caGrid Development Operations and
Maintenance (28XS097) Project
Summary Report

This report summarizes the activities and overall status of the caGrid
Development Operations and Maintenance under Statement of Work 28XS097 per
the requirements of section 4.1.4 of that S.0.W.

Work Accomplished against the SOW

The SOW identifies three major areas of work:

1.1dentifying, triaging, debugging, developing and deploying bug fixes and minor
enhancements of the toolset

2.Providing operational support to the tools and services for the NCI Production
deployment of the tool.

3.Providing technical leadership to the community on the toolset.

Additionally, the SOW identifies some program management related
deliverables and tasks, such as
1.A wiki space containing all software deliverables, project management
documentation, etc.
2.A technical project plan, to be updated and made available via the wiki on a
monthly basis.
3.A technical status report, updated monthly and made available via the wiki.
4.This document

To this end, the caGrid development team has accomplished the following:

Bug fixes and enhancements:

A total of 83 issues have been entered in the Jira tracker since the start of the
SOW on June 24, 2011, including 7 bugs, 25 new feature requests, and 11 issues
identified as tasks, most of which comprise documentation tasks. Of these, two bugs
were fixed, and nine new features implemented with four in progress as of this
writing.

Major new functionality completed during this SOW’s period of performance
included the completion of development of the SHA 2 support release of caGrid,
implementation of upgrade tooling for services, and integration of support for data
services backed by the latest release (4.4) of caCORE SDK.



Operational support for NCl production deployment

The caGrid development team in conjunction with the caGrid Knowledge
Center has worked closely with the NCI to ensure high uptime and availability of the
production grid deployment.

Typically, this involves answering questions about the grid APIs and
underlying functionality, but occasionally diverges into new feature requests. An
example of the latter include Jira item CAGRID-795, which is a request for additional
functionality to be added to the authentication service for configuring account
lockouts.

The development team has also answered numerous “Data Calls”, which is
the NCI's mechanism for obtaining information about existing or proposed technical
functionality that might impact other user communities. The most prominent
example of this activity is the development team’s ongoing work to inform the NCI
regarding the impact of the upgrades and changes to support SHA 2 certificates in
the grid.

Community technical leadership

The development team provides front-line support along side the caGrid
Knowledge Center for technical aspects of questions and requests about the
software. The KC forums provide a “front door” through which questions and
requests for support are made from the community, and the development team
provides timely technical response.

Documentation of the product is supplied and updated through a community
accessible wiki at http://cagrid.org. This wiki contains comprehensive guides,
which help adopters install, configure, manage, and interact with caGrid.

Active engagement with the user community in the form of teleconference
participation, email communication, and presentations allow the development team
to lead the community in adoption and uptake of the caGrid software stack. This
includes assistance with installations and integration of the library APIs with
application projects.

Other program management related deliverables

The deliverables of sections 4.1.1, 4.1.2, 4.1.3, and 4.1.4 of the S.0.W. are
available on the caGrid Development Wiki space of the NCI wiki. The space can be
accessed at the URL
https://wiki.nci.nih.gov/display/cagridproject/caGrid+Development+Wiki+Home+
Page. All related deliverables are organized by name and attached to the space’s
pages as PDF documents.




Issues and Resolutions

The project encountered a few significant technical issues during this phase
of development.

Upgrades of existing services to the SHA 2 support release

Historically, caGrid has supported upgrading services from two releases back
of the current release with a minimum of user intervention, if any at all. For
example, caGrid 1.4 supports upgrading a service which was created with caGrid 1.2
or caGrid 1.3 to the 1.4 release using out-of-the box tooling. Upgrades to 1.4 are not
supported from services generated with caGrid 1.0 or 1.1. This policy has allowed
the software to improve over time, while providing a simple migration path for the
established user base. As the underlying tech stack of caGrid has not changed
substantially since the initial 1.0 release, this has not proven to be a process that
introduces significant technical problems for end users.

