
Center for Biomedical Informatics
and Information Technology

 CANCER DATA STANDARDS
REGISTRY (CADSR)

 Release 4.0 Technical Gude

October 20, 2008This is a U.S. Government work.

This is a U.S. Government work. i

TABLE OF CONTENTS
About This Guide ...1

Purpose ... 1
Release Schedule .. 1
Audience ... 2
Additional Documentation .. 2
Topics Covered .. 2
Text Conventions Used ... 3
Credits and Resources .. 3

Chapter 1
Overview of caCORE ...5

caCore Architecture Overview .. 5
Components of caCORE ... 6

Enterprise Vocabulary Services (EVS) .. 6
Cancer Data Standards Repository (caDSR) .. 6
Software Development Kit (SDK) ... 6
caAdapter ... 7
Common Security Model (CSM) ... 7
Common Logging Module (CLM) .. 7

Chapter 2
caDSR Architecture ..9

caDSR System Architecture ... 9
Client Technologies ... 10
caDSR Packages ... 11

Chapter 3
Understanding caDSR and the caDSR API 13

Modeling Metadata: The ISO/IEC 11179 Standard ... 13
caDSR Metamodel ... 17
caDSR API .. 23

caDSR Domain Object Catalog .. 25

caDSR 4.0 Technical Guide

ii This is a U.S. Government work.

Downloading the caDSR .. 33
caDSR API Examples .. 34

Using the caDSR Java API .. 34
Using the caDSR Web Services API .. 36
UML Project API Examples ... 37

Chapter 4
Interacting With caDSR ...41

Java API .. 41
Installation and Configuration .. 42
A Simple Example ... 44
Application Service Interface ... 45
Convenience Query Methods ... 46
HQL Query Methods ... 46
Nested Search Criteria Query Methods ... 47
Detached Criteria Query .. 48
CQL Query .. 49

Web Services API .. 51
XML‐HTTP API ... 51

Appendix A
Understanding Unified Modeling Language (UML) 53

UML Modeling .. 53
Use‐case Documents and Diagrams ... 54
Class Diagrams .. 55

Naming Conventions .. 57
Relationships Between Classes .. 57
Association ... 57
Directionality ... 57
Multiplicity .. 58
Aggregation .. 58
Generalization .. 59

Package Diagrams ... 60
Sequence Diagrams ... 62

Appendix B
References ...65

Technical Manuals/Articles .. 65
Scientific Publications ... 65
caBIG Material ... 67
caCORE Material ... 67
Modeling Concepts ... 67

This is a U.S. Government work. iii

Applications Currently Using caCORE .. 67
Software Products ... 68

Glossary ..69

caDSR 4.0 Technical Guide

iv This is a U.S. Government work.

1

ABOUT THIS GUIDE
This section introduces you to the caDSR 4.0 Technical Guide. It includes the following
topics:

Purpose on this page

Release Schedule on this page

Audience on page 2

Additional Documentation on page 2

Topics Covered on page 2

Text Conventions Used on page 3

Credits and Resources on page 3

Purpose
The caCORE caDSR 4.0 Technical Guide describes the Cancer Data Standards
Registry (caDSR) component of the Cancer Common Ontologic Representation
Environment (caCORE).

caCORE is an open-source, standards-based, semantics-computing environment and
toolset created by the National Cancer Institute (NCI) Center for Biomedical Informatics
and Information Technology (CBIIT).

The caDSR is a metadata registry, based on the ISO/IEC 11179 standard, and is used
to register the descriptive information needed to render cancer research data reusable
and interoperable. The caBIO, EVS and caDSR data classes are registered in the
caDSR as are the data elements on NCI-sponsored clinical trials case report forms.

Release Schedule
This guide is updated for each caDSR release. It may be updated between releases if
errors or omissions are found. This version reflects the caDSR 4.0, released October
2008 by the NCI CBIIT (formerly the National Cancer Institute Center for Bioinformatics
(NCICB)).

caDSR 4.0 Technical Guide

2

Audience
The primary audience of this guide is the application developer who wants to learn
about the architecture of caDSR and to access and/or use the caDSR APIs. caDSR is
generated using the caCORE Software Development Kit (SDK). For more information,
see the caCORE SDK 4.0 Developer's Guide hosted on GForge.

The caDSR 4.0 Technical Guide assumes familiarity with the Java programming
language and/or other programming languages, database concepts, and the Internet.
For consuming caDSR resources in software applications, experience with building and
using complex data systems is also assumed. Neither the caDSR API nor this
documentation is intended for health professionals and members of the general public
who do not have the requisite software development experience noted previously.

Additional Documentation
The caDSR 4.0 Release Notes contain a description of the end user tool
enhancements and bug fixes included in this release.

The caCORE SDK 4.0 Developer's Guide contains detailed instruction on the use of
the SDK and how it aids in creating a caCORE-like software system.

Topics Covered
This technical guide focuses on the caDSR component of caCORE 4.0 and provides
information regarding:

The purpose, architecture, and components of caCORE and caDSR;

The APIs for accessing the caDSR system including Java, Web services, and
XML-HTTP;

An overview of Unified Modeling Language (UML).

The following is a list of the chapters you will find in this guide and a brief description of
the information provided in each of those chapters:

Chapter 1, Overview of caCORE, on page 5

Chapter 2, caDSR Architecture, on page 9

Chapter 3, Understanding caDSR and the caDSR API, on page 13

Chapter 4, Interacting With caDSR, on page 41

Appendix A, Understanding Unified Modeling Language (UML), on page 53

Appendix B, References, on page 65

Glossary on page 69

For details on components other than caDSR, refer to the caCORE Overview web page
at http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview.

http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview
https://gforge.nci.nih.gov/docman/index.php?group_id=148&selected_doc_group_id=1389&language_id=1

 About This Guide

3

Text Conventions Used
This section explains conventions used in this guide. The various typefaces represent
interface components, keyboard shortcuts, toolbar buttons, dialog box options, and text
that you type.

Credits and Resources
The following people contributed to the development of this document.

Convention Description Example

Bold Highlights names of option buttons,
check boxes, drop-down menus,
menu commands, command
buttons, or icons.

Click Search.

URL Indicates a Web address. http://domain.com

text in SMALL CAPS Indicates a keyboard shortcut. Press ENTER.

text in SMALL CAPS +
text in SMALL CAPS

Indicates keys that are pressed
simultaneously.

Press SHIFT + CTRL.

Italics Highlights references to other
documents, sections, figures, and
tables.

See Figure A.3.5.

Italic boldface
monospaced type

Represents text that you type. In the New Subset text box,
enter Proprietary
Proteins.

Note: Highlights information of particular
importance

Note: This concept is used
throughout the document.

{ } Surrounds replaceable items. Replace {last name, first
name} with the Principal
Investigator’s name.

caDSR Development and Management Teams

Development Documentation Project and Product
Management

 Denis Avdic3 Bronwyn Gagne2 Stephen Alred 4

Rebecca Angeles3 Ann Wiley5 Larry Hebel3

Dave Hau3 Jill Hadfield 1 Denise Warzel 1

1 National Cancer Institute Center
for Bioinformatics and
Information Technology (CBIIT)

2 Lockheed Martin 3 ScenPro, Inc.

4 Oracle 5 Ann Wiley Consultants, Inc. 6 Ekagra Software
Technologies

caDSR 4.0 Technical Guide

4

Contacts and Support

NCICB Application Support http://ncicb.nci.nih.gov/NCICB/support
 Telephone: 301-451-4384
 Toll free: 888-478-4423

http://ncicb.nci.nih.gov/NCICB/support

5

CHAPTER

1
OVERVIEW OF CACORE

The NCI Center for Biomedical Informatics and Information Technology (CBIIT)
(formerly NCICB) provides biomedical informatics support and integration capabilities
to the cancer research community. CBIIT has created a core infrastructure called
Cancer Common Ontologic Representation Environment (caCORE).

This chapter provides an overview of the NCI CBIIT caCORE infrastructure.

caCore Architecture Overview
caCORE is a data management framework designed for researchers who need to be
able to navigate through a large number of data sources. By providing this common
framework, caCORE helps streamline the informatics development throughout
academic, government and private research labs and clinics.

The components of caCORE support the semantic consistency, clarity, and
comparability of biomedical research data and information. caCORE provides open-
source enterprise architecture for NCI-supported research information systems built
using formal techniques from the software engineering and computer science
communities.

The four characteristics of caCORE include:

Model Driven Architecture (MDA)

n-tier architecture with open Application Programming Interfaces (APIs)

Use of controlled vocabularies, wherever possible

Registered metadata

Systems with these properties are said to be “caCORE-like.”

When all four of these development principles are addressed, the resulting system has
several desirable properties:

caDSR 4.0 Technical Guide

6

The n-tier architecture, with its open APIs, frees the end user (whether human
or machine) from needing to understand the implementation details of the
underlying data system to retrieve information.

The maintainer of the resource can move the data or change implementation
details (Relational Database Management System, and so forth) without
affecting the ability of remote systems to access the data.

Most importantly, the system is semantically interoperable; that is, there exists
runtime-retrievable information that provides an explicit definition and complete
data characteristics for each object and attribute supplied by the data system.

The use of MDA and n-tier architecture, both standard software engineering practices,
allow for easy access to data, particularly by other applications.

The use of controlled vocabularies and registered metadata, less common in
conventional software practices, requires specialized tools. As a result, the NCI CBIIT
(in cooperation with the NCI Office of Communications) developed the Enterprise
Vocabulary Services (EVS) system to supply controlled vocabularies, and the Cancer
Data Standards Registry (caDSR) to provide a dynamic metadata registry.

Components of caCORE
The NCI provides a range of tools and components that assist in the development of
caCORE and caCORE-like systems. EVS and the caDSR provide the semantic
infrastructure and the tools necessary for semantic integration. The caCORE
components that support the development of systems include the caCORE Software
Developers Toolkit (SDK), caAdapter, the Common Security Module (CSM) and the
Common Logging Module (CLM). Each is described briefly below.

Enterprise Vocabulary Services (EVS)
EVS provides controlled vocabulary resources, implemented in a description logics
framework, that support the life sciences domain. EVS vocabularies provide the
semantic 'raw material' from which data elements, classes, and objects are
constructed.

Cancer Data Standards Repository (caDSR)
The caDSR is a metadata registry, based upon the ISO/IEC 11179 standard, used to
register the descriptive information needed to render cancer research data reusable
and interoperable. The caBIO, EVS, and caDSR data classes are registered in the
caDSR, as are the data elements on NCI-sponsored clinical trials case report forms.

Software Development Kit (SDK)
The caCORE Software Development Kit or SDK is a set of development resources that
allows you to create, compile, and run caCORE-like software.

The SDK can be used outside of the caCORE process to generate a system from a
UML model that runs on standardized query languages, or within the caCORE process
to quickly generate a caBIG silver-level compatible system from a semantically
integrated UML model.

Chapter 1 Overview of caCORE

7

By providing a common data management framework, caCORE SDK helps streamline
the informatics development throughout academic, government and private research
labs and clinics.

caAdapter
The caAdapter Mapping Tool is an open source application that supports several types
of data mapping and transformation.

Perhaps the most useful aspect is the ability of the tool to support object-to-data model
mapping. This component allows users to parse and load data and object models from
an XMI file, map the object model to the data model using drag-and-drop, add the SDK-
required tags and tagged values into the XMI file, and then generate a Hibernate
mapping file.

caAdapter also allows analysts and database engineers who are knowledgeable in HL7
to create a mapping from Comma Separated Value (CSV) formatted clinical data to an
equivalent target HL7 v3 XML format. In addition, it allows HL7 v2 analysts to convert
v2 messages into CSV format, allowing them to then be mapped to HL7 v3 format.
These capabilities are provided through a front-end GUI and a back-end engine that
supports specification of file formats, drag-and-drop mapping between source and
target, validation of specifications and data, and transformation of actual CSV data into
HL7 v3 XML message instances.

Common Security Model (CSM)
CSM provides a flexible solution for application security and access control with three
main functions:

Authentication to validate and verify a user's credentials

Authorization to grant or deny access to data, methods, and objects

User Authorization Provisioning to allow an administrator to create and assign
authorization roles and privileges.

Common Logging Module (CLM)
CLM provides a separate service under caCORE for Audit and Logging Capabilities. It
also comes with a web based locator tool. It can be used by a client application directly,
without the application using any other components like CSM.

caDSR 4.0 Technical Guide

8

9

CHAPTER

2
CADSR ARCHITECTURE

This chapter describes the architecture of the caDSR system.

caDSR System Architecture
The caDSR Domain Model and a view of the caDSR from a UML Project perspective
are offered as services, based on the caCORE SDK architecture. The caCORE SDK
exhibits an n-tiered architecture with client interfaces, server components, back-end
objects, data sources, and additional back-end systems (Figure 2.1).

This n-tiered system divides tasks or requests among different servers and data stores.
This isolates the client from the details of where and how data is retrieved. The system
also performs common tasks such as logging and provides a level of security.

Figure 2.1 caDSR Architecture

Clients, such as browsers or applications, receive information from back-end objects.
Java applications also communicate with back-end objects via domain objects

caDSR 4.0 Technical Guide

10

packaged within the client.jar. Non-Java applications can communicate via SOAP
(Simple Object Access Protocol). Back-end objects communicate directly with caDSR
data sources using Hibernate.

The caDSR services offered by the NCI CORE Infrastructure Program Area and many
of the caBIG™ data services use the Java programming language and leverage
reusable, third-party components.

The infrastructure is composed of the following layers:

The Application Service layer: Consolidates incoming requests from the
various interfaces and translates them to native query requests that are then
passed to the data layers. This layer is also responsible for handling client
authentication and access control using the Java API.

Note: The client authentication feature is currently disabled for the caCORE
system running at CBIIT; all interfaces provide full, anonymous, read‐
only access to all data.

The Data Source Delegation layer: Responsible for conveying each query it
receives to the respective data source capable of performing the query. The
presence of this layer allows multiple data sources to be exposed by a single
running instance of a caCORE server.

Object-Relational Mapping (ORM): Implemented using Hibernate. Hibernate
is a high performance object/relational persistence and query service for Java.
Hibernate provides the ability to develop persistent classes following common
object-oriented design methodologies such as association, inheritance,
polymorphism, and composition.

The Hibernate Query Language (HQL) was designed as a “minimal” object-oriented
extension to SQL and provides a bridge between object and relational databases.
Hibernate allows for real-world modeling of biological entities without having to create
complete SQL-based queries to represent them.

Client Technologies
Applications using the Java programming language can access caDSR directly through
the domain objects provided by the client.zip bundle (see Chapter 4, Interacting With
caDSR, on page 41). The network details of the communication to the caDSR server
are abstracted away from the developer. Hence developers need not deal with issues
such as network and database communication, but can instead concentrate on the
biological problem domain.

