builds will occur with every change to the SVN project repository.

	DEV
	Managed by Systems team, but development teams have certain level of access. It’s recommend development teams run a daily build to this environment from AntHill Pro

	QA
	Managed by Systems team, but QA team will have a certain level of access. It’s recommend QA run an on-demand build to this environment from AntHill Pro for each iteration.

	STAGE
	Managed by Systems team. Developers will not have nay access to this environment. However, the same build run in the other environments will run in this environment, but with different property values (known only to the Systems team)

	PROD
	Managed by Systems team. Developers will not have nay access to this environment. However, the same build run in the other environments will run in this environment, but with different property values (known only to the Systems team)

Examples

To use the BDA common macros, perform the following:
1. Checkout from https://gforge.nci.nih.gov/svnroot/automation/trunk/bda/ivy/
2. Add this Ant script to the beginning of your project’s build script. It should be before ant taskdefs and after property definitions

<mkdir dir="lib"/>

<ant inheritAll="false" inheritRefs="false" antfile="bda-ivy-build.xml" target="retrieve-bda">

 <property name="bda-utils.dir" value="${bda-utils.dir}"/>

 <property name="lib.dir" value="${lib.dir}"/>

</ant>
<import file="${bda-utils.dir}/bda-build-utils-1.0.xml" />
After adding this script, you can use the macros defined in bda-ivy-build.xml in your build scripts.

NCI/CBIIT�
[Getting started with Build and deployment automation]�
�

2 | Page