With the advent of the SHA 2 release, significant changes had to be made to
the underlying tech stack of caGrid, which made upgrades substantially more
complicated. For most cases, the development team was able to automate these
changes and render the upgrade experience every bit as seamless as it was for
previous releases. An interesting edge case came to light, however, in the form of
custom-modified grid services. The team worked through various scenarios of
replacing libraries where possible, implementing wrapper APIs to emulate the
previous functionality, code generation tools, and runtime bytecode injection
techniques in an effort to upgrade such services without significant developer
interaction and rework. Unfortunately, such efforts proved the issue to be
complicated to the point of being impractical to implement in a manner that would
work in all - or even most - cases. The issue was resolved by sticking to the
historical upgrade policy, which indicates that custom-modified services will be
upgraded to the greatest extent possible, but leaving the onus on the developer of
the service to ensure those customizations are compatible with the new technology.

Supporting data services backed by caCORE SDK version 4.4

The artifacts and API of caCORE SDK 4.4 is somewhat different from the
functionality found in version 4.3, which led to issues for users who attempted to
build caGrid services backed by caCORE SDK 4.4. A new data service style was built
to facilitate this support, and released as a community project and update to the
Introduce toolkit.

To support upgrades from one version of caGrid to another, and ensure a
more seamless user experience, this project was rolled in to the main caGrid
codebase and ships out-of-the box.



Community validation of the changes made by the SHA 2 support release

The changes required to support SHA 2 certificates in caGrid require some
work on the part of developers of grid services and, to a lesser extent, application
developers. Since the changes made involved substantial reworking of the security
code behind caGrid, validation of its correctness is essential. Facilitating both
processes requires some ramp up for the developers, as well as a convenient means
by which the code can be tested.

To kick-start community testing of the SHA 2 support grid, we created a
development grid instance and made it accessible to the public. This gives us a
sandbox environment in which we can publish the latest core services, and allows
downstream developers a chance to integrate with the new release.

Recommendations for future enhancements

The caGrid development team is in a unique technical position in which user
requests, use cases, and ideas are often discussed and considered. The team also
balances this against the technical direction the NCI wants to move in, and the
prevailing trends in industry. With this background, the development team makes
the following recommendations for future enhancements to caGrid:

Migrate the system to the latest and final WS-* specifications

The caGrid system is built on a version of the Globus toolkit which predates
many of the final WS-* specifications. Migrating to these final specs would increase
interoperability with other standards-based platforms.

Leverage WS-Security

A move to WS-Security would increase interoperability with other standards-
based platforms, but must be weighed against the risk of breaking backwards
compatibility with the existing implementation of caGrid. WS-Security and the
related WS-Trust would provide additional standard mechanisms for authentication
and authorization not currently available in caGrid.

Replace Globus 4.0 with a modern web services framework

The Globus toolkit does not take advantage of many of the built-in
networking features of the Java platform, which leads to scenarios where proxy
configuration becomes difficult. The age and relative obscurity of the Globus 4.0



toolkit also reduces the pool of developers who are familiar with the technology and
ready to work on the platform.

Streamline the workflow to build model driven services

The process and timeline to create a UML model, move through the NCI
toolchain, and arrive at a caGrid data service is daunting enough to significantly
impact uptake of the system. A simplified, fast, and iterative process with a very low
learning curve is imperative for continued success.

Potential implementation strategies

As part of the development team’s technical due diligence, we make
recommendations on potential implementation strategies for new features. For the
new feature recommendations above, we’ve outlined some methods of
implementation:

Migrate the system to the latest and final WS-* specifications

A web services toolkit which supports the file WS-* is a requirement, but the
choice of toolkit has implications for the rest of the grid tools and services. There is
essentially no way to make this move without breaking backwards compatibility,
however some options exist that would make migration more straightforward.

The path of least resistance and fastest implementation may be to move to
Globus 4.2. This version supports the final WS-* specs, but maintains the core WSRF
functionality on which most of the grid services rely. From an API perspective, it is
substantially similar to Globus 4.0.3, and so it shouldn’t require an extensive
rebuilding of the grid services to utilize. This might also make adoption easier for
users of the current grid infrastructure.