The caDSR system also allows non-Java Applications to use SOAP clients to interface
with caDSR web services. SOAP is a lightweight XML-based protocol for the exchange
of information in a decentralized, distributed environment. It consists of an envelope
that describes the message and a framework for message transport. caDSR uses the
open source Apache Axis package to provide SOAP-based web services to users. This
allows other languages, such as Python or Perl, to communicate with caDSR objects in
a straightforward manner.

Chapter 2 caDSR Architecture

11

caDSR Packages
Table 2.1 below shows the caDSR packages from which you can access the Java
interfaces and classes. All of the objects in the domain package implement the
java.io.serializable interface.

To view the JavaDocs page for each package, go to http://cadsrapi.nci.nih.gov/
cadsrapi40/docs/.

Figure 2.2 caDSR Packages

In addition to domain packages, the caDSR API client.zip includes the following
framework packages:

System —The system package has subpackages including the application service
package, data access package, delegate/service locator package, proxy package, and
web service package.

Data Access —The data access package (gov.nih.nci.system.dao) is the layer at
which the query is parsed from objects to the native query, the query is executed, and
the result sets are converted back to domain objects results. This layer has
implementations for both an internal ORM and an external data access layer for
querying other subsystems.

Web Service —The Web service package (gov.nih.nci.system.webservice) contains
the Web service wrapper class that uses Apache's Axis.

Packages Description

gov.nih.nci.cadsr.domain Contains the domain classes in the caDSR ISO 11179
related objects such as DataElement, ValueDomain and
AdministeredComponent.
For a list of caDSR domain objects, see Chapter 3,
Understanding caDSR and the caDSR API, on page 13.

gov.nih.nci.cadsr.umlproject Contains the convenience classes for the UML Project
related data in the caDSR.

Table 2.1 caDSR Packages and Descriptions

http://cadsrapi.nci.nih.gov/cadsrapi40/docs/
http://cadsrapi.nci.nih.gov/cadsrapi40/docs/

caDSR 4.0 Technical Guide

12

13

CHAPTER

3
UNDERSTANDING CADSR AND THE

CADSR API
The Cancer Data Standards Registry (caDSR) at NCI is part of a larger effort
associated with the 11179 standard defined by the ISO (International Organization for
Standardization) and IEC (International Electrotechnical Commission). The purpose of
the ISO/IEC 11179 is to standardize the metadata used in representing and annotating
shared electronic data. The caDSR is a conforming implementation of ISO/IEC 11179
Edition 2 with extensions, though some of the attributes in the ISO 11179 pertaining to
Stewardship/Submission and Registrar are not exposed in the user interfaces.

This page describes the caDSR, the details of the metadata it contains, and the caDSR
application programming interface (API). The first sections provide a brief review of the
ISO/IEC 11179 standard and its realization as an Oracle database at NCI. Later
sections provide information regarding the Java API to the repository and introduce the
Java classes that participate in this programmatic interface.

Modeling Metadata: The ISO/IEC 11179 Standard
Regardless of the application domain, any particular data item must have associated
with it a variable name or tag, a conceptualization of what the item signifies, a value,
and an intended interpretation of that value.

For example, an entry on a case report form is intended to capture the patient's place of
birth, with the corresponding value tagged electronically as Patient_placeOfBirth. But
what is the intended concept? Is the data element designed to capture the country, the
city, or the specific hospital where the person was born? Assuming that the intended
concept is country, how is the resulting value to be represented electronically? Possible
representations could include the full name of the country, a standard two- or three-
letter abbreviation, a standard country code, or perhaps a specific encoding unique to
the application.

http://metadata-standards.org/11179/

caDSR 4.0 Technical Guide

14

Metadata is “data about data” and refers to just this type of intentional information,
which must be made explicit in order to ensure that electronically exchanged data can
be correctly interpreted. The purpose of the ISO/IEC 11179 standard is to define a
framework and protocols for how such metadata can be specified, consistently
maintained, and shared across diverse domains. The caDSR conforms to this
standard; and while it contains extensions developed specifically to support registration
of forms used in clinical trials data management, usage of the caDSR is not limited to
clinical applications.

The ISO/IEC 11179 standard defines a fairly complex meta-model; even the notion of
metadata itself is a rather abstract concept. To facilitate understanding the model, this
discussion uses a divide-and-conquer approach, and defines two very general types of
components:

Information components whose purpose is to represent content; and

Organizational and administrative components whose purpose is to manage the
repository.

This partitioning is not intrinsic to the ISO/IEC 11179, and indeed, some of the
components do not neatly fit into the separate categories. Nevertheless, it provides a
useful framework.

The fundamental information component in the ISO/IEC 11179 model is the data
element, which constitutes a single unit of data considered indivisible in the context in
which it is used. Another way of saying this is that a data element is the smallest unit of
information that can be exchanged in a transaction between cooperating systems.
More specifically, a data element is used to convey the value of a selected property of a
defined object, using a particular representation of that value.

Note: The term object is used here in the sense defined by the ISO/IEC 11179 and does not
have any literal correspondence to a caCORE Java object.

A critical notion in the metadata model is that any concept represented by a data
element must have an explicit definition that is independent of any particular
representation. In order to achieve this in the model, the ISO/IEC 11179 standard
specifies the following four components:

A DataElementConcept consists of an object and a selected property of that
object;

The ConceptualDomain is the set of all intended meanings for the possible
values of an associated DataElementConcept;

The ValueDomain is a set of accepted representations for these intended
meanings; and

A DataElement is a combination of a selected DataElementConcept and a
ValueDomain.

Chapter 3 Understanding caDSR and the caDSR API

15

The example below diagrams these definitions.

Figure 3.1 Representing data in the ISO/IEC 11179 model

Figure 3.1 above shows how a DataElement that might be used to represent hair color.
The associated DataElementConcept uses the ObjectClass “Hair” and the Property
“Color” to define the intended concept. The intended meanings for this data element
are the familiar hair colors blonde, brunette, etc., but the ValueDomain uses a numeric
representation that is mapped to these intended meanings. Both the
DataElementConcept and the ValueDomain are components of the DataElement, and
each references the same ConceptualDomain, which is defined outside the
DataElement.

Important principles of this design are:

The DataElementConcept (DEC) is used to signify a concept independent of
representation.

The ValueDomain (VD) specifies a set of representational values independent
of meaning.

The DataElement (DE) combines a specific object and property with a value
representation.

The ConceptualDomain (CD) specifies the complete set of value meanings for
the concept and allows the interpretation of the representation.

Figure 3.2 uses a UML Class diagram to show the cardinality constraints that hold for
these relations.

Figure 3.2 Abstract and concrete components of the data representation

Each DataElement must specify exactly one DataElementConcept and one
ValueDomain, in order to fully specify the data element. Similarly, each
DataElementConcept and ValueDomain must specify exactly one ConceptualDomain.
Conversely, a ConceptualDomain may be associated with any number of
ValueDomains and any number of DataElementConcepts.

caDSR 4.0 Technical Guide

16

Figure 3.3 shows an example of this, using the color property of different geometric
objects as DataElementConcepts, and alternate color representations for the
ValueDomains.

Figure 3.3 Many‐to‐one mappings of information elements in the metadata model

A constraint not shown in any of these figures is that it is not possible to reuse the same
DataElementConcept-ValueDomain pair to define a new DataElement, as this defines a
logical redundancy. Thus, the “0..*” cardinality constraints implied by Figure 3.2 are not
quite as open-ended as they imply.

Specifically defined, the cardinality constraints are as follows:

A DataElement specifies exactly one DataElementConcept and one
ValueDomain;

A DataElementConcept specifies exactly one ConceptualDomain;

A ValueDomain specifies exactly one ConceptualDomain;

A ConceptualDomain may be associated with any number of ValueDomains;

A ConceptualDomain may be associated with any number of
DataElementConcepts;

A DataElementConcept may be associated with as many DataElements as
there are ValueDomains (i.e. alternate representations) associated with the
ConceptualDomain; and

A ValueDomain may be associated with as many DataElements as there are
DataElementConcepts associated with the ConceptualDomain.

Many additional information components collaborate with these four core elements to
provide the ISO/IEC 11179 infrastructure for content representation. These are
described in the caDSR model in the next section, along with the organizational and
administrative components that are used to document, classify, and in general, manage
the information components.

Chapter 3 Understanding caDSR and the caDSR API

17

caDSR Metamodel
Figure 3.4 again shows the four elements discussed thus far, but this time in the
context of other components that collectively define the infrastructure for content
representation.

Figure 3.4 Information classes in the caDSR metamodel

All of the components in Figure 3.4 that are highlighted in light gray are Administered
Components and must be administered. This means that there is a formal protocol for
creating these components; that there is an approval process in place for accepting
newly proposed elements; and that there is a designated authority in charge of
stewarding the component. From a technical standpoint, this also means that each of
the highlighted components is derived from a parent class named
AdministeredComponent. Table 3.1 below provides definitions for the components
identified in Figure 3.4.

Component Name Definition Administered
Component

ConceptualDomain A subclass of Administered Component that
depicts the set of all valid value meanings of a
Data Element Concept expressed without
representation.

Yes

DataElement A subclass of Administered Component that
depicts a unit of data for which the definition,
identification, representation, and permissible
values are specified by means of a set of
attributes.

Yes

Table 3.1 Information Classes in the caDSR Metamodel

caDSR 4.0 Technical Guide

18

DataElementConcept A subclass of an Administered Component that
depicts a characteristic of something in the real
world that can be represented in the form of a
data element, independent of any particular
representation.

Yes

ObjectClassRelations
hip

An affiliation between two instances of
ObjectClass.

Yes

EnumeratedValueDo
main

A subtype of value domain expressed as a list of
all permissible values.

Yes

NonenumeratedValu
eDomain

A subtype of value domain expressed by a
generative rule or formula; for example: “all even
integers less than 100."

Yes

ObjectClass A subclass of an Administered Component that
depicts a set of ideas, abstractions, or things in
the real world that can be identified with explicit
boundaries and meaning and whose properties
and behavior follow the same rules.

Yes

PermissibleValue The exact names, codes, and text that can be
stored in a data field in an information
management system.

No

Property A subclass of an Administered Component that
depicts a characteristic common to all members
of an Object Class. It may be any feature
naturally used to distinguish one individual object
from another. It is conceptual and thus has no
particular associated means of representation.

Yes

Qualifier A term that helps define and render a concept
unique. For example, given the ObjectClass
household and the Property annual income, a
Qualifier for the Property could be used to
indicate previous year. One or more Qualifiers
can be present for ObjectClass or Property.

No

Representation A subclass of Administered Component that
depicts a mechanism by which the functional and/
or presentational category of an item may be
conveyed to a user. Examples: 2-digit country
code, currency, YYYY-MM-DD, etc.

Yes

ValueDomain A subclass of an Administered Component that
describes the attributes of a set of permissible
values for a data element.

Yes

ValueDomainPermis
sibleValue

The many-to-many relationship between value
domains and permissible values; allows one to
associate a value domain to a permissible value.

Yes

ValueMeaning The significance or intended meaning of a
permissible value.

Yes

Component Name Definition Administered
Component

Table 3.1 Information Classes in the caDSR Metamodel

Chapter 3 Understanding caDSR and the caDSR API

19

An AdministeredComponent is a component for which administrative information must
be recorded. It may be a DataElement itself or one of its associated components
(Representation, ValueDomain, DataElementConcept, ConceptualDomain,
ObjectClass, or Property). Regardless, every administered component requires explicit
specifications for reuse in or among enterprises. The term AdministeredComponent is
a generalization for all of the descendant components highlighted in Figure 3.4.

Table 3.2 below lists the class attributes of the Administration Record common to all
AdministeredComponents.

Note: The longName identified in caDSR for a component equates to the ISO/IEC 11179
PreferredName.

The class attributes listed in Table 3.2 tell only part of the story however. Additional
critical information about each AdministeredComponent is derived from its associations
with the organizational and administrative items depicted in Figure 3.5 below. Of these
components, the only item that is also itself an Administered Component is the
ClassificationScheme.

Figure 3.5 outlines three “regions”: (1) the Naming and Identification region (upper
right), (2) the Classification region (lower left), and (3) the Contact Information section

Attribute Name Type Required/
Options caDSR UI Name

id (Public ID) String required Public ID

shortName (NCI Extension) String required Short Name

preferredDefinition String required Definition

longName (see NOTE below) String required Long Name

version Float required Version

workflowStatusName String required Workflow Status

workflowStatusDescription String required n/a

latestVersionIndicator Boolean required Latest Version

beginDate Date required Effective Begin Date

endDate Date required Effective End Date

deletedIndicator Boolean optional n/a

changeNote String optional

unresolvedIssue String optional

origin String optional Origin or Database

dateCreated Date required

dateModified Date required

registration (Registration Status) String optional Registration Status

Table 3.2 Class Attributes of an AdministeredComponent

caDSR 4.0 Technical Guide

20

(bottom center). The ReferenceDocument component (right side) is not included in any
region. This is because each AdministeredComponent may be associated with one or
more ReferenceDocuments that identify where and when the component was created
and provide contact information for the component's designated registration authority.

Figure 3.5 Administrative and organizational components of the caDSR metamodel

The purpose of the Naming and Identification region is to manage the various names
by which components are referenced in different contexts. Many components may be
referenced by different names depending on the discipline, locality, and technology in
which they are used. In addition to the name and attributes contained in the component
itself (shortName, longName), an administered component may have any number of
alternative Designations. Each Designation is associated with exactly one Context
reflecting its usage, and may be classified by one or more Classification Scheme Items.

The Classification region is used to manage classification schemes and the
administered components that are in those classification schemes. Classification is a
fundamental and powerful way of organizing information to make the contents more
accessible. Abstractly, a classification scheme is any set of organizing principles or
dimensions along which data can be organized. In the ISO/IEC 11179 model, a
ClassificationScheme may be something as simple as a collection of keywords or as
complex as an ontology. The classification scheme element in Figure 3.5 is highlighted
in light gray to reflect that it is an administered component.

Classification schemes that define associations among components can greatly assist
navigation through a large network of elements; the associations may describe simple
subsumption hierarchies or more complex relations such as causal or temporal

Chapter 3 Understanding caDSR and the caDSR API

21

relations. In particular, classification schemes with inheritance can enhance self-
contained definitions by contributing the definition of one or more ancestors.

The ClassificationScheme component serves as a container-like element that collects
the ClassificationSchemeItems participating in the scheme. In addition, the
ClassificationScheme component identifies the source of the classification system and
contains an indicator specifying that the scheme is alphanumeric, character, or
numeric.