Another option is a wholesale replacement of Globus with a framework like
Apache CXF. This would have the simultaneous effect of expanding the potential
developer base, as CXF is a fairly common framework, and of ensuring all grid
services are stateless services. The obvious drawback is that removing WSRF from
the grid will require extensive reengineering of the core services and of any
applications that rely on functionality provided by WSRF.

Leverage WS-Security

Implementation of WS-Security should happen concurrently with the move
to a final WS-* spec-compliant system. Globus 4.0.3 does not natively support WS-



Security, but a toolkit like CXF does, or can be made to do so much more readily than
Globus 4.0.3. The WS-Security specs reference the final WS-* specs internally as
well, which makes the move to WS-* a requirement.

Replace Globus 4.0 with a modern web services framework

Most of the underlying code in the core grid services could be ported to work
inside a modern web services framework, albeit with significant considerations
given to design in areas where WSRF resources and stateful services are currently
used. For example, the Federated Query Processor (FQP) is implemented first as an
engine and an API, which is then wrapped by a grid service. The API can be used
standalone, or incorporated inside a web service generated with the framework of
choice.

A framework could be as simple as Apache Axis 2 if the only requirement is
for SOAP services. CXF is a more natural choice if different sorts of endpoints, like
REST are a requirement. Consideration should be given to advanced platforms like
WSO02 as well, with an analysis of the tradeoff in terms of overhead and licensing
weighed against the additional out-of-the-box functionality being made before a
decision is rendered.

Streamline the workflow to build model driven services

One way to gain a substantial improvement to the overhead of developing
services based on a model driven architecture would be to leverage Enterprise
Architect’s plugin and scripting system. Simply removing the overhead and time
required to export models out of EA and into tools like SIW and caCORE SDK would
vastly improve the user experience and turnaround time to build services.

Meeting the mission, goals and objectives of this effort

The caGrid development team has delivered on the objectives of providing
continued support for the caGrid core services and users of the system during the
execution of this Statement of Work. Several new features have been identified
from interaction with the user community, and many have been implemented to
support their scientific use cases. The level of technical support has remained very
high on the knowledge center forums, which facilitates adoption of the caGrid
system. The development team has also integrated support for the latest versions of
NCI tools like the caCORE SDK, which keeps the caGrid platform current and
relevant.



Additionally, the team has provided support to the NCI directly for the

production installation of caGrid, and offered insight into and level of effort
estimates for feature requests driven by the adopter community and the NCI itself.

Lesso

ns Learned

In the course of executing this Statement of Work, the caGrid development

team encountered some learning opportunities.

1.

Outst

The general cutbacks and shutdown of many caBIG development projects
impairs the ability of the caGrid team to implement and release new features.
Since caGrid is an “upstream” dependency of many other caBIG projects,
features like the SHA 2 support can’t be released until there are developers
available to work on the other projects and incorporate the requisite
changes.

Somewhat related to the previous item, backwards compatibility is a major
concern for the NCI when changes are proposed in caGrid. This leads to
architectural decisions, which are often a compromise against the optimal
design in the interest of supporting users, and services that don’t have the
resources to perform updates and new releases.

Barrier to entry, whether real or perceived, is a key factor to adoption and
uptake of caGrid. Concurrent with this, a simple and clearly described
explanation of the benefits of using the grid and an overview of the
underlying processes it abstracts away is essential to driving early interest.

anding Issues

At the conclusion of this SOW and as of the time of this writing, the following

are the

remaining issues not yet closed out that were surfaced during the period of

the SOW.

Bugs

Key

Summary Priority | Affects Version/s

CAGRID-788 | Website column of cat_entry table stores URL | Minor

as serialized java.net.url

CAGRID-787 | Catalog editing issues in Portal 3.5 Minor

CAGRID-784 | Introduce shouldn't display extensions which Minor caGrid 1.5, caGrid 1.6

are flagged as "deprecated" and "should be
removed"




CAGRID-737 | WEBSSO incorrectly configures Minor caGrid 1.4
Authentication and Dorian clients
CAGRID-735 | WEBSSO hides exceptions returned from Minor caGrid 1.4
Dorian
Feature Requests
Key Summary Priority | Status Affects Version/s