A ClassificationSchemeItem may be a node in a taxonomy, a term in a thesaurus, a
keyword in a collection, or a concept in an ontology. In all cases, a
ClassificationSchemeItem is an element that is used to classify administered
components. It is quite natural for an administered component that is used in different
contexts to participate in several classification schemes. Classification schemes may
coexist and a classified component may have a different name in each one, since each
scheme is from a different context.

The ClassSchemeClassSchemeItem in the caDSR model is not a component of the
ISO/IEC 11179 metamodel, but serves an important role in the implementation of the
many-to-many mappings between ClassificationSchemeItems and
ClassificationSchemes. This component is used to associate a set of classification
scheme items with a particular classification scheme, and to store details of that
association such as the display order of the items within that scheme.

The Contact region of Figure 3.5 consists of the Organization, Person, and Address
classes. A Person or an Organization can be the contact for an
AdministeredComponent and can be reached at an Address. In particular:

An Organization or Person may be the contact for multiple
AdministeredComponents. Each AdministeredComponent may have only a
single Person or Organization as its contact.

An Organization may have one or more Persons recorded as members. A
Person may be a member of only one organization in the current caDSR model.

The Organization and Person classes hold basic identifying information, such
as names, and for Persons, that person's position name.

Both Organizations and Persons may have one or more Addresses. An
Address has the attributes necessary to record a postal service delivery
location.

In addition to the caDSR components that correspond to elements of the ISO/IEC
11179 metamodel, the caDSR model defines a collection of domain-specific elements
for capturing data associated with a clinical trial protocol. These components are known
as Forms and are not limited to usage in clinical trials, but can be used to support any
data collection effort based on the notion of forms. All of the components described up
to this point provide the infrastructure for managing shared data. The clinical trials

caDSR 4.0 Technical Guide

22

components exercise the representational power of the metamodel, and are used to
specify how clinical trials data should be captured and exchanged.

Figure 3.6 Components in the caDSR metamodel for clinical trials data

All of the components in Figure 3.6 are highlighted, as they are
AdministeredComponents designed for use in NCI-sponsored clinical trials. Note that
because these elements are not part of the ISO-11179 specification, they are not,
technically speaking, ISO administered components. This caDSR design decision was
made to ensure that these shared data elements could be stewarded and controlled
adequately.

NCI-sponsored programs can populate the registry with instances of these components
as needed to specify the metadata descriptors needed for that program. Programs
currently participating in this effort include:

The Cancer Therapy Evaluation Project (CTEP)

Specialized Programs of Research Excellence (SPORES)

The Early Detection Research Network (EDRN)

The Division of Cancer Prevention (DCP)

The Cancer Imaging Program (CIP)

The Division of Cancer Epidemiology and Genetics (DECG)

The Cancer Bioinformatics Infrastructure Objects Project (caBIO)

http://ctep.cancer.gov/
http://spores.nci.nih.gov/
http://www3.cancer.gov/prevention/cbrg/edrn/
http://www.cancer.gov/prevention/index.html
http://imaging.cancer.gov/
http://dceg.cancer.gov/
http://cabio.nci.nih.gov/

Chapter 3 Understanding caDSR and the caDSR API

23

caDSR API
The previous section described three broad categories of components in the caDSR
metamodel and presented each of these independently, thus implying that there are no
dependencies among these groupings. Figure 3.7 below brings these components
together and exposes the associations that actually occur between the components in
different categories.

As in the previous diagrams, the components highlighted in gray are descendants of
the AdministeredComponent class. We emphasize, however, that some of these
elements (i.e., those supporting clinical trials specific data) are not defined in the ISO/
IEC 11179 standard but are nevertheless implemented as subclasses of the
AdministeredComponent class in the caDSR implementation of the standard.

Because so many components are AdministeredComponent subclasses, we use color
coding instead of the standard UML generalization notation (a line ending in an open
triangle) to indicate this. Other superclass-subclass relations however, such as the
ValueMeaning class derived from PermissibleValue, do use the standard UML
notation.

Component Name Component Description

Form A logical grouping of the Modules on a Form.

FormElement A generic class holding the common attributes and operations for
the more specific classes that make up a Form: Modules,
Questions, QuestionRepetitions, and ValidValues.

Module A logical grouping of data elements on a Form.

Question The text that accompanies a data element being collected on a
Form; used to clarify the information being requested.

QuestionRepetition A second or greater occurrence of a Question already on a Form.

ValidValue One or more acceptable responses to a Question.

TriggerAction A conditional branching between FormElements triggered by a
certain response to a Question. For example: If the response to a
Gender question is “Female”, go to Question nn; otherwise known
as a “skip pattern.”

Protocol A document defining the scope, objectives, and approach for
conducting a clinical trial.

Table 3.3 caDSR Form component names and descriptions

caDSR 4.0 Technical Guide

24

The three categories of components are also outlined in Figure 3.7 below:
administrative and organizational components in the upper left, forms components in
the upper right, and information components centered underneath these two.

Figure 3.7 caDSR domain objects in the caCORE Java API

Figure 3.8 below summarizes the caDSR API class hierarchy. At the most abstract
level, a single distinguished object called the DomainObject class is the ancestor to all
other classes. At the next level, the AdministeredComponent class is defined, along
with all of the other classes that do not represent elements requiring administration.

Chapter 3 Understanding caDSR and the caDSR API

25

Among the AdministeredComponent subclasses, only the ValueDomain class has
further specialization; the EnumeratedValueDomain and NonEnumeratedValueDomain
classes.

Figure 3.8 caDSR API class hierarchy

caDSR Domain Object Catalog
The previous discussion was intended to provide a descriptive overview of the domain
objects included in the caDSR API.

Table 3.4 below lists each class along with a description. Detailed descriptions about
each class and its methods are present in the caCORE 4.0 JavaDocs located at: http://
ncicb.nci.nih.gov/core/caDSR/API/4.0.

caDSR Domain Object Description

Address A physical location at which Persons or Organizations can be
contacted.

AdministeredComponent A class for which attributes (or characteristics) are collected;
Data Elements are one type of administered component.
Other administered components have relationships to data
elements as well as each other.

AdministeredComponentCla
ssSchemeItem

A class that serves to allow many to many relationships
between Administered Component (AC) and
ClassSchemeClassSchemeItem (CS/CSI), providing
uniqueness to the CS/CSI pairing to an AC.

AdministeredComponentCon
tact

A relationship between an Administered Component and
contact information (e.g. Address).

Table 3.4 caDSR Domain Objects and Descriptions

http://ncicb.nci.nih.gov/core/caDSR/API/4.0
http://ncicb.nci.nih.gov/core/caDSR/API/4.0

caDSR 4.0 Technical Guide

26

CaseReportForm A questionnaire that documents all the patient data stipulated
in the protocol and used by clinicians to record information
about patient's visits while on the clinical trial.

ClassificationScheme A class that serves to describe an arrangement or division of
objects into groups based on characteristics that the objects
have in common, e.g., origin, composition, structure,
application, function, etc. Adds information not easily included
in definitions, helps organize the registry and facilitates
access to the registry. ISO DEF: the descriptive information
for an arrangement or division of objects into groups based on
characteristics, which the objects have in common.

ClassificationSchemeItem A component of content in a Classification Scheme. This may
be a node in a taxonomy or ontology or a term in a thesaurus,
etc.

ClassificationSchemeItemRe
lationship

The affiliation between two occurrences of Classification
Scheme Items.

ClassificationSchemeRelatio
nship

The affiliation between two occurrences of Classification
Schemes.

ClassSchemeClassSchemeIt
em

Information pertaining to the association between
Classification Schemes and Classification Scheme Items.
This information is used to get all Classification Scheme Items
that belong to a particular Classification Scheme as well as
the information about it

ComponentConcept The concept component(s) used for a concept derivation

ComponentLevel Level of the component of the derivation rule

Concept A class that serves to describe an administered component

ConceptDerivationRule The derivation rule between one or more concepts.

ConceptualDomain The set of all possible Valid Value meanings of a Data
Element Concept expressed without representation.

Context A designation or description of the application environment or
discipline in which a name is applied or from which it
originates.

DataElement A class that serves to describe a unit of data for which the
definition, identification, representation and permissible
values are derived from its association with one
DataElementConcept and one ValueDomain.

DataElementConcept A class that serves to describe a concept that can be
represented in the form of a data element, described
independently of any particular representation.

DataElementConceptRelatio
nship

A description of the affiliation between two occurrences of
Data Element Concepts.

DataElementDerivation The data element component(s) used for a derived data
element.

caDSR Domain Object Description

Table 3.4 caDSR Domain Objects and Descriptions

Chapter 3 Understanding caDSR and the caDSR API

27

DataElementRelationship The affiliation between two occurrences of Data Elements.

Definition A definition for an Administered Component in a specific
Context.

DefinitionClassSchemeItem A class that serves to allow many to many relationships
between Definitions and ClassSchemeClassSchemeItem,
providing uniqueness to the CS/CSI pairing to a definition.
Please be advised this class will be removed during a future
release

DerivationType The type of Derived Data Element that is being created. For
example a Data Element that is derived/created by subtracting
two dates represented by other data elements would be a
Calculated Representation Type. Types include: Calculated,
Complex Recode, Compound, Concatenation, Object Class,
and Simple Recode.

DerivedDataElement The Data Element that is derived from one or more data
elements. ISO DEF: the relationship among a Data Element
which is derived, the rule controlling its derivation, and the
Data Element(s) from which it is derived.

Designation A name by which an Administered Component is known in a
specific Context. Also a placeholder to track the usage of
Administered Components by different Contexts.

DesignationClassSchemeIte
m

A class that serves to allow many to many relationships
between Designation and ClassSchemeClassSchemeItem,
providing uniqueness to the CS/CSI pairing to an Designation.

EnumeratedValueDomain A ValueDomain with an associated set of discrete
PermissibleValues; the alternative to a
NonenumeratedValueDomain.

Form A questionnaire that documents all the patient data stipulated
in the protocol and used by clinicians to record information
about patient's visits while on the clinical trial.

FormElement An element on a Case Report Form. Examples: The form
itself, groups of questions (modules), questions, valid values.

Function Function to be applied to the relationship.

Instruction Instruction for a Form, Module, Question or Valid Value on a
Form.

Module A collection of data elements, or Common Data Elements,
logically grouped on a case report form.

NonenumeratedValueDomai
n

A value domain not expressed as a list of all permissible
values.

ObjectClass A class that serves to describe a set of ideas, abstractions, or
things in the real world that can be identified with explicit
boundaries and meaning and whose properties and behavior
follow the same rules.

caDSR Domain Object Description

Table 3.4 caDSR Domain Objects and Descriptions

caDSR 4.0 Technical Guide

28

ObjectClassRelationship A class that provides a description of the affiliation between
two occurrences of Object Classes

Organization Information about an Organizational unit like a laboratory,
institute or consortium

PermissibleValue An enumerated list of the exact names, codes and text that
can be stored in a data field in an information management
system. ISO DEF: An expression of a value meaning in a
specific value domain.

Person Information about a contact person.

Property A class that serves to describe a characteristic common to all
members of an Object Class. It may be any feature that
humans naturally use to distinguish one individual object from
another. It is conceptual and thus has no particular associated
means of representation by which property.

Protocol A class that serves to provide identification of a Clinical Trial
Protocol document and its collection of Case Report Forms
(CRFs). Note: Protocols will be uniquely identified within each
of the 3 areas of caCORE - caBIO, SPORES and caDSR-
using the following three attributes: Protocol ID, Protocol
Version and Context Name. This class will serve as a 'hook'
across the three caCORE domains allowing a user to navigate
across databases.

ProtocolFormsSet Identification of a Clinical Trial Protocol document and its
collection of Case Report Forms (CRFs). Note: Protocols will
be uniquely identified within each of the 3 areas of caCORE -
caBIO, SPORES and caDSR- using the following three
attributes: Protocol ID, Protocol Version and Context Name.
This class will serve as a 'hook' across the three caCORE
domains allowing a user to navigate across databases.

ProtocolFormsTemplate The collection of components (modules, questions and valid
values) comprising a template Case Report Form. A template
form is not associated with any particular clinical trial.

Question The actual text of the data element as specified on a Case
Report Form of a Protocol.

QuestionRepetition Information about the default valid values every time the
question repeats on a form.

ReferenceDocument A place to document additional information about
Administered Components that is not readily stored
elsewhere.

caDSR Domain Object Description

Table 3.4 caDSR Domain Objects and Descriptions

Chapter 3 Understanding caDSR and the caDSR API

29

The Concept object encapsulates a concept in a vocabulary served by EVS. It is
modeled as a new administered component type. Table 3.5 contains a brief description
of some concept object attributes.

Representation A class that serves to describe the mechanism by which the
functional and/or presentational category of an item maybe
conveyed to a user. Component of a Data Element Name that
describes how data are represented (i.e. the combination of a
Value Domain, data type, and if necessary a unit of measure
or a character set). The Representation occupies the last
position in the Data Element name (e.g., right most).
Examples: Code - A system of valid symbols that substitute
for specified values (e.g. alpha, numeric, symbols and/or
combinations). Count: Non-monetary numeric value arrived at
by counting. Currency: Monetary representation. Date:
Calendar representation (e.g. YYYY-MM-DD). Graphic:
Diagrams, graphs, mathematical curves, or the like. Image:
Usually a vector image. Icon: A sign or representation that
stands for its object by virtue of a resemblance or analogy to
it. Picture: A visual representation of a person, object, or
scene; usually a raster image. Quantity: A continuous number
such as the linear dimensions, capacity/amount (non-
monetary) of an object. Text: A text field that is usually
unformatted. Time: Time of day or duration (e.g.
HH:MM:SS.SSSS).

TriggerAction A conditional branching between to FormElements triggered
by a certain response to a Question.

ValidValue The allowable values for a Question on a Form.

ValueDomain A class that serves to describe the attributes for a set of
permissible values for a data element.

ValueDomainPermissibleVal
ue

This captures the many-to-many relationship between value
domain and permissible values and allows to associate a
value domain to a permissible value.

ValueDomainRelationship The affiliation between two occurrences of Value Domains.

ValueMeaning The significance associated with an allowable/permissible
value.

Concept Object Attribute Description

Concept Attribute Data

Short Name Contains the immutable concept code of an EVS concept.

Long Name Contains the preferred name of an EVS concept

Preferred Definition Contains the definition of an EVS concept.

Definition Source Contains a value provided via the EVS API indicating the
source of the EVS preferred definition.

Table 3.5 Concept Object Attributes

caDSR Domain Object Description

Table 3.4 caDSR Domain Objects and Descriptions

caDSR 4.0 Technical Guide

30

The ConceptDerivationRule object encapsulates a rule or formula that is applied to a
collection of concepts resulting in a compound concept. It is modeled as an
aggregation that is composed of a ordered collection of concepts. Each concept in the
aggregation is referred to as a component concept and is encapsulated by
ComponentConcept object. Each ComponentConcept object is associated to exactly
one Concept object.

Each ConceptDerivationRule object is also associated with one
ConceptDerivationType object which encapsulates a type of concept derivation rule.
One ComponentConcept is designated as primary, the others are ordered, with the
highest number taking the left most position in the concept expression, modifying the
concept immediately to its right. For example, in Begin Date, “Begin” modifies “Date.”
“Date” is the primary ComponentConcept with “Begin” as concept order number 1.

ConceptDerivationRule is a key object as it is associated to several existing
administered component types. It enables creation of various administered component
types based on concepts that are served by EVS vocabularies.

As illustrated in Figure 3.9 below, the following administered components types are
associated with the ConceptDerivationRule object:

ObjectClass

Property

Representation

ValueDomain

ConceptualDomain

Database Contains the name of the EVS resource for the immutable
identifier.

Source Type The type of concept code in the Short Name, e.g., NCI
Concept Code, NCI Metathesaurus, etc.

Concept Object Attribute Description

Table 3.5 Concept Object Attributes

Chapter 3 Understanding caDSR and the caDSR API

31

Figure 3.9 Extensions to the caDSR model

The ObjectClassRelationship object encapsulates relationship/association information
between two object classes.

Each object listed above is associated to zero or one ConceptDerivationRule object.
Each ConceptDerivationRule object could be used by one or more administered
component type objects.

caDSR 4.0 Technical Guide

32

The ObjectClassRelationship object encapsulates relationship/association between
two object classes and is only used to store the details of association between two UML
classes.

Figure 3.10 caDSR UML Project Diagram

For a full size view of the above UML Project Diagram, click here: caDSR UML
Project Diagram (internet connection required).

https://wiki.nci.nih.gov/x/J5ul
https://wiki.nci.nih.gov/x/J5ul

Chapter 3 Understanding caDSR and the caDSR API

33

Downloading the caDSR
The following caDSR distributions can be downloaded from the NCICB Download site
located at: http://ncicb.nci.nih.gov/download/.

caDSR UMLProject Domain
Objects Description

AttributeTypeMetadata Class attribute type. Contains value domain name, data
type, and a reference to the corresponding value domain
in caDSR.

Project Used by the UML loader to group UML models, e.g.
caCORE. Contains a reference to the corresponding
classification scheme.

SemanticMetadata Concept related information. Also is the superclass of all
metadata classes.

SubProject Optional groupings of UML models within one project, e.g.
caBIO. A subproject contains reference to the project to
which it belongs and a collection of
UMLPackageMetaData.

TypeEnumerationMetadata A subclass of SemanticMetadata that corresponds to an
enumerated value domain.

UMLAssociationMetadata A description of the affiliation between two UML classes.

UMLAttributeMetadata UML Attribute. Contains a reference to the corresponding
data element.

ClassMetadata UML Class.

UMLGeneralizationMetadata A description of the inheritance relationship between two
classes.

UMLPackageMetadata UML package. Contains a reference the corresponding
classification scheme item, the project, and subject to
which it belongs, and a collection of ClassMetadata
objects that correspond to the UML classes in this
package.

Table 3.6 caDSR UML Project Domain Objects

caDSR Tool Description

CDE Curation Tool
Distribution

Contains the cdecurate.war file and the CDE Curation Tool
Installation Guide.

CDE Browser Distribution Contains cdebrowser.ear file and installation instructions for
the application. CDE Browser makes Java Database
Connectivity (JDBC) connections to caDSR repository
database so it is a prerequisite to have access to caDSR
repository for installing CDE Browser.

Table 3.7 caDSR Tools Available for Download

http://ncicb.nci.nih.gov/download/

caDSR 4.0 Technical Guide

34

Follow the instructions provided with the distributions to install the software. caDSR
content is not downloaded via this process. caDSR data element content may be
downloaded by using the CDE Browser available online at: https://
cdebrowser.nci.nih.gov.

caDSR API Examples

Using the caDSR Java API
Example 3.1 Querying the latest version of a DataElement

This example queries the latest version of a DataElement. It then queries associated
objects such as DataElementConcept, ValueDomain and prints, out the
PermissibleValues for the ValueDomain.

import gov.nih.nci.cadsr.domain.DataElement;
import gov.nih.nci.cadsr.domain.DataElementConcept;
import gov.nih.nci.cadsr.domain.EnumeratedValueDomain;
import gov.nih.nci.cadsr.domain.PermissibleValue;
import gov.nih.nci.cadsr.domain.ValueDomain;
import gov.nih.nci.cadsr.domain.ValueDomainPermissibleValue;
import gov.nih.nci.system.applicationservice.ApplicationService;
import gov.nih.nci.system.client.ApplicationServiceProvider;
import java.util.Collection;
import java.util.List;

/**
 * A sample use of the caDSR api.
 * @author caDSR team.
 */
public class TestCaDsrApi
{
 /**
 * Search for Data Elements using the Long Name
 *
 * @param args
 */
 public static void main(String[] args)
 {

caDSR Sentinel Tool Contains source, third party libraries, configuration files,
documentation and installation instructions for the
application. Access to a caDSR repository is required.

caDSR Repository/
Administration Tool
Distribution

Contains the caDSR Installation Guide and scripts for both
the caDSR repository and Administration Tool.

caDSR Repository/
Administration Tool Source
Code Distribution

Contains the complete PL/SQL scripts for both the repository
and the Administration Tool.

UML Model Browser
Distribution

Contains umlmodelbrowser.ear file and installation
instructions for the application.

caDSR Tool Description

Table 3.7 caDSR Tools Available for Download

https://cdebrowser.nci.nih.gov
https://cdebrowser.nci.nih.gov

Chapter 3 Understanding caDSR and the caDSR API

35

 try
 {
 ApplicationService appService =

ApplicationServiceProvider.getApplicationService("CaDsrServiceInfo"
);

 System.out.println("Searching for DataElements");

 // Search for the Data Element with the Long Name "Patient
Race Category*". The asterisk (*) is a wild card.

 DataElement dataElement = new DataElement();
 dataElement.setLongName("Patient Race Category*");
 dataElement.setLatestVersionIndicator("Yes");
 List<Object> results =

appService.search(DataElement.class, dataElement);

 for (Object obj: results)
 {
 // Show the DE and its DEC and VD
 DataElement de = (DataElement) obj;
 System.out.println("Data Element " +

de.getLongName());

 DataElementConcept dec = de.getDataElementConcept();
 System.out.println("Data Element Concept " +

dec.getLongName());

 ValueDomain vd = de.getValueDomain();
 System.out.println("Value Domain " +

vd.getLongName());

 if (vd instanceof EnumeratedValueDomain)
 {
 // Get the PermissibleValues for the ValueDomain
 EnumeratedValueDomain evd =

(EnumeratedValueDomain) vd;
 Collection<ValueDomainPermissibleValue> vdpvs =

evd.getValueDomainPermissibleValueCollection();
 for (ValueDomainPermissibleValue vdpv: vdpvs)
 {
 PermissibleValue pv =

vdpv.getPermissibleValue();
 System.out.println(" Permissible Value : " +

pv.getValue());
 }
 }
 }
 }
 catch (Exception exception)
 {
 exception.printStackTrace();
 System.out.println("Error in the TestCaDsrApi");
 }
 }
}

caDSR 4.0 Technical Guide

36

Using the caDSR Web Services API
Example 3.2 Using datatypes generated from Apache Axis

This example uses the stubs, skeletons and datatypes generated with Apache Axis
1.2.1 WSDL-to-java tool. This also queries the latest version of a DataElement. It then
queries associated objects such as DataElementConcept, ValueDomain and prints out
the PermissibleValues for the ValueDomain.

// Import the generated stubs.
import gov.nih.nci.cabio.cacore32.ws.caCOREService.WSQuery;
import gov.nih.nci.cabio.cacore32.ws.caCOREService.WSQueryService;
import

gov.nih.nci.cabio.cacore32.ws.caCOREService.WSQueryServiceLocator;
// Import the api
import gov.nih.nci.cadsr.domain.ws.*;

/**
 * A sample use of the caDSR webservice API. This uses the stubs,

skeletons, and data types
 * generated using apache axis 1.2.1 WSDL-to-java tool.
 *
 * @author caDSR team
 */
public class TestCaDsrWSApi
{

 public static void main(String[] args)
 {
 try
 {
 // Get a caCORE Service instance.
 WSQuery wsQuery = new

WSQueryServiceLocator().getcaCOREService();
 System.out.println("Query a DataElement");

 // Set the search criteria. * is used as a wild card.
 DataElement dataElement = new DataElement();
 dataElement.setLongName("Patient Race Category*");
 dataElement.setLatestVersionIndicator("Yes");
 System.out.println("Searching for data elements");
 Object[] results =

wsQuery.queryObject("gov.nih.nci.cadsr.domain.ws.DataElement",
dataElement);

 for (int i = 0; i < results.length; i++)
 {
 DataElement dataElementQ = (DataElement) results[i];
 System.out.println("Queried DataElement " +

dataElementQ.getLongName());
 // Query DataElementConcept
 DataElement de = new DataElement();
 de.setId(dataElementQ.getId());
 DataElementConcept dec = (DataElementConcept)

wsQuery.queryObject("gov.nih.nci.cadsr.domain.ws.Data
ElementConcept", de)[0];

 System.out.println("Queried DataElementConcept " +
dec.getLongName());

 // Query ValueDomain

Chapter 3 Understanding caDSR and the caDSR API

37

 ValueDomain vd = (ValueDomain)
wsQuery.queryObject("gov.nih.nci.cadsr.domain.ws.ValueDomain ",
de)[0];

 System.out.println("Queried ValueDomain " +
vd.getLongName());

 if (vd instanceof EnumeratedValueDomain)
 {
 // Query Permissible Values
 EnumeratedValueDomain evd = new

EnumeratedValueDomain();
 evd.setId(vd.getId());
 Object[] valueDomainPermissibleValues =

wsQuery.queryObject("gov.nih.nci.cadsr.domain.ws.ValueDomainPermiss
ibleVa lue", evd);

 for (int j = 0; j <
valueDomainPermissibleValues.length; j++)

 {
 ValueDomainPermissibleValue vdpv =

(ValueDomainPermissibleValue) valueDomainPermissibleValues[j];
 ValueDomainPermissibleValue vdpv2 = new

ValueDomainPermissibleValue();
 vdpv2.setId(vdpv.getId());
 PermissibleValue pv = (PermissibleValue)

wsQuery.queryObject("gov.nih.nci.cadsr.domain.ws.Permis
sibleValue", vdpv2)[0];

 System.out.println("Queried permissible value
" + pv.getValue());

 }
 }
 }
 }
 catch (Exception exception)
 {
 exception.printStackTrace();
 System.out.println("Error testing web service api.");
 }
 }
}

UML Project API Examples
Example 3.3 Using the caCORE client Java API

This example queries the UML model related objects through the caCORE API. It first
queries for all UML projects sorted by name. It prints out the name, version, and
context of the project. The second part of the example retrieves all classes named
“gene” and displays class related information. The search criteria are not case
sensitive. The last part of the example shows how to retrieve all attributes related
information of a class.

import gov.nih.nci.cadsr.umlproject.domain.Project;
import gov.nih.nci.cadsr.umlproject.domain.UMLAttributeMetadata;
import gov.nih.nci.cadsr.umlproject.domain.UMLClassMetadata;
import gov.nih.nci.system.applicationservice.ApplicationService;

import
gov.nih.nci.system.applicationservice.ApplicationServiceProvider;

import java.util.Iterator;

caDSR 4.0 Technical Guide

38

import java.util.List;

import org.hibernate.criterion.DetachedCriteria;
import org.hibernate.criterion.Order;

/**
 * @author Jane Jiang
 * @version 1.0
 */

/**
* TestClient.java demonstartes various ways to execute searches with

and without
 * using Application Service Layer (convenience layer that

abstracts building criteria
 * Uncomment different scenarios below to demonstrate the various

types of searches
*/
public class

TestUml {

 public static void main(String[] args) {
 Project project = null;
 System.out.println("*** TestUml...");
 try {
 ApplicationService appService =
ApplicationService.getRemoteInstance("http://cabio.nci.nih.gov/

cacore32/http/remoteService");

 System.out.println("Using basic search. Retrieving all
projects");

 DetachedCriteria projectCriteria =
 DetachedCriteria.forClass(Project.class);
 projectCriteria.addOrder(Order.asc("shortName"));

 try {
 System.out
 .println("Scenario 1: Using basic search. Retrieving all

projects, display version and context information...");

 List<Project> resultList =
 appService.query(projectCriteria,

Project.class.getName());
 ;
 System.out.println(resultList.size() + " projects

retrieved..");
 for (Iterator resultsIterator = resultList.iterator();
 resultsIterator.hasNext();) {
 project = (Project)resultsIterator.next();
 System.out.println("Project name: " +

project.getShortName());
 System.out.println(" version: " +

project.getVersion());
 System.out
 .println(" context: " +

project.getClassificationScheme()

Chapter 3 Understanding caDSR and the caDSR API

39

 .getContext().getName());
 }

 System.out.println();
 System.out
 .println("Scenario 2: Retrieving class named Gene, display

class information");
 UMLClassMetadata umlClass = new UMLClassMetadata();
 umlClass.setName("gene");
 resultList = appService.search(UMLClassMetadata.class,

umlClass);
 System.out.println(resultList.size() + " classes

retrieved..");
 for (Iterator resultsIterator = resultList.iterator();
 resultsIterator.hasNext();) {
 umlClass = (UMLClassMetadata)resultsIterator.next();
 System.out
 .println(" class full name: " +

umlClass.getFullyQualifiedName());
 System.out
 .println(" class description: " +

umlClass.getDescription());
 System.out
 .println(" project version: " +

umlClass.getProject().getVersion());
 System.out
 .println(" object class public id: " +

umlClass.getObjectClass()
 .getPublicID());
 }

 System.out.println();
 System.out
 .println("Scenario 3: Retrieving attributes for a class,

display attribute information");
 if (umlClass != null) {
 for (Iterator resultsIterator =

umlClass.getUMLAttributeMetadataCollection().iterator();
 resultsIterator.hasNext();) {
 UMLAttributeMetadata umlAttribute =
 (UMLAttributeMetadata)resultsIterator.next();
 printAttributeInfo(umlAttribute);

 }
 }

 System.out.println();
 System.out
 .println("Scenario 4: Retrieving attributes named *id,

display attribute information");
 UMLAttributeMetadata umlAttr = new UMLAttributeMetadata();
 umlAttr.setName("*:id");
 resultList = appService.search(UMLAttributeMetadata.class,

umlAttr);
 System.out.println(resultList.size() + " attributes

retrieved..");

caDSR 4.0 Technical Guide

40

 } catch (Exception e) {
 e.printStackTrace();
 }
 } catch (RuntimeException e2) {
 e2.printStackTrace();
 }
 }

 private static void printAttributeInfo(UMLAttributeMetadata
umlAttribute) {

 System.out.println(" Attribute name: " +
umlAttribute.getName());

 System.out
 .println(" Attribute type: " +

umlAttribute.getAttributeTypeMetadata()
 .getValueDomainDataType());
 System.out
 .println(" Data Element public id: " +

umlAttribute.getDataElement()
 .getPublicID());

 }
}

41

CHAPTER

4
INTERACTING WITH CADSR

Interacting with the caDSR database is done via the caDSR API, a caCORE SDK
generated interface. The caCORE architecture includes a service layer that provides a
single, common access paradigm to clients using any of the provided interfaces. As an
object-oriented middleware layer designed for flexible data access, caCORE-based
systems rely heavily on strongly-typed objects and an object-in/object-out mechanism.