CAGRID- Group Search Minor Open
797
CAGRID- Update authentication Service Minor In caGrid 1.4
795 to include configurable lockout Progress
- settings
CAGRID- Upgraders for SDK 4.2 data Minor Open caGrid 1.3, caGrid 1.4,
794 services from 1.5 and 1.4 to 1.6 caGrid 1.5, caGrid 1.6
CAGRID- | Upgraders for SDK 4.3 data Minor Open caGrid 1.3, caGrid 1.4,
793 services from 1.5and 1.4 to 1.6 caGrid 1.5, caGrid 1.6
CAGRID- Data Service Upgrader for 1.4 Minor In caGrid 1.6
790 and 1.5t0 1.6 Progress
CAGRID- Add exposed validateQuery Minor Open caGrid 1.4
781 operation to Introduce

generated Data Services
CAGRID- Support for JBoss 5.1 in caGrid | Minor Open caGrid 1.4
775 1.4
CAGRID- | Support for JBoss 5.1.x running | Minor Open caGrid 1.6
768 wsrf grid services
CAGRID- WS-Enumeration extension Minor Open caGrid 1.4, caGrid 1.5,
767 upgraders from 1.4 and 1.5 to caGrid 1.6

1.6
CAGRID- xmiToDomainModel generates Minor Open caGrid 1.4
763 invalid domain model when

primitive types are used in XMI
CAGRID- Add ability to completely Minor Open caGrid 1.4
762 remove a user from Grid

Grouper
CAGRID- | Add ability to specify that a Minor Open caGrid 1.4
761 Group can only allow members
- from a specific authentication

Service
CAGRID- | Allow Dorian Administrator to Maijor Open caGrid 1.4
760 manually add an IFS user
CAGRID- Merge caCORE SDK 4.4 data Minor In caGrid 1.5, caGrid 1.6
755 service style project into caGrid Progress

1.5 and trunk
CAGRID- Upgraders for SDK 4.4 data Minor In caGrid 1.3, caGrid 1.4,
754 services from 1.4 to 1.5 Progress | caGrid 1.5, caGrid 1.6
CAGRID- Give IdP administrators a way Minor Open caGrid 1.6
717 to unlock locked accounts




Dependencies and Risks

Volatile external dependencies of the caGrid system are few from a

technology perspective, however a few have the ability to impact caGrid in a
negative way.

1.

caCORE SDK. The SDK utilizes code from caGrid to handle CQL internally.
After much conversation with the caGrid project lead, it was decided to
remove this circular dependency by dropping support for native CQL
processing out of the caCORE SDK. This will happen in some future release of
caCORE SDK, but caGrid won't see the benefit until a data service style is
created for that version.

a. The data service style can easily be released independently of the rest
of caGrid and distributed through Introduce’s standard update tools.

Changes to, or bugs found in the CSM API may impact the way caGrid’s
authentication mechanisms interact with systems like LDAP for identity
provisioning.

a. caGrid has recently pulled a copy of the CSM API in to its codebase for
the purpose of maintaining the changes and bugfixes required. Since
the version of the API required by the authentication providers is no
longer actively maintained, this was necessary to solve ongoing issues
such as account lockouts.

The NCI approved tech stack calls for specific versions of tools such as
Hibernate and Spring. caGrid cannot always move to the approved versions
due to reliance on other tools which depend on older versions, such as the
caCORE SDK.

a. The tech stack similarly calls for specific versions of Tomcat and
JBoss. While caGrid itself is migrating, and has largely migrated, to the
recommended versions, it's important to note the impact this has on
backwards compatibility, and that some existing tools may rely on
functionality that is different or no longer provided in the new
versions.

Due to the unique and central position of caGrid in the NCI technology

portfolio, it is also subject to non-technical risks and dependencies, such as:

1.

2.

Conflicting requirements for backwards compatibility and advances in
technology.

Lack of funding for other project development teams to adopt changes in
caGrid makes it difficult to implement features that would require changes in
their applications as well. This makes high priority features such as the SHA
2 support release impossible to roll out.