The most common use of a caCORE-based system, including the caDSR, is referred to
as query-by-example (QBE), meaning that the inputs to the query methods are
themselves domain objects that provide example data for the query criteria. This
technique does not require knowledge of a specific query language, for more
information refer to the general technique on http://en.wikipedia.org/wiki/
Query_by_Example. Other query methods and techniques are also provided in the API
when QBE is insufficient.

The basic order of operations required to access and use the caDSR follows:

1. Ensure that the client application has knowledge of the objects in the domain
space.

2. Formulate the query criteria using the domain objects.

3. Establish a connection to the server.

4. Submit the query objects and specify the desired class of objects to be returned.

This page describes the service interface layer provided by the caDSR architecture,
identifies installation and configuration requirements, and provides examples for using
the APIs.

Java API
This API provides the fullest set of features and capabilities because the caDSR API is
coded in Java.

http://en.wikipedia.org/wiki/Query_by_Example
http://en.wikipedia.org/wiki/Query_by_Example

caDSR 4.0 Technical Guide

42

Installation and Configuration
Accessing the caDSR system also requires an Internet connection. To use the Java
API, download the client package provided on the NCICB website.

Figure 4.1 NCICB Website ‐ Downloads Link Identified

To download the caDSR API:

1. Open your browser and go to the NCICB caDSR Download website: http://
ncicb.nci.nih.gov/download/.

2. In the provided form, enter your name, email address and institution name and
click to Enter the Download Area.

3. Accept the license agreement (http://ncicb.nci.nih.gov/download/cacore/
cadsrapilicenseagreement.jsp).

4. Download the caDSR API Client Zip file (called the client bundle) from the
Primary Distribution section.

5. Extract the contents of the downloadable archive to a directory on your hard
drive (for example, c:\cadsrapi40 on Windows or /usr/local/cadsrapi40 on
Linux).

Table 4.1 lists the extracted directories and files.

Directories and Files Description Component

application-config-
client.xml

An alternate XML file which must be
used to replace the remote-client/conf
version when an application wished to
use more than one caCORE SDK
generated bundle, e.g. EVS and caDSR

remote-client/build.xml Build script for Local Client http://ant.apache.org/

Table 4.1 Extracted Directories and Files in caDSR Client Package

http://ncicb.nci.nih.gov/download/
http://ncicb.nci.nih.gov/download/
http://ncicb.nci.nih.gov/download/cacore/cadsrapilicenseagreement.jsp
http://ncicb.nci.nih.gov/download/cacore/cadsrapilicenseagreement.jsp
http://ant.apache.org/

Chapter 4 Interacting With caDSR

43

remote-client/conf/
application-config-
client.xml

Default application configuration which
defines the Service Info and Beans

remote-client/conf/
gov.nih.nci.cadsr.domai
n.xsd

The caDSR Domain objects schema

remote-client/conf/
gov.nih.nci.cadsr.umlpro
ject.domain.xsd

The caDSR UML Project objects
schema

remote-client/conf/
log4j.properties

The logging (log4j) properties http://
logging.apache.org/
log4j/

remote-client/conf/
mapping.dtd

The Object to Database mappings

remote-client/conf/
unmarshaller-xml-
mapping.xml

Unmarshalling the XML

remote-client/conf/xml-
mapping.xml

XML Mappings

remote-client/lib/acegi-
security-1.0.4.jar

Acegi Security provides a
comprehensive security solution for
J2EE-based enterprise software
applications (required by Spring)

http://
www.acegisecurity.org/

remote-client/lib/antlr-
2.7.6.jar

Another Tool for Language Recognition,
is a language tool that provides a
framework for constructing recognizers,
interpreters, compilers, and translators
from grammatical descriptions
containing actions in a variety of target
languages.

http://www.antlr.org/

remote-client/lib/asm.jar An all purpose Java bytecode
manipulation and analysis framework.

http://
asm.objectweb.org/

remote-client/lib/
cadsrapi40-beans.jar

The caDSR object beans. http://
cadsrapi.nci.nih.gov/
cadsrapi40/docs/

remote-client/lib/castor-
1.0.2.jar

Castor is an Open Source data binding
framework for Java.

http://www.castor.org/

remote-client/lib/cglib-
2.1.3.jar

A powerful, high performance and
quality Code Generation Library, It is
used to extend JAVA classes and
implements interfaces at runtime.

http://
cglib.sourceforge.net/

remote-client/lib/
commons-codec-1.3.jar

Provides implementations of common
encoders and decoders such as
Base64, Hex, Phonetic and URLs.

http://
commons.apache.org/
codec/

Directories and Files Description Component

Table 4.1 Extracted Directories and Files in caDSR Client Package

http://logging.apache.org/log4j/
http://logging.apache.org/log4j/
http://www.acegisecurity.org/
http://www.acegisecurity.org/
http://www.antlr.org/
http://asm.objectweb.org/
http://asm.objectweb.org/
http://cadsrapi.nci.nih.gov/cadsrapi40/docs/
http://cadsrapi.nci.nih.gov/cadsrapi40/docs/
http://www.castor.org/
http://cglib.sourceforge.net/
http://cglib.sourceforge.net/
http://commons.apache.org/codec/
http://commons.apache.org/codec/

caDSR 4.0 Technical Guide

44

All of the jar files provided in the lib directory of the caDSR client package in addition to
the files in the /conf/ directory are required to use the Java API. These should be
included in the Java classpath when building applications. The build.xml file that is
included demonstrates how to do this when using Ant for command-line builds. If you
are using an integrated development environment (IDE) such as Eclipse, refer to the
tool's documentation for information on how to set the classpath.

The caDSR Java API requires JDK SE 1.5.0 or higher and Ant 1.6.5 or higher. If used
with other caCORE SDK bundles, SDK 4.0 must be used for caDSR 4.0 compatibility
and the content of the /application-config-client.xml noted at the top of Table 4.1 must
be used and combined with the application-config-client.xml from all other SDK
bundles.

A Simple Example
To run the simple example program after installing the caDSR client, open a command
prompt or terminal window from the directory where you extracted the downloaded
archive and enter ant rundemo. This will compile and run the TestClient class;

remote-client/lib/
commons-collections-
3.2.jar

Builds upon the JDK classes by
providing new interfaces,
implementations and utilities.

http://
commons.apache.org/
collections/

remote-client/lib/
commons-logging-
1.1.jar

An ultra-thin bridge between different
logging implementations.

http://
commons.apache.org/
logging/

remote-client/lib/
hibernate3.jar

A powerful, high performance object/
relational persistence and query service.

http://
www.hibernate.org/

remote-client/lib/log4j-
1.2.14.jar

Open-source software related to the
logging of application behavior.

http://
logging.apache.org/
log4j/

remote-client/lib/sdk-
client-framework.jar

The caCORE SDK Client Framework. http://ncicb.nci.nih.gov/
core/SDK/4.0/

remote-client/lib/
spring.jar

Enterprise Java framework http://
www.springframework.
org/

remote-client/lib/
xercesImpl.jar

A collaborative software development
project dedicated to providing robust,
full-featured, commercial-quality, and
freely available XML parsers and closely
related technologies on a wide variety of
platforms supporting several languages.

http://
xerces.apache.org/
xerces-j/

remote-client/src/
TestClient.java

Example test client source.

remote-client/src/
TestGetXMLClient.java

Example test client source.

remote-client/src/
TestXMLClient.java

Example test client source.

Directories and Files Description Component

Table 4.1 Extracted Directories and Files in caDSR Client Package

http://commons.apache.org/collections/
http://commons.apache.org/collections/
http://commons.apache.org/logging/
http://commons.apache.org/logging/
http://www.hibernate.org/
http://www.hibernate.org/
http://logging.apache.org/log4j/
http://logging.apache.org/log4j/
http://ncicb.nci.nih.gov/core/SDK/4.0/
http://ncicb.nci.nih.gov/core/SDK/4.0/
http://www.springframework.org/
http://www.springframework.org/
http://xerces.apache.org/xerces-j/

Chapter 4 Interacting With caDSR

45

successfully running this example indicates that you have properly installed and
configured the caDSR client.

The following is a short segment of code from the TestClient class, comments have
been added for clarity.

// Connect to the caDSR API Remote Server, this uses the default
Service Info defined in the application-config-client.xml

ApplicationService appService =
ApplicationServiceProvider.getApplicationService();

// Get the Classes available in the package.
Collection<Class> classList = getClasses();
for(Class klass:classList)
{
 Object o = klass.newInstance();
 System.out.println("Searching for "+klass.getName());
 try
 {
 Collection results = appService.search(klass, o);
 for(Object obj : results)
 {
 printObject(obj, klass);

 // This stops after printing the first object in the
result set.

 break;
 }
 }
 catch(Exception e)
 {
 System.out.println(">>>"+e.getMessage());
 }
}

Although this is a fairly simple example of the use of the Java API, a similar sequence
can be followed with more complex criteria to perform sophisticated manipulation of the
data provided by caDSR. Additional information and examples are provided in the
sections that follow.

Application Service Interface
Connections to the caDSR API server are established by the
gov.nih.nci.system.applicationservice package. The ApplicationServiceProvider class
uses the factory design pattern to return an implementation of the ApplicationService
interface. The ApplicationServiceProvider method can be classified into two method
groupings. Some methods use the configured connection information in the application-
config-client.xml and others allow the application to specify the service URL.

The separation of the service methods from the domain classes is an important
architectural decision that insulates the domain object space from the underlying
service framework.

A variety of methods are provided to allow users to query data based on the specific
needs and types of queries to be performed. In general, there are five types of
searches:

caDSR 4.0 Technical Guide

46

Simple searches—Those that take one or more objects from the domain models as
inputs and return a collection of objects from the data repositories that meet the criteria
specified by the input objects.

Nested searches—Also take domain objects as inputs but determine the type of
objects in the result set by traversing a known path of associations from the domain
model.

Detached criteria searches—Use Hibernate detached criteria objects to provide a
greater level of control over the results of a search (such as boolean operations, ranges
of values, etc.).

HQL searches—Provide the ability to use the Hibernate Query Language for the
greatest flexibility in forming search criteria.

caBIG Query Object criteria searches—These have been modeled to the Object
representation of caBIG Query Language (CQL). The CQL criteria searches use a
syntax similar to the Query-by-Example (QBE) query language to specify the way
results are to be retrieved. The system formulates the query based on the navigation
path specified in the query search criteria. This query mechanism allows the user to
search for objects using platform-independent query syntax.

Convenience Query Methods
getMaxRecordsCount()—Returns the maximum number of records the
ApplicationService interface has been configured to return at one time.

getQueryRowCount(Object criteria, String targetClassName)—Returns the
number of records that meet the search criteria. This method is used by the client
framework to determine the number of list chunks in the result set. caDSR users can
also invoke this method in conjunction with the getMaxRecordsCount() method;
however, this is not required.

getAssociation(Object source, String associationName)—Retrieves an associated
object for the example object specified by the source parameter. |

Note: The retrieved results from these methods are truncated to the maximum number of
supported records indicated by the getMaxRecordsCount() method. Result sets with a
total record count less than this maximum are complete.

HQL Query Methods
The Hibernate Query Language (HQL) is similar to SQL in syntax, however, HQL is still
fully object-oriented and understands concepts like inheritance, polymorphism and
association. The caDSR API contains a wrapper class called HQLCriteria, which is
used for submitting HQL queries. For more information on the Hibernate Query
Language, see http://www.hibernate.org/hib_docs/v3/reference/en/html/queryhql.html.

Note: The retrieved results from these methods are truncated to the maximum number of
supported records indicated by the getMaxRecordsCount() method. Result sets with a
total record count less than this maximum are complete.

query(HQLCriteria hqlCriteria)—This method retrieves the results obtained by
querying the data source using HQL. As such, the data source must use Hibernate at

http://www.hibernate.org/hib_docs/v3/reference/en/html/queryhql.html

Chapter 4 Interacting With caDSR

47

the persistence tier. Internally, Hibernate executes the HQL query against the relational
database and retrieves the results.

query(HQLCriteria hqlCriteria, String targetClassName)—Deprecated. Internally
calls the query (HQLCriteria hqlCriteria) method without the targetClassName
parameter. |

The example below shows how an HQLCriteria object representing an HQL query
might be instantiated and submitted, and how the results would be returned.

// Get Data Elements using HQL
ApplicationService appService =

ApplicationServiceProvider.getApplicationService();

HQLCriteria hqlCrit = new HQLCriteriea("from
gov.nih.nci.cadsr.domain.DataElement de where de.longName='Adverse
Event'");

Collection results = appService.query(hqlCrit);

for (Object obj : results)
{
 printObject(obj, DataElement.class);
 break;
}

Nested Search Criteria Query Methods
caDSR Nested Search Criteria queries have two parts: 1) a comma separated path to
the target search object and 2) an example of the source object. The comma separated
path starts with the target object (the fully qualified name of the class) to retrieve from
the database. The next item in the comma-separated path is a link in the chain to an
element (fully qualified name of the class) that connects the element on its left to the
element on its right. The element on the right could be the example object or another
element in the chain. The linked element provides a mechanism to traverse from the
example object to the object that is desired using a comma separated path.

Note: The retrieved results from these methods are truncated to the maximum number of
supported records indicated by the getMaxRecordsCount() method. Result sets with a
total record count less than this maximum are complete.

search(String path, List<?> objList)—Retrieves the result from the data source
using a Nested Search Criteria. The path specifies the list of objects (separated by
commas), which should be used to reach the target object from the example objects
passed in the objList, or the associated object for the example object. Internally, the
Nested Search Criteria is converted into the data-source-specific query language. For
the ORM-based persistence tier, the query structure is first converted into HQL.
Hibernate then converts the HQL into SQL and executes it against the relational
database.

search(Class targetClass, List<?> objList)—Retrieves the result from the data
source using QBE. The targetClass specifies the object to fetch after executing the
query. The targetClass should be the same as the object specified in the objList or
associated object for the example object. All the objects in the objList have to be the
same type. The example query is converted into the data-source-specific query
language. For the ORM-based persistence tier, the example query structure is first

caDSR 4.0 Technical Guide

48

converted to a Nested Search Criteria, and then to HQL. Hibernate then converts the
HQL into SQL and executes it against the relational database.

search(Class targetClass, Object obj)—Retrieves the result from the data source
using QBE. The targetClass specifies the object that the user intends to fetch after
executing the query. The targetClass should be same as the example object or
associated object for the example object. The example query is first converted into the
data source specific query language. For the ORM-based persistence tier, the example
query structure is first converted to a Nested Search Criteria, and then to HQL.
Hibernate finally converts the HQL into SQL and executes it against the relational
database.

search(String path, Object obj)—Retrieves the result from the data source using the
Nested Search Criteria. The path specifies the list of objects (separated by commas)
which should be used to reach the target object from the example object passed as obj,
or the associated object for the example object. Internally, the Nested Search Criteria is
converted into the data source specific query language. For the Object Relational
Mapping based persistence tier, the query structure is first converted into HQL.
Hibernate then converts the HQL into SQL and executes it against the relational
database.

The following example query demonstrates how to use the nested search criteria.

public void testSearch() throws Exception
{
 ApplicationService appService =

ApplicationServiceProvider.getApplicationService();

 ValueDomain vd1 = new ValueDomain();
 ValueDomain.setPublicID(2015097);

 ValueDomain vd2 = new ValueDomain();
 ValueDomain.setPublicID(2015119);

 List<ValueDomain> vdCollection = new ArrayList<ValueDomain>();
 vdCollection.add(vd1);
 vdCollection.add(vd2);

 String path = "gov.nih.nci.cadsr.domain.DataElement,"
 + "gov.nih.nci.cadsr.domain.ValueDomain";

 Collection results = appService.search(path, vdCollection);
 System.out.println("Number of qualifying records: " +

results.size());
 for (Object obj : results)
 {
 printObject(obj, DataElement.class);
 }
}

Detached Criteria Query
To build queries dynamically using an object-oriented API rather than building query
strings, Hibernate provides the Detached Criteria. This extends the Criteria concept
allowing queries to be created outside the scope of a session for execution later using
some arbitrary Hibernate Session. For more information on Hibernate Criteria queries,
see http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#querycriteria.

http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#querycriteria

Chapter 4 Interacting With caDSR

49

Note: The retrieved results from these methods are truncated to the maximum number of
supported records indicated by the getMaxRecordsCount() method. Result sets with a
total record count less than this maximum are complete.

query(DetachedCriteria detachedCriteria)—Retrieves the result from the data
source using the DetachedCriteria query object. The DetachedCriteria query structure
can be used only by the ORM-based persistence tier. Hibernate executes it against the
relational database and fetches the results.

query(DetachedCriteria detachedCriteria, String targetClassName)—Deprecated.
Internally calls the query(DetachedCriteria detachedCriteria) method without the
targetClassName parameter.

The following sample shows how a Hibernate DetachedCriteria object might be
instantiated and the query submitted, and how the results would be returned.

ApplicationService appService =
ApplicationServiceProvider.getApplicationService();

DetachedCriteria dCrit =
DetachedCriteria.forClass(DataElement.class).add(
Property.forName("longName").eq("Adverse Event"));

Collection results = appService.query(dCrit);

for (Object obj : results)
{
 printObject(obj, DataElement.class);
 break;
}

CQL Query
CQL queries are modeled similarly to the object representation of the caBIG Query
Language (CQL), which uses syntax similar to the Query-by-Example (QBE). Always
begin with the CQLQuery object which specifies the object (target object) to be
retrieved. The QBE object has space for 1) an attribute (CQLAttribute) 2) an
association (CQLAssociation) and 3) a group (CQLGroup) of association collection and
attributes collection.

For example, to search for an object with “zipcode” equal to “20852”, a CQLObject
must be created with a CQLAttribute for Name “zipcode” and Value “20852”. A
CQLPredicate of “EQUAL_TO” is required for comparison between CQLAttribute and
the database value. The CQLGroup is not needed in this example. It would be used to
include additional CQLAttribute and CQLPredicate objects for more complex queries.

The CQLQuery related ApplicationService query methods are highlighted below.

Note: The retrieved results from these methods are truncated to the maximum number of
supported records indicated by the getMaxRecordsCount() method. Result sets with a
total record count less than this maximum are complete.

query(CQLQuery cqlQuery)—Retrieves the query result from the data source using
the CQL query syntax. Internally, CQL query structure is converted into HQL. Hibernate
in turn converts the HQL into SQL and executes it against the relational database.

caDSR 4.0 Technical Guide

50

query(CQLQuery cqlQuery, String targetClassName)—Deprecated. Internally calls
the query(CQLQuery cqlQuery) method without the targetClassName parameter.

The example below shows a CQL query for an attribute value.

ApplicationService appService =
ApplicationServiceProvider.getApplicationService();

CQLAttribute attr = CQLAttribute();
attr.setName("longName");
attr.setValue("Adverse Event");
attr.setPredicate(CQLPredicate.EQUAL_TO);

CQLObject target = new CQLOjbect();
target.setName("gov.nih.nci.cadsr.domain.DataElement");
target.setAttribute(attr);

CQLQuery cq = new CQLQuery();
cq.setTarget(target);

Collection results = appService.query(cq);

for (Object obj : results)
{
 printObject(obj, DataElement.class);
 break;
}
The next example shows a CQL query with CQLGroup and CQLAssociation

objects.
ApplicationService appService =

ApplicationServiceProvider.getApplicationService();

CQLAssociation ascDEC = new CQLAssociation();
ascDEC.setName("gov.nih.nci.cadsr.domain.DataElementConcept");

CQLAttribute attrDEC = new CQLAttribute();
attrDEC.setName("publicID");
attrDEC.setValue(2013222);
attrDEC.setPredicate(CQLPredicate.EQUAL_TO);

ascDEC.setTargetRoleName("dataElementConcept");
ascDEC.setSourceRoleName("dataElementCollection");
ascDEC.setAttribute(attrDEC);

CQLAssociation ascVD = new CQLAssociation();
ascVD.setName("gov.nih.nci.cadsr.domain.ValueDomain");

CQLAttribute attrVD = new CQLAttribute();
attrVD.setName("publicID");
attrVD.setValue(2017439);
attrVD.setPredicate(CQLPredicate.EQUAL_TO);

ascVD.setTargetRoleName("valueDomain");
ascVD.setSourceRoleName("dataElementCollection");
ascVD.setAttribute(attrVD);

CQLGroup group = new CQLGroup();
group.addAssociation(ascDEC);
group.addAssociation(ascVD);
group.setLogicOperator(CQLLogicalOperator.AND);

Chapter 4 Interacting With caDSR

51

CQLObject target = new CQLObject();
target.setName("gov.nih.nci.cadsr.domain.DataElement");
target.setGroup(group);

CQLQuery cq = new CQLQuery();
cq.setTarget(target);

Collection results = appService.query(cq);
System.out.println("Number of qualifying records: " + results.size());

for (Object obj : results)
{
 printObject(obj, DataElement.class);
}

Web Services API
The caDSR 4.0 Web Service Inteface is based on the Axis 1.4 framework, which
adheres to the J2EE 1.4 server programming model described by JAX-RPC and JSR
109 (that is, the caDSR 4.0 Web Services uses the Remote Procedure Call (RPC) Web
Service style). For more information on web services, see the Introduction to Web
Services Metadata: http://dev2dev.bea.com/pub/a/2004/10/Anil_WServices.html.

There are four “styles” of service in Axis. RPC services use the SOAP RPC
conventions, and also the SOAP “section 5" encoding. Document services do not use
any encoding (so in particular, you will not see multiref object serialization or SOAP-
style arrays on the wire) but DO still do XML<->Java databinding. Wrapped services
are just like document services, except that rather than binding the entire SOAP body
into one big structure, they “unwrap” it into individual parameters. Message services
receive and return arbitrary XML in the SOAP Envelope without any type mapping/data
binding. For more information, see http://ws.apache.org/axis/java/user-
guide.html#ServiceStylesRPCDocumentWrappedAndMessage.

Note: While the caDSR Web Service continues to be based on the Axis 1.4 framework, the
extraneous .ws layer found in previous SDK versions has been eliminated. In addition,
the caDSR Web Service Deployment Descriptor (WSDD) is now packaged along with
the rest of the system, thus allowing for automatic deployment of the Web Service
(meaning manual deployment of the Web Service is no longer required).

A sample test program, TestClient.java, illustrates how the caDSR generated Web
Service can be consumed, and is provided in the \output\example\package\ws-
client\src folder. More information about this test program and Web Services in general
is provided in the caCORE SDK 4.0 Developers Guide.

XML‐HTTP API
All caCORE SDK based systems, including the caDSR API, support an XML-HTTP
API, based on the Representational State Transfer (REST) architectural style. This can
be invoked from most internet browsers and developers can use this interface to build
applications that do not require any programming overhead other than an HTTP client.
This is particularly useful for developing web applications using AJAX (asynchronous
JavaScript and XML). The REST interface provided transmits domain-specific data

http://dev2dev.bea.com/pub/a/2004/10/Anil_WServices.html
http://ws.apache.org/axis/java/user-guide.html#ServiceStylesRPCDocumentWrappedAndMessage
http://ws.apache.org/axis/java/user-guide.html#ServiceStylesRPCDocumentWrappedAndMessage
https://gforge.nci.nih.gov/docman/view.php/148/8650/caCORE%20SDK%204.0%20Developer%27s%20Guide_101007.pdf

caDSR 4.0 Technical Guide

52

over HTTP without an additional messaging layer, such as SOAP, or session tracking
via HTTP cookies. For more information on REST, see http://en.wikipedia.org/wiki/
REST.

To invoke this interface for the caDSR, use a URL in the form.

http://cadsrapi.nci.nih.gov/cadsrapi40/
GetXML?query=<target>&<criteria>[&rolename=<rolename>]

A complete example.

http://cadsrapi.nci.nih.gov/cadsrapi40/
GetXML?query=gov.nih.nci.cadsr.domain.DataElement&gov.nih.nci
.cadsr.domain.DataElement[@longName=Adverse%20Event]

While such a URL can be invoked directly from a browser, it is most frequently done so
programmatically via a remote client program. An example of such a program,
TestGetXMLClient.java, is noted above.

Parameter Description

Target target/result class name,
e.g.
gov.nih.nci.cadsr.domain.DataElement

Criteria A string identifying the qualified or non-qualified criteria class name
to be used as a filter/constraint on the result set. If desired, the value
of the id attribute of the criteria class instance can also be supplied in
order to further constrain the result set.
<criteria_class_name>[@id=<id_value>]

e.g.
gov.nih.nci.cadsr.domain.DataElement[@longName=Adverse%20E
vent]

Rolename The name of the attribute within the criteria class that identifies the
association to be traversed when retrieving the target/result
class(es). The rolename property must be specified whenever the
Criteria class has two or more attributes representing associations to
the same target/result class type.

Table 4.2 XML‐HTTP API Parameters

http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/REST

53

APPENDIX

A
UNDERSTANDING UNIFIED MODELING

LANGUAGE (UML)
The caDSR team bases its software development primarily on the Unified Modeling
Language (UML). This appendix is designed to familiarize the reader who has not used
UML with its background and notation.

Note: References to the Unified Modeling Language refer to the approved version 1.3 of the
standard.

UML Modeling
The UML is an international standard notation for specifying, visualizing, and
documenting the artifacts of an object-oriented software development system. Defined
by the Object Management Group (http://www.omg.org/), the UML emerged as the
result of several complementary systems of software notation and has now become the
de facto standard for visual modeling. For a brief tutorial on UML, refer to http://
bdn.borland.com/article/0,1410,31863,00.html.

The underlying tenet of any object-oriented programming begins with the construction
of a model. In its entirety, the UML version 1.3 is composed of nine different types of
modeling diagrams that form, in essence, a software blueprint. Only the following
subset of diagrams, those used in caCORE development, are described in this
document.

Use-case diagrams

Class diagrams

Package diagrams

Component diagrams

Sequence diagrams

http://www.omg.org/
http://bdn.borland.com/article/0,1410,31863,00.html
http://bdn.borland.com/article/0,1410,31863,00.html

caDSR 4.0 Technical Guide

54

The caDSR development team applies use-case analysis in the early design stages to
informally capture high-level system requirements. Later in the design stage, as
classes and their relations to one another begin to emerge, class diagrams help to
define the static attributes, functionalities, and relations that must be implemented. As
design continues to progress, other types of interaction diagrams are used to capture
the dynamic behaviors and cooperative activities the objects must execute. Finally,
additional diagrams, such as the package and sequence diagrams can be used to
represent pragmatic information such as the physical location of source modules and
the allocation of resources.

Each diagram type captures a different view of the system, emphasizing specific
aspects of the design such as the class hierarchy, message-passing behaviors
between objects, the configuration of physical components, and user interface
capabilities.

Note: Not all UML artifacts discussed here are necessary for using caDSR. They are included
strictly to provide a more complete overview of UML.

While many good development tools provide support for generating UML diagrams, the
Enterprise Architect (EA) software is used throughout caCORE. The resulting
documents, originally generated during design and development, provide value
throughout the software life cycle as they can rapidly familiarize new users of the
system with the logic and structure of the underlying design elements.

Use‐case Documents and Diagrams
A good starting point for capturing system requirements is to develop a structured
textual description of how users will interact with the system, often called a use-case
document. While there is no specific predefined structure for this artifact, use-case
documents typically consist of one or more actors, a process, a list of steps, and a set
of pre- and post-conditions. In many cases, it describes the post-conditions associated
with success as well as failure.

The following is an example use case from a use-case document:

Find Gene(s) for a given search criteria (keyword)

Usecase ID: 100300

Actor

caBIO Application developer

Starting Condition

The actor establishes reference to the caBIO software

Flow of Events

1. The actor sets the search criteria (Use case ID 101300) using one or more
keywords in the criteria

2. Invoke the search use case (Use case ID 105300) and pass the search criteria
instantiated at step 1.

 Appendix A Understanding Unified Modeling Language (UML)

55

3. A result set (Use case ID 110300) is returned to the actor.

Using the use-case document as a model, a use-case diagram is then created to
confirm the requirements stated in the text-based use-case document.

A use-case diagram, which is graphically described and language independent, uses
simple ball and stick figures with labeled ellipses and arrows to show how users or
other software agents might interact with the system. The emphasis is on what a
system does rather than how a system works. Each “use-case” (an ellipse) describes a
particular activity that an “actor” (a stick figure) performs or triggers. The
“communications” between actors and use-cases are depicted by connecting lines or
arrows.

The example use-case diagram in Figure A.1 below can be interpreted as follows:

A caBIO application developer triggers the actions to build a search query,
connect to the server, and search the server.

The caBIO application developer receives the output from the search.

Figure A.1 Example Use Case Diagram

Class Diagrams
The system designer utilizes use-case diagrams to identify the classes that must be
implemented in the system, their attributes and behaviors, and the relationships and
cooperative activities that must be realized. A class diagram is used later in the design
process to give an overview of the system, showing the hierarchy of classes and their

caDSR 4.0 Technical Guide

56

static relationships at varying levels of detail. Figure A.2 shows an abbreviated version
of a UML Class diagram depicting many of the caBIO domain objects.

Figure A.2 Example UML Class Diagram Depicting the caBIO Domain Objects

Class objects can have a variety of possible relationships to one another, including “is
derived from,” “contains,” “uses,” “is associated with,” etc. The UML provides specific
notations to designate these different kinds of relations, and enforces a uniform layout
of the objects' attributes and methods — thus reducing the learning curve involved in
interpreting new software specifications or learning how to navigate in a new
programming environment.

Table A.1 shows a schematic for a UML class representation, the fundamental element
of a class diagram, along with an example of how a simple class might be represented
in this scheme.

The example shows the name of the class (often used as the identifier for the class),
the attributes (structures) for the class, and the object's operations (methods). The
example specifies the Gene class as having a single attribute called sequence and a
single operation called getSequence().

Class Gene

-attribute -sequence

Operation +getSequence()

Table A.1 Schematic for a UML class showing a simple class called Gene

 Appendix A Understanding Unified Modeling Language (UML)

57

Naming Conventions
Naming conventions are important when creating class diagrams. caDSR follows the
formatting convention for Java APIs in that a class starts with an uppercase letter and
an attribute starts with a lowercase letter. Names contain no underscores. If the name
contains two words, then both words are capitalized, with no space between words. If
an attribute contains two words, the second word is capitalized with no space between
words. Boolean terms (has, is) are used as prefixes to words for test cases.

The operations and attributes of an object are called its features. The features, along
with the class name, constitute the signature, or classifier, of the object. The UML
provides explicit notation for the permissions assigned to a feature, and UML tools vary
with respect to how they represent their private, public, and protected notations for their
class diagrams.

The caBIO classes represented in the UML diagram in Figure A.2 show only class
names and attributes; the operations are suppressed in that diagram. This is an
example of a UML view; details are hidden where they might obscure the bigger picture
that the diagram is intended to convey. Most UML design tools provide a means for
selectively suppressing either or both attributes and operation compartments of the
class without removing the information from the underlying design model. In Figure A.2,
the emphasis is on the relationships and attributes that are defined among the objects
rather than on the operations.

The following notations (as shown in Figure A.2 above and Figure A.6 later) are used to
indicate that a feature is public or private:

“-” prefix signifies a private feature

“+” signifies a public feature

In Table A.1 for example, the Gene object's sequence attribute is private and can only
be accessed using the public getSequence() method.

Relationships Between Classes
Note: Not all figures used here appear in the demonstration class diagram, Figure A.2. They

are, however, examples of models that may be found in caCORE.

A quick glance at Figure A.2 above demonstrates relationships between some of the
classes. Generally, the relationships occurring among the caBIO objects are of the
following types: association, aggregation, generalization, and multiplicity. Each of these
are described in the sections that follow.

Association
The most primitive of relationships between objects is association. An association
represents the ability of one instance to send a message to another instance.
Association is depicted by a simple solid line connecting the two classes.

Directionality
UML relations can have directionality (sometimes called navigability) as shown in
Figure A.3 below. Here, a Gene object is uniquely associated with a Taxon object, with
an arrow denoting bi-directional navigability. Specifically, the Gene object has access
to the Taxon object (i.e., there is a getTaxon() method), and the Taxon object has

caDSR 4.0 Technical Guide

58

access to the Gene object (i.e., there is a corresponding getGeneCollection() method).
Role names are also are shown in Figure A.2 above and Figure A.3 below, clarifying
the nature of the association between the two classes. For example, a taxon (rolename
identified in Figure A.3) is a line item of each Gene object. The + indicates public
accessibility.

Figure A.3 One‐to‐one Association with Bi‐directional Navigability

Multiplicity
Optionally, a UML relation can have a label providing additional semantic information,
as well as numerical ranges such as 1..n at its endpoints. This notation indicates
multiplicity. These cardinality constraints identify that the relationship between the
objects is one-to-one, one-to-many, many-to-one, or many-to-many, according to the
ranges specified and their placement. Table A.2 below lists the most commonly used
multiplicities.

Figure A.4 below depicts a bi-directional many-to-one relationship between Sequence
objects and Clone objects. Each Sequence may have at most one Clone associated
with it, while a Clone may be associated with many Sequences. To get information
about a Clone from the Sequence object requires calling the getSequenceClone()
method. Each Clone in turn can return its array of associated Sequence objects using
the getSequences() method. This bidirectional relationship is shown using a single
undirected line between the two objects.

Figure A.4 Bi‐directional Many‐to‐one Relationship

Aggregation
Another relationship exhibited by caDSR objects is aggregation, in which the
relationship is between a whole and its parts. This relationship is exactly the same as
an association, with the exception that instances cannot have cyclic aggregation
relationships (i.e., a part cannot contain its whole). Aggregation is represented by a line
with a diamond end next to the class representing the whole, as shown in the Clone-to-

Multiplicities Definition

0..1 Zero or one instance. The notation n..m indicates n to m instances.

0..* or * Zero to many. No limit on the number of instances (including none).
An asterisk (8) is used to represent a multiplicity of many.

1 Exactly one instance

1..* At least one instance to many

Table A.2 Multiplicities Table

 Appendix A Understanding Unified Modeling Language (UML)

59

Library relation of Figure A.5. As illustrated, a Library can contain Clones but not vice-
versa.

In UML, the empty diamond of aggregation indicates that the whole maintains a
reference to its part. More specifically, this means that while the Library is composed of
Clones, these contained objects may have been created prior to the Library object's
creation, and so will not be automatically destroyed when the Library goes out of scope.

Figure A.5 Aggregation and Multiplicity Associations

Figure A.5 also shows a more complex network of relations. Specifically this diagram
indicates that:

a. One or more Sequences is associated with a Clone.

b. The Clone is contained in a Library, which comprises one or more Clones.

c. The Clone may have one or more Traces.

Only the relationship between the Library and the Clone is an aggregation. The others
are simple associations.

Generalization
Generalization is an inheritance link indicating that one class is a subclass of another.
Figure A.6 below depicts a generalization relationship between the SequenceVariant
parent class and the Repeat and SNP classes. Classes participating in generalization
relationships form a hierarchy, as depicted here.

In generalization, the more specific element is fully consistent with the more general
element (it has all of its properties, members, and relationships) and may contain
additional information. Both the SNP and Repeat objects follow that definition.

The superclass-to-subclass relationship is represented by a connecting line with an
empty arrowhead at its end pointing to the superclass, as shown in the
SequenceVariant-to-Repeat and SequenceVariant-to-SNP relations of Figure A.6.

Figure A.6 Generalization Relationship

caDSR 4.0 Technical Guide

60

In summary, class diagrams represent the static structure of a set of classes. Class
diagrams, along with use-cases, are the starting point when modeling a set of classes.
Recall that an object is an instance of a class. Therefore, when the diagram references
objects, it is representing dynamic behavior, whereas when it is referencing classes, it
is representing the static structure.

Package Diagrams
Large-scale software design is a highly complex activity. As the number of classes
grows to satisfy the evolving requirements of an application, the overall architectural
design can quickly become obscured by this proliferation of design elements. To
simplify complex UML diagrams, classes can be organized into packages representing
logically related groupings. Packaging can be applied to any type of UML diagram; a
package diagram is any UML diagram composed only of packages.

Most commonly, packaging is used to simplify use-case and class diagrams. The
package diagram is not one of the nine standard UML diagrams, but since it provides a
convenient way of depicting the organization of software components into packages, it
is described here.

A package is depicted as a labeled rectangle with a small tab attached to its upper left
corner, somewhat resembling a file folder (see Figure A.7 below). This image
represents a package diagram generated using the UML modeling program Enterprise
Architect (EA). In our example, “gov” is the top level package; “nih” is a sub-package to
“gov” with the + indicating that sub-packages to “nih” exist.

Figure A.7 Package Diagram Generated in EA

 Appendix A Understanding Unified Modeling Language (UML)

61

The dotted arrows connecting packages as displayed in Figure A.8 represent
dependencies: one package depends on another if changes in one could force
changes in the other. Figure A.8 below is the hierarchical representation of Figure A.7.

Figure A.8 Hierarchical Package Diagram

The concept of a package in a software application is similar but not identical to the
notion of a UML package.

The organization of software components into packages is used to increase reusability
and to minimize compile-time dependencies. It is highly unusual to reuse a single class,
but quite common to reuse a collection of related classes that collaborate to produce
some desired functionality. The UML models of the caDSR software that are available
on the JavaDocs pages approximately reflect the actual Java package structure but do
not have a one-to-one correspondence.

Figure A.9 Generic Component Diagram

Figure A.10 Component Diagram as Represented in EA

Component diagrams and class diagrams represent both the static structure and the
dynamic behavior of the system. Component diagrams are optional since they are not
used for code generation.

caDSR 4.0 Technical Guide

62

Sequence Diagrams
A sequence diagram describes the exchange of messages being passed from object to
object over time. The flow of logic within a system is modeled visually, validating the
logic of a usage scenario. In a sequence diagram, bottlenecks can be detected within
an object-oriented design, and complex classes can be identified.

Figure A.11 below is an example of a sequence diagram. The vertical lines in the
diagram with the boxes along the top row represent instantiated objects. The vertical
dimension displays the sequence of messages in the time order that they occur; the
horizontal dimension shows the object instances to which the messages are sent. The
diagram is read from left to right, top to bottom, following the sequential execution of
events.

This sequence diagram explains the sequence of execution of the toolkit at runtime.
The User query from the client traverses the following sequence path before reaching
the database.

1. The user uses search() method in ApplicationService and queries the server.

2. This call is picked up at HTTPClient as query() with Request as the input
parameter.

3. HTTPClient calls the HTTPServer (Interface Proxy for HTTP Tunneling) and
sends the same Request to BaseDelegate.

4. BaseDelegate calls ServiceLocator to find the name of Data Access Object.

5. Using this name BaseDelegate creates the corresponding DAO factory and
passes the Request object.

6. In this scenario the ORMDAO is the right DAO to be called.

7. ORMDAOImpl contains specific implementation about the data source and
connects to the data source.

Note: Sequence diagrams are optional since they are not used for code generation.

A
ppendix A

 U
nderstanding U

nified M
odeling Language (U

M
L)

63

Figure A.11 Example of a Sequence Diagram

caDSR 4.0 Technical Guide

64

65

APPENDIX

B
REFERENCES

This appendix contains a listing of references relevant to caDSR 4.0 and the caDSR
4.0 Technical Guide.

Technical Manuals/Articles
National Cancer Institute caCORE SDK 4.0 Programmer's Guide

Java Bean Specification

Foundations of Object-Relational Mapping

Object-Relational Mapping articles and products

Hibernate Reference Documentation

Basic O/R Mapping

Java Programming

Jalopy User Manual

Javadoc tool

JUnit

Extensible Markup Language

XML Metadata Interchange

Ehcache

Scientific Publications
Komatsoulis, G.A., Warzel, D.B., Hartel, F.W., Shanbhag, K, Chilukuri, R,
Fragoso, G., de Coronado, S, Reeves, D.M., Hadfield, J.B., Ludet, C., and P.A.
Covitz (2007) caCORE version 3: Implementation of an model driven, service-

http://java.sun.com/products/javabeans/docs/spec.html
http://www.chimu.com/publications/objectRelational/
http://www.service-architecture.com/object-relational-mapping/
http://www.hibernate.org/5.html
http://www.hibernate.org/hib_docs/v3/reference/en/html/mapping.html
http://java.sun.com/learning/new2java/index.html
http://jalopy.sourceforge.net/existing/manual.html
http://java.sun.com/j2se/javadoc/
http://junit.sourceforge.net/
http://www.w3.org/TR/REC-xml/
http://www.omg.org/technology/documents/formal/xmi.htm
http://ehcache.sourceforge.net/documentation/

caDSR 4.0 Technical Guide

66

oriented architecture for semantic interoperability. Accepted, BMC Medical
Informatics and Decision Making.

Covitz P, Warzel D, Fragoso G, Chilukuri R, Phillips J, The caCORE Software
Development Kit: Streamlining construction of interoperable biomedical
information services, BMC Medical Informatics and Decision Making 6:2

Crowley R, Wright L, Warzel D, Sioutos N, Mohanty S, Komatsoulis G, Chilukuri
R, Tobias J, The CAP cancer protocols - a case study of caCORE based data
standards implementation to integrate with the Cancer Biomedical Informatics
Grid, BMC Medical Informatics and Decision Making (June 20 2006) 6:25

Hartel F.W., Coronado S., Dionne R., Fragoso G. and Golbeck J. (2005).
Modeling a description logic vocabulary for cancer research. Journal of
Biomedical Informatics, 38, in press. (http://www.sciencedirect.com/)

Ansher SS and Scharf R (2001). The Cancer Therapy Evaluation Program
(CTEP) at the National Cancer Institute: industry collaborations in new agent
development. Ann N Y Acad Sci 949:333-40.

Boon K, Osorio EC, Greenhut SF, Schaefer CF, Shoemaker J, Polyak K, Morin
PJ, Buetow KH, Strausberg RL, De Souza SJ, and Riggins GJ (2002). An
anatomy of normal and malignant gene expression. Proc Natl Acad Sci U S A
2002 Jul 15.

Buetow KH, Klausner RD, Fine H, Kaplan R, Singer DS, and Strausberg RL
(2002). Cancer Molecular Analysis Project: Weaving a rich cancer research
tapestry. Cancer Cell 1(4):315-8.

Clifford R, Edmonson M, Hu Y, Nguyen C, Scherpbier T, and Buetow KH (2000).
Expression-based genetic/physical maps of single-nucleotide polymorphisms
identified by the Cancer Genome Anatomy Project. Genome Res 10(8):1259-
65.

Covitz P.A., Hartel F., Schaefer C., De Coronado S., Sahni H., Gustafson S.,
Buetow K. H. (2003). caCORE: A common infrastructure for cancer informatics.
Bioinformatics. 19: 2404-2412.

Dowell RD, Jokerst RM, Day A, Eddy SR, Stein L. The Distributed Annotation
System. BMC Bioinformatics 2(1):7.

The Gene Ontology Consortium. (2000). Gene ontology: tool for the unification
of biology. Nature Genetics 25:25-9.

The Gene Ontology Consortium. (2001). Creating the gene ontology resource:
design and implementation. Genome Res 11:1425-33.

Golbeck J., Fragoso G., Hartel F., Hendler J., Oberthaler J., Parsia B. (2003).
The National Cancer Institute's th_saurus and ontology. Journal on Web
Semantics. 1:75-80.

Hartel FW and de Coronado S (2002). Information standards within NCI. In:
Cancer Informatics: Essential Technologies for Clinical Trials. Silva JS, Ball MJ,
Chute CG, Douglas JV, Langlotz C, Niland J and Scherlis W, eds. Springer-
Verlag.

http://www.sciencedirect.com/

 Appendix B References

67

caBIG Material

caCORE Material

Modeling Concepts

Applications Currently Using caCORE

caBIG http://cabig.nci.nih.gov

caBIG Compatibility Guidelines http://cabig.nci.nih.gov/guidelines_documentation

Table B.1 caBIG Material

caCORE http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview

caBIO http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caBIO

caDSR http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr

EVS http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocabulary

CSM http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm

Table B.2 caCORE Material

Enterprise Architect Online Manual http://www.sparxsystems.com.au/EAUserGuide/
index.html

OMG Model Driven Architecture (MDA)
Guide Version 1.0.1

http://www.omg.org/docs/omg/03-06-01.pdf

Object Management Group http://www.omg.org/

Table B.3 Modeling Concept References

BIO Browser http://www.jonnywray.com/java/index.html

caPathway http://cgap.nci.nih.gov/Pathways

Table B.4 Products Using caCORE

http://cabig.nci.nih.gov
http://cabig.nci.nih.gov/guidelines_documentation
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caBIO
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocabulary
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/csm
http://www.sparxsystems.com.au/EAUserGuide/index.html
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/
http://cgap.nci.nih.gov/Pathways
http://www.jonnywray.com/java/index.html

caDSR 4.0 Technical Guide

68

Software Products

Hibernate http://www.hibernate.org/5.html;
http://hibernate.org/

Tomcat http://jakarta.apache.org/tomcat/

Enterprise Architect http://www.sparxsystems.com.au/

Apache WebServices Axis http://ws.apache.org/axis/

MySQL http://www.mysql.com/

Concurrent Versions System (CVS) https://www.cvshome.org

Ant http://ant.apache.org/

JBoss Application Server http://www.jboss.com/products/jbossas

Table B.5 Software Products

http://www.hibernate.org/5.html
http://hibernate.org/
http://jakarta.apache.org/tomcat/
http://www.sparxsystems.com.au/
http://ws.apache.org/axis/
http://www.mysql.com/
https://www.cvshome.org
http://ant.apache.org/
http://www.jboss.com/products/jbossas

69

GLOSSARY
This glossary describes acronyms, objects, tools and other terms referred to in the
chapters or appendixes of this guide.

Term Definition

Apache Axis Open source package that provides SOAP-based web services to
users

API Application Programming Interface

Application
Service

This refers to the CSM interface which exposes all the writeable as
well as business methods for a particular application

BO Business Object

C3D Cancer Centralized Clinical Database

caBIG cancer Biomedical Informatics Grid

caBIO Cancer Bioinformatics Infrastructure Objects

caCORE Cancer Common Ontologic Representation Environment

caDSR Cancer Data Standards Repository

caMOD Cancer Models Database

cardinality Cardinality describes the minimum and maximum number of
associated objects within a set

CCR Center of Cancer Research

CDE Common Data Element

CGAP Cancer Genome Anatomy Project

CLM Common Logging Module

CMAP Cancer Molecular Analysis Project

CS Classification Scheme

CSI Classification Scheme Item

CLM Common Logging Module

CSM Common Security Module

CTEP Cancer Therapy Evaluation Program

CVS Concurrent Versions System

Book Title

70

DAO Data Access Objects

DAS Distributed Annotation System

DCP Division of Cancer Prevention

DDL Data Definition Language

DEC Data Element Concept

DL Description Logic

DOM Document Object Model

DTD Document Type Definition

DTS Distributed Terminology Server

DU Deployment Unit

EA Enterprise Architect

EBI European Bioinformatics Institute

EMF Eclipse Modeling Framework

EVS Enterprise Vocabulary Services

FreeMarker A "template engine"; a generic tool to generate text output (anything
from HTML or RTF to auto generated source code) based on
templates

GAI CGAP Genetic Annotation Initiative

GEDP Gene Expression Data Portal

Hibernate A high performance object/relational persistence and query service for
JavaProvides the ability to develop persistent classes following
common object-oriented (OO) design methodologies such as
association, inheritance, polymorphism, and composition (http://
www.hibernate.org)

HQL Hibernate Query Language is designed as a "minimal" object-oriented
extension to SQL, provides a bridge between the object and relational
databases

IDE Integrated Development Environment

ISO International Organization for Standardization

JAR Java Archive

Java Bean Reusable software components that work with Java

Java Servlet Server-side Java programs, that web servers can run to generate
content in response to client requests

Javadoc Tool for generating API documentation in HTML format from doc
comments in source code (http://java.sun.com/j2se/javadoc/)

JBoss J2SE application server used as a a presentation layer in caCORE
architecture. See also Tomcat.

JDBC Java Database Connectivity

Term Definition

http://www.hibernate.org
http://java.sun.com/j2se/javadoc/

 Glossary

71

JDiff Javadoc doc-let which generates an HTML report of all the packages,
classes, constructors, methods, and fields which have been removed,
added or changed in any way, including their documentation, when
two APIs are compared (http://javadiff.sourceforge.net/)

JET Java Emitter Templates

JMI Java Metadata Interface

JSP Java Server Pages. Web pages with Java embedded in the HTML to
incorporate dynamic content in the page

JUnit A simple framework to write repeatable tests (http://
junit.sourceforge.net/)

MDR Metadata Repository

metadata Definitional data that provides information about or documentation of
other data.

MMHCC Mouse Models of Human Cancers Consortium

multiplicity Multiplicity of an association end indicates the number of objects of
the class on that end that may be associated with a single object of
the class on the other end

MVC Model-View-Controller, a design pattern

navigability Navigability defines the visibility of an object to its associated source/
target object at the other end of an association.
Navigability is the same as directionality.

NCI National Cancer Institute

NCICB National Cancer Institute Center for Bioinformatics

NSC Nomenclature Standards Committee

OMG Object Management Group

OR Object Relation

ORM Object Relational Mapping

PCDATA Parsed Character DATA

persistence layer Data storage layer, usually in a relational database system

RDBMS Relational Database Management System

RUP Rational Unified Process

SOAP Simple Object Access Protocol. A lightweight XML-based protocol for
the exchange of information in a decentralized, distributed
environment

SPORE Specialized Programs of Research

SQL Structured Query Language

Tagged value A UML construct that represents a name-value pair; can be attached
to anything in a UML model. Often used by UML modeling tools to
store tool-specific information

Term Definition

http://javadiff.sourceforge.net/
http://junit.sourceforge.net/
http://junit.sourceforge.net/

Book Title

72

Tomcat J2SE application server used as a a presentation layer in caCORE
architecture. See also JBoss.

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locators

war Web archive file

Writeable API Methods exposed by the CSM to create, update and delete a domain
object. These methods are generated using the code generation
component.

WSDL Web Services Description Language

XMI XML Metadata Interchange (http://www.omg.org/technology/
documents/formal/xmi.htm) - The main purpose of XMI is to enable
easy interchange of metadata between modeling tools (based on the
OMG-UML) and metadata repositories (OMG-MOF) in distributed
heterogeneous environments

XML Extensible Markup Language (http://www.w3.org/TR/REC-xml/) - XML
is a subset of Standard Generalized Markup Language (SGML). Its
goal is to enable generic SGML to be served, received, and
processed on the Web in the way that is now possible with HTML.
XML has been designed for ease of implementation and for
interoperability with both SGML and HTML

XP Extreme Programming

Term Definition

http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.w3.org/TR/REC-xml/

73

INDEX
A
administered components 17, 19
aggregation 30, 57, 58
AJAX 51
Apache Axis 10, 11, 36, 51, 69
API 11, 23, 41

caCORE client Java API example 37
class hierarchy 25
examples 34, 36, 37
installation 42
Java example 34, 45
requirements 41
web services example 36

application service interface 45
application service layer 10
architecture layers 10
associations 20, 23, 31, 56, 57

B
bi‐directional 58

C
caAdapter 7
caBIG query language 49
caBIG query language (CQL) 46
caBIG silver‐level compatibility 6
caCORE 5

caCORE‐like system 5
characteristics 5
components 6

caCORE client Java API 37
caDSR

API 11, 23, 41
API examples 34, 36, 37
architecture 9
client 10
data access package 11
domain model 9
domain objects 25
downloading 33, 42

model extensions 30
overview 6
packages 11
service layers 10, 41
services 10
system package 11
toolset 33
UML project diagram 32
UML project domain objects 33
web service package 11

cardinality 15
cardinality constraints 16
CBIIT 5
class attributes 19
class descriptions 25
class diagram 55, 56, 60, 61
class hierarchy 24, 25, 55
classification scheme 19, 20
classification scheme items 21
class naming conventions 57
class relationships 57
client.jar 10
client access 41
client authentication 10
client test demo 45
CLM 7
clones 59
component diagram 61
concept 29
concept derivation 30
concept derivaton rule 30
conceptual domain 14, 15
controlled vocabularies 5, 6
convenience query methods 46
CQL criteria search 46
CQL queries 49
CQL query methods 49
CSM 7

caDSR 4.0 Technical Guide

74

D
data access package 11
data element 14, 15, 19

latest version 34, 36
data element concept 14, 15
data management 14
data model diagram 15
data source delegation layer 10
designation 20
detached criteria query methods 49
detached criteria search 46, 48
directionality 57
domain model 9
domain object 9, 25, 33
domain‐specific elements 21
downloaded files 42
downloading caDSR 33
downloading the API 42

E
Enterprise Architect (EA) 54, 60
EVS 6

F
form registration 14
forms 21
forms components 22

G
generalization 57, 59
getAssociation 46
getMaxRecordsCount 46
getQueryRowCount 46

H
Hibernate 10
Hibernate query 46
Hibernate Query Language 10
HQL 10, 46
HQLCriteria 46
HQL Query Methods 46

I
information classes 17
information mapping diagram 16
inheritance 59
installing the API 42
ISO/IEC 11179 13
ISO/IEC 11179 components 14
ISO/IEC 11179 model diagram 15

J
jar files 44
Java API 34, 44
Java applications 9
JavaDocs 11

L
library 59
longName 19

M
metadata

associations 20, 23
cardinality 15
cardinality constraints 16
class diagram 15
conceptual domain 15
data element 14, 15
data element concept 15
definition 14
forms 21
framework 14
information mapping 16
model 14, 17
model diagram 16
object 14
overview 13
property 14
representation 14
standard 13
value 14
value domain 15, 25

model extensions 30
modeling 53
multiplicity 57, 58

N
navigability 58
NCICB 5
NCICB downloads 33
nested search 46
nested search criteria 47
nested search query methods 47, 48
non‐Java applications 10
n‐tier architecture 5, 6, 9

O
object 14
object classes 31
object management group 53
object relational mapping (ORM) 10

75

OMG 53
ORM 10, 11
overview

caAdapter 7
caDSR 6
CLM 7
CSM 7
EVS 6
SDK 6

P
package diagram 61
package diagrams 60
packages 11
PrefferedName 19
property 14
public vs. private 57

Q
query‐by‐example (QBE) 41, 46
query criteria 41

R
reference document 20
registered metadata 5
representation 14
representational state transfer 51
REST 51

S
sample demo program 44
sample query 34, 36, 37
SDK 6
search methods 45
semantic interoperability 6
sequence diagram 62
sequences 59
service layers 10
simple search 46
SOAP 10, 52
SOAP RPC 51
SQL 10
system package 11

T
TestClient.java 51
traces 59
truncated results 46, 49

U
UML 53
UML Class diagram 15
UML class representation 56
UML generalization 23
UML modeling 53
UML package 61
UML project diagram 32
UML project domain objects 33
UML project query 37
Unified Modeling Language 53
use‐case

analysis 54
diagram 55
document 54

V
value 14
value domain 14, 15, 25

W
web service package 11
web services API 36, 51

sample test program 51

X
XML 10
XML‐HTTP API 51
XML‐HTTP example 52

caDSR 4.0 Technical Guide

76

	Table Of Contents
	About This Guide
	Purpose
	Release Schedule
	Audience
	Additional Documentation
	Topics Covered
	Text Conventions Used
	Credits and Resources

	Overview of caCORE
	caCore Architecture Overview
	Components of caCORE
	Enterprise Vocabulary Services (EVS)
	Cancer Data Standards Repository (caDSR)
	Software Development Kit (SDK)
	caAdapter
	Common Security Model (CSM)
	Common Logging Module (CLM)

	caDSR Architecture
	caDSR System Architecture
	Client Technologies
	caDSR Packages

	Understanding caDSR and the caDSR API
	Modeling Metadata: The ISO/IEC 11179 Standard
	caDSR Metamodel
	caDSR API
	caDSR Domain Object Catalog

	Downloading the caDSR
	caDSR API Examples
	Using the caDSR Java API
	Using the caDSR Web Services API
	UML Project API Examples

	Interacting With caDSR
	Java API
	Installation and Configuration
	A Simple Example
	Application Service Interface
	Convenience Query Methods
	HQL Query Methods
	Nested Search Criteria Query Methods
	Detached Criteria Query
	CQL Query

	Web Services API
	XML-HTTP API

	Understanding Unified Modeling Language (UML)
	UML Modeling
	Use-case Documents and Diagrams
	Class Diagrams
	Naming Conventions
	Relationships Between Classes
	Association
	Directionality
	Multiplicity
	Aggregation
	Generalization

	Package Diagrams
	Sequence Diagrams

	References
	Technical Manuals/Articles
	Scientific Publications
	caBIG Material
	caCORE Material
	Modeling Concepts
	Applications Currently Using caCORE
	Software Products

	Glossary
	Index

